Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 11;70(Pt 7):o758. doi: 10.1107/S1600536814012938

Corymbolone

Stacey Burrett a, Dennis K Taylor a,*, Edward R T Tiekink b,*
PMCID: PMC4120577  PMID: 25161551

Abstract

The title compound, C15H24O2 [systematic name: (4S,4aR,6R,8aR)-4a-hy­droxy-4,8a-dimethyl-6-(prop-1-en-2-yl)octahydro­naphthalen-1(2H)-one], features two edge-shared six-membered rings with the hydroxyl and methyl substituents at this bridge being trans. One adopts a flattened chair conformation with the C atoms bearing the carbonyl and methyl substituents lying 0.5227 (16) and 0.6621 (15) Å, respectively, above and below the mean plane through the remaining four C atoms (r.m.s. deviation = 0.0145 Å). The second ring, bearing the prop-1-en-2-yl group, has a chair conformation. Supra­molecular helical chains along the b axis are found in the crystal packing, which are sustained by hy­droxy–carbonyl O—H⋯O hydrogen bonding.

Related literature  

For the first isolation and the spectroscopic data of corymbolone, see: Garbarino et al. (1985). For the synthesis of corymbolone in racemic form, see: Ferraz et al. (2006).graphic file with name e-70-0o758-scheme1.jpg

Experimental  

Crystal data  

  • C15H24O2

  • M r = 236.34

  • Monoclinic, Inline graphic

  • a = 6.1057 (2) Å

  • b = 12.1389 (2) Å

  • c = 9.2737 (2) Å

  • β = 99.302 (2)°

  • V = 678.30 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.58 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.689, T max = 1.000

  • 4848 measured reflections

  • 2631 independent reflections

  • 2621 reflections with I > 2σ(I)

  • R int = 0.011

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.083

  • S = 1.03

  • 2631 reflections

  • 161 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 1200 Friedel pairs

  • Absolute structure parameter: 0.02 (16)

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536814012938/su2741sup1.cif

e-70-0o758-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012938/su2741Isup2.hkl

e-70-0o758-Isup2.hkl (129.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012938/su2741Isup3.cml

CCDC reference: 1006604

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.863 (19) 1.993 (19) 2.8513 (12) 172.5 (16)

Symmetry code: (i) Inline graphic.

Acknowledgments

This project was supported in part by the School of Agriculture, Food and Wine, The University of Adelaide, and by Australia’s grape growers and wine makers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. SB thanks the Faculty of Science for a PhD scholarship. Intensity data were provided by the University of Malaya Crystallographic Laboratory. We thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

supplementary crystallographic information

S1. Structural commentary

The title compound, corymbolone, was first characterised in 1985 (Garbarino et al., 1985), and more recently synthesized in racemic form (Ferraz et al., 2006). In the present study, it was isolated from the product mixture that resulted from aerial oxidation of α-guaiene.

The molecular structure of the title molecule, Fig. 1, features two fused six-membered rings. The C2,C3,C5 and C6 atoms of the C1–C6 ring are planar with a r.m.s. deviation of 0.0145 Å, and with the C1 and C4 atoms lying 0.5227 (16) and 0.6621 (15) Å above and below this plane, respectively, so that the conformation of the ring is best described as being a flattened chair. By contrast, the C5–C10 ring closely approximates a chair conformation. With respect to the C1–C6 ring the C1-carbonyl, C4-methyl, C5-hydroxyl and C6-methyl groups have equatorial (eq), axial (ax), ax and eq dispositions, respectively. For the C5–C10 ring, the C5-hydroxyl, C6-methyl and C9-prop-1-en-2-yl groups have have ax, ax and eq dispositions, respectively.

The most prominent feature of the crystal packing is the formation of hydroxyl-O—H···O(carbonyl) hydrogen bonding that leads to helical supra­molecular chains along the b axis (Table 1 and Fig. 2).

S2. Synthesis and crystallization

Air was slowly bubbled through a neat solution of α-guaiene (7.0 g, 34.3 mmol) and after 21 days the crude mixture of products was subjected to column chromatography with a gradient of 100% hexane to 100% EtOAc. The product (0.12 g, 1.5%) at Rf 0.07 (10% EtOAc/hexane) was collected as a white crystalline solid and recrystallized from hexane to afford block-like colourless crystals of corymboline. M.p. 408–409 K; Lit. M.p. 409–410 K (Garbarino et al., 1985). Spectroscopic data for the title compound are available in the archived CIF.

S3. Refinement

The hy­droxy-H atom was located in a difference Fourier map and freely refined. C-bound H-atoms were placed in calculated positions [C—H = 0.95 - 1.00 Å] and included in the refinement in the riding model approximation with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. Owing to poor agreement, two reflections, i.e. (1 1 0) and (2 -4 2), were omitted from the final cycles of refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the helical supramolecular chain along the b axis in the title compound. The O—H···O hydrogen bonds are shown as orange dashed lines.

Crystal data

C15H24O2 F(000) = 260
Mr = 236.34 Dx = 1.157 Mg m3
Monoclinic, P21 Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2yb Cell parameters from 3768 reflections
a = 6.1057 (2) Å θ = 3.6–74.3°
b = 12.1389 (2) Å µ = 0.58 mm1
c = 9.2737 (2) Å T = 100 K
β = 99.302 (2)° Block, colourless
V = 678.30 (3) Å3 0.30 × 0.25 × 0.20 mm
Z = 2

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 2631 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2621 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.011
Detector resolution: 10.4041 pixels mm-1 θmax = 74.5°, θmin = 6.1°
ω scan h = −7→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −14→14
Tmin = 0.689, Tmax = 1.000 l = −11→11
4848 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.0924P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
2631 reflections Δρmax = 0.24 e Å3
161 parameters Δρmin = −0.14 e Å3
1 restraint Absolute structure: Flack (1983), 1200 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.02 (16)

Special details

Experimental. Spectroscopic data for the title compound, 1H NMR (600 MHz, CDCl3) δ 4.74 (s, 2H), 2.68 (ddd, J = 17.2, 9.9, 7.8 Hz, 1H), 2.44-2.36 (m, 2H), 2.32 (dddd, J = 12.0, 12.0, 4.2, 4.2 Hz, 1H), 1.93-1.83 (m, 3H), 1.75 (s, 3H), 1.71-1.65 (m, 2H), 1.60 (ddd, J = 13.8, 3.0, 3.0 Hz, 1H), 1.43 (ddd, J = 13.7, 3.7, 2.0 Hz, 1H), 1.37 (dddd, J = 13.3, 13.3, 13.3, 3.6 Hz, 1H), 1.29 (br, 1H), 1.24 (s, 3H), 1.19 (d, J = 7.8 Hz, 3H); 13C NMR (600 MHz, CDCl3) δ 215.8, 149.5, 108.9, 78.6, 51.2, 40.6, 39.4, 37.2, 34.2, 30.2, 28.0, 25.5, 21.1, 20.4, 17.8; MS: m/z (%) 236 (8), 218 (17), 203 (33), 175 (28), 153 (27), 137 (35), 135 (42), 124 (40), 109 (100), 93 (50), 84 (27), 69 (57), 55 (62), 41 (67). All other physical and spectral data were identical to those previously reported by Garbarino et al. (1985).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.00899 (15) 0.49702 (8) 0.42187 (10) 0.0276 (2)
O2 0.02823 (12) 0.20248 (7) 0.43171 (9) 0.01677 (18)
H2 0.026 (3) 0.1374 (16) 0.4692 (19) 0.025 (4)*
C1 0.1255 (2) 0.42790 (10) 0.47357 (14) 0.0195 (2)
C2 0.2007 (2) 0.41919 (11) 0.63667 (14) 0.0218 (3)
H2A 0.0916 0.4578 0.6868 0.026*
H2B 0.3444 0.4579 0.6620 0.026*
C3 0.2279 (2) 0.30153 (11) 0.69525 (13) 0.0204 (3)
H3A 0.0793 0.2687 0.6946 0.024*
H3B 0.3047 0.3035 0.7978 0.024*
C4 0.36071 (18) 0.22809 (10) 0.60493 (12) 0.0177 (2)
H4 0.3363 0.1506 0.6352 0.021*
C5 0.25743 (17) 0.23588 (9) 0.44117 (12) 0.0145 (2)
C6 0.24052 (19) 0.35347 (10) 0.37568 (13) 0.0162 (2)
C7 0.1070 (2) 0.34852 (10) 0.22026 (13) 0.0201 (2)
H7A −0.0456 0.3229 0.2250 0.024*
H7B 0.0969 0.4233 0.1772 0.024*
C8 0.2149 (2) 0.27089 (11) 0.12238 (13) 0.0212 (3)
H8A 0.3607 0.3012 0.1089 0.025*
H8B 0.1204 0.2668 0.0251 0.025*
C9 0.2478 (2) 0.15434 (10) 0.18670 (13) 0.0179 (2)
H9 0.0971 0.1229 0.1891 0.021*
C10 0.37049 (19) 0.15834 (9) 0.34538 (13) 0.0165 (2)
H10A 0.3764 0.0832 0.3874 0.020*
H10B 0.5249 0.1833 0.3457 0.020*
C11 0.3657 (2) 0.07717 (11) 0.09544 (13) 0.0234 (3)
C12 0.5839 (2) 0.11391 (13) 0.05605 (16) 0.0319 (3)
H12A 0.6510 0.0530 0.0093 0.048*
H12B 0.6837 0.1363 0.1448 0.048*
H12C 0.5591 0.1764 −0.0116 0.048*
C13 0.2792 (3) −0.02085 (13) 0.05543 (16) 0.0351 (3)
H13A 0.3555 −0.0696 0.0006 0.042*
H13B 0.1412 −0.0421 0.0817 0.042*
C14 0.6114 (2) 0.24905 (12) 0.64454 (14) 0.0249 (3)
H14A 0.6881 0.2150 0.5709 0.037*
H14B 0.6664 0.2170 0.7406 0.037*
H14C 0.6396 0.3286 0.6474 0.037*
C15 0.4677 (2) 0.40859 (11) 0.36941 (14) 0.0234 (3)
H15A 0.5606 0.3583 0.3228 0.035*
H15B 0.5415 0.4254 0.4688 0.035*
H15C 0.4445 0.4769 0.3127 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0305 (5) 0.0183 (5) 0.0343 (5) 0.0084 (4) 0.0058 (4) −0.0029 (4)
O2 0.0142 (4) 0.0150 (4) 0.0219 (4) −0.0027 (3) 0.0056 (3) 0.0001 (3)
C1 0.0194 (5) 0.0139 (6) 0.0266 (6) −0.0026 (4) 0.0078 (4) −0.0024 (5)
C2 0.0211 (6) 0.0228 (6) 0.0230 (6) −0.0009 (5) 0.0076 (4) −0.0077 (5)
C3 0.0181 (5) 0.0269 (7) 0.0173 (6) −0.0012 (5) 0.0066 (4) −0.0028 (5)
C4 0.0166 (5) 0.0205 (6) 0.0169 (5) 0.0016 (4) 0.0051 (4) 0.0001 (4)
C5 0.0124 (5) 0.0145 (5) 0.0173 (5) −0.0005 (4) 0.0047 (4) 0.0001 (4)
C6 0.0172 (5) 0.0135 (5) 0.0191 (5) −0.0007 (4) 0.0068 (4) −0.0011 (4)
C7 0.0244 (6) 0.0159 (6) 0.0203 (5) 0.0050 (5) 0.0044 (4) 0.0032 (5)
C8 0.0254 (6) 0.0223 (6) 0.0165 (5) 0.0034 (5) 0.0050 (4) 0.0009 (5)
C9 0.0173 (5) 0.0184 (6) 0.0181 (5) 0.0024 (4) 0.0037 (4) −0.0024 (4)
C10 0.0174 (5) 0.0156 (5) 0.0172 (5) 0.0023 (4) 0.0046 (4) −0.0008 (4)
C11 0.0235 (6) 0.0291 (7) 0.0168 (6) 0.0087 (5) 0.0011 (5) −0.0039 (5)
C12 0.0321 (7) 0.0383 (8) 0.0285 (6) 0.0116 (6) 0.0143 (5) 0.0000 (6)
C13 0.0343 (7) 0.0341 (8) 0.0352 (7) 0.0082 (6) 0.0006 (6) −0.0173 (6)
C14 0.0169 (5) 0.0379 (8) 0.0198 (6) 0.0035 (5) 0.0024 (4) −0.0035 (5)
C15 0.0251 (6) 0.0190 (6) 0.0286 (6) −0.0078 (5) 0.0125 (5) −0.0024 (5)

Geometric parameters (Å, º)

O1—C1 1.2171 (16) C8—C9 1.5360 (17)
O2—C5 1.4459 (12) C8—H8A 0.9900
O2—H2 0.863 (19) C8—H8B 0.9900
C1—C2 1.5117 (17) C9—C11 1.5193 (16)
C1—C6 1.5294 (15) C9—C10 1.5403 (15)
C2—C3 1.5277 (19) C9—H9 1.0000
C2—H2A 0.9900 C10—H10A 0.9900
C2—H2B 0.9900 C10—H10B 0.9900
C3—C4 1.5405 (15) C11—C13 1.330 (2)
C3—H3A 0.9900 C11—C12 1.505 (2)
C3—H3B 0.9900 C12—H12A 0.9800
C4—C14 1.5365 (16) C12—H12B 0.9800
C4—C5 1.5503 (15) C12—H12C 0.9800
C4—H4 1.0000 C13—H13A 0.9500
C5—C10 1.5329 (15) C13—H13B 0.9500
C5—C6 1.5482 (16) C14—H14A 0.9800
C6—C7 1.5380 (16) C14—H14B 0.9800
C6—C15 1.5493 (16) C14—H14C 0.9800
C7—C8 1.5293 (17) C15—H15A 0.9800
C7—H7A 0.9900 C15—H15B 0.9800
C7—H7B 0.9900 C15—H15C 0.9800
C5—O2—H2 108.0 (11) C7—C8—H8A 109.2
O1—C1—C2 121.25 (11) C9—C8—H8A 109.2
O1—C1—C6 121.25 (11) C7—C8—H8B 109.2
C2—C1—C6 117.28 (10) C9—C8—H8B 109.2
C1—C2—C3 114.78 (10) H8A—C8—H8B 107.9
C1—C2—H2A 108.6 C11—C9—C8 113.31 (10)
C3—C2—H2A 108.6 C11—C9—C10 110.53 (9)
C1—C2—H2B 108.6 C8—C9—C10 110.78 (9)
C3—C2—H2B 108.6 C11—C9—H9 107.3
H2A—C2—H2B 107.5 C8—C9—H9 107.3
C2—C3—C4 112.60 (9) C10—C9—H9 107.3
C2—C3—H3A 109.1 C5—C10—C9 112.21 (9)
C4—C3—H3A 109.1 C5—C10—H10A 109.2
C2—C3—H3B 109.1 C9—C10—H10A 109.2
C4—C3—H3B 109.1 C5—C10—H10B 109.2
H3A—C3—H3B 107.8 C9—C10—H10B 109.2
C14—C4—C3 111.45 (10) H10A—C10—H10B 107.9
C14—C4—C5 117.12 (9) C13—C11—C12 121.63 (13)
C3—C4—C5 109.32 (9) C13—C11—C9 120.31 (13)
C14—C4—H4 106.1 C12—C11—C9 118.04 (12)
C3—C4—H4 106.1 C11—C12—H12A 109.5
C5—C4—H4 106.1 C11—C12—H12B 109.5
O2—C5—C10 108.35 (9) H12A—C12—H12B 109.5
O2—C5—C6 103.43 (8) C11—C12—H12C 109.5
C10—C5—C6 110.27 (9) H12A—C12—H12C 109.5
O2—C5—C4 106.19 (8) H12B—C12—H12C 109.5
C10—C5—C4 112.35 (9) C11—C13—H13A 120.0
C6—C5—C4 115.55 (9) C11—C13—H13B 120.0
C1—C6—C7 110.78 (10) H13A—C13—H13B 120.0
C1—C6—C5 108.65 (9) C4—C14—H14A 109.