Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 25;70(Pt 7):o821. doi: 10.1107/S1600536814014585

2′,7′-Di­bromo­spiro­[cyclo­propane-1,9′-fluorene]

Yue-yuan Xue a, Yong-qi Qin b,*
PMCID: PMC4120574  PMID: 25161597

Abstract

In the title compound, C15H10Br2, each mol­ecule is situated on special postion mm, so the asymmetric unit contains one-quater of a mol­ecule. The 2,7-di­bromo-9H-fluorene fragment and three spiro­cyclo­propane C atoms lie on different planes, which are perpendicular to each other. In the crystal, π–π inter­actions between aromatic rings [inter­centroid distance = 3.699 (3) Å] pack the mol­ecules into stacks extending in [001].

Keywords: crystal structure

Related literature  

For electroluminescence properties of fluorene derivatives, see: Cho et al. (2007); Jiang et al. (2005); Wei et al. (2008). For the crystal structures of related compounds, see: Jason et al. (1981); Wang et al. (2007).graphic file with name e-70-0o821-scheme1.jpg

Experimental  

Crystal data  

  • C15H10Br2

  • M r = 350.05

  • Orthorhombic, Inline graphic

  • a = 16.9485 (17) Å

  • b = 11.0619 (11) Å

  • c = 6.8127 (10) Å

  • V = 1277.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.32 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • 3276 measured reflections

  • 640 independent reflections

  • 471 reflections with I > 2σ(I)

  • R int = 0.155

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.100

  • S = 0.98

  • 640 reflections

  • 53 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814014585/cv5463sup1.cif

e-70-0o821-sup1.cif (111.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014585/cv5463Isup2.hkl

e-70-0o821-Isup2.hkl (35.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014585/cv5463Isup3.cml

CCDC reference: 1009321

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Colleges and Universities Technology Project of Shanxi Province (grant No. 20121033) and the Natural Science Fund of Lvliang University (ZRXN201206 and ZRXN201210).

supplementary crystallographic information

S1. Comment

Fluorene derivatives have a wide range of applications in electroluminescence materials (Jiang et al., 2005; Wei et al., 2008) because of their good thermal, light and chemical stability (Cho et al., 2007). Herewith we present the title compound (I), which is a new derivative of fluorene.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related spiro(cyclopropane-1,9'-(9H)fluorene) (Jason et al., 1981) and 2',7'-diiodospiro(cyclopropane-1,9'-fluorene) (Wang, et al., 2007). In (I), the 2,7-dibromo-9H-fluorene fragment and three carbon atoms of spirocyclopropane lie on different planes m, which are perpendicular to each other, so asymmetric unit contains one fourth of the molecule.

In the crystal, π–π interactions between the aromatic rings [intercentroid distance of 3.699 (3) Å] pack molecules into stacks extended in [001].

S2. Experimental

The title compound was prepared by the reaction of 2,7-dibromo-9H-fluorene(0.01 mol), 1,2-dibromethane(0.01 mol) and KOH(0.03 mol) in 1,4-dioxane(20 ml) at 358 K for 3 h. Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

S3. Refinement

H atoms were fixed geometrically and allowed to ride on their parent atoms, with C—H distances = 0.93–0.97 Å; and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids.

Crystal data

C15H10Br2 Dx = 1.820 Mg m3
Mr = 350.05 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Cmcm Cell parameters from 933 reflections
a = 16.9485 (17) Å θ = 2.2–25.0°
b = 11.0619 (11) Å µ = 6.32 mm1
c = 6.8127 (10) Å T = 293 K
V = 1277.3 (3) Å3 Block, colourless
Z = 4 0.30 × 0.20 × 0.20 mm
F(000) = 680

Data collection

Bruker SMART CCD area-detector diffractometer Rint = 0.155
Radiation source: fine-focus sealed tube θmax = 25.0°, θmin = 2.2°
phi and ω scans h = −20→17
3276 measured reflections k = −13→12
640 independent reflections l = −8→7
471 reflections with I > 2σ(I)

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0438P)2] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
640 reflections Δρmax = 0.30 e Å3
53 parameters Δρmin = −0.68 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.31110 (3) 0.12115 (5) 0.7500 0.0746 (4)
C1 0.0691 (3) 0.1592 (4) 0.7500 0.0396 (11)
C2 0.1489 (3) 0.1851 (4) 0.7500 0.0470 (12)
H2 0.1666 0.2647 0.7500 0.056*
C3 0.2011 (3) 0.0894 (5) 0.7500 0.0478 (12)
C4 0.1763 (3) −0.0277 (4) 0.7500 0.0506 (12)
H4 0.2130 −0.0901 0.7500 0.061*
C5 0.0965 (3) −0.0541 (4) 0.7500 0.0450 (12)
H5 0.0792 −0.1339 0.7500 0.054*
C6 0.0429 (2) 0.0393 (4) 0.7500 0.0380 (10)
C13 0.0000 0.2412 (5) 0.7500 0.0424 (16)
C14 0.0000 0.3609 (3) 0.6418 (11) 0.0725 (18)
H14 0.0485 0.3846 0.5754 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0506 (4) 0.0657 (5) 0.1074 (6) 0.0008 (3) 0.000 0.000
C1 0.054 (3) 0.0309 (19) 0.034 (2) −0.001 (2) 0.000 0.000
C2 0.056 (3) 0.034 (2) 0.051 (3) −0.004 (2) 0.000 0.000
C3 0.047 (3) 0.049 (3) 0.047 (3) 0.005 (2) 0.000 0.000
C4 0.059 (3) 0.046 (3) 0.047 (3) 0.012 (2) 0.000 0.000
C5 0.063 (3) 0.031 (2) 0.041 (3) 0.003 (2) 0.000 0.000
C6 0.052 (2) 0.032 (2) 0.031 (2) 0.0006 (19) 0.000 0.000
C13 0.051 (4) 0.028 (3) 0.048 (4) 0.000 0.000 0.000
C14 0.054 (3) 0.039 (3) 0.125 (5) 0.000 0.000 0.030 (3)

Geometric parameters (Å, º)

Br1—C3 1.897 (5) C5—C6 1.375 (6)
C1—C2 1.383 (6) C5—H5 0.9299
C1—C6 1.398 (6) C6—C6i 1.454 (8)
C1—C13 1.481 (6) C13—C1i 1.481 (6)
C2—C3 1.380 (7) C13—C14 1.516 (7)
C2—H2 0.9300 C13—C14ii 1.516 (7)
C3—C4 1.361 (7) C14—C14ii 1.475 (14)
C4—C5 1.384 (6) C14—H14 0.9741
C4—H4 0.9299
C2—C1—C6 120.5 (4) C4—C5—H5 120.5
C2—C1—C13 130.3 (4) C5—C6—C1 120.2 (4)
C6—C1—C13 109.3 (4) C5—C6—C6i 131.3 (3)
C3—C2—C1 117.9 (4) C1—C6—C6i 108.5 (3)
C3—C2—H2 121.3 C1i—C13—C1 104.5 (5)
C1—C2—H2 120.8 C1i—C13—C14 122.36 (19)
C4—C3—C2 122.1 (5) C1—C13—C14 122.36 (19)
C4—C3—Br1 118.7 (4) C1i—C13—C14ii 122.36 (19)
C2—C3—Br1 119.2 (4) C1—C13—C14ii 122.36 (19)
C3—C4—C5 120.2 (4) C14—C13—C14ii 58.2 (6)
C3—C4—H4 120.0 C14ii—C14—C13 60.9 (3)
C5—C4—H4 119.8 C14ii—C14—H14 117.6
C6—C5—C4 119.1 (4) C13—C14—H14 117.4
C6—C5—H5 120.4
C6—C1—C2—C3 0.0 C2—C1—C6—C6i 180.0
C13—C1—C2—C3 180.0 C13—C1—C6—C6i 0.0
C1—C2—C3—C4 0.0 C2—C1—C13—C1i 180.0
C1—C2—C3—Br1 180.0 C6—C1—C13—C1i 0.0
C2—C3—C4—C5 0.0 C2—C1—C13—C14 35.1 (4)
Br1—C3—C4—C5 180.0 C6—C1—C13—C14 −144.9 (4)
C3—C4—C5—C6 0.0 C2—C1—C13—C14ii −35.1 (4)
C4—C5—C6—C1 0.0 C6—C1—C13—C14ii 144.9 (4)
C4—C5—C6—C6i 180.0 C1i—C13—C14—C14ii 110.6 (3)
C2—C1—C6—C5 0.0 C1—C13—C14—C14ii −110.6 (3)
C13—C1—C6—C5 180.0

Symmetry codes: (i) −x, y, z; (ii) x, y, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5463).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cho, S. Y., Grimsdale, A. C., Jones, D. J., Watkins, S. E. & Holmes, A. B. (2007). J. Am. Chem. Soc. 39, 11910–11911. [DOI] [PubMed]
  3. Jason, M. E., Gallucci, J. C. & Ibers, J. A. (1981). Isr. J. Chem. 21, 95–104.
  4. Jiang, H., Feng, J., Wen, G., Wei, W., Xu, X. & Huang, W. (2005). Prog. Chem. 17, 818–825.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, Z., Shao, H., Ye, J., Zhang, L. & Lu, P. (2007). Adv. Funct. Mater. 17, 253–263.
  7. Wei, R., Liu, Y., Guo, J., Liu, B. & Zhang, D. (2008). Chin. J. Org. Chem. 28, 390–397.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814014585/cv5463sup1.cif

e-70-0o821-sup1.cif (111.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014585/cv5463Isup2.hkl

e-70-0o821-Isup2.hkl (35.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014585/cv5463Isup3.cml

CCDC reference: 1009321

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES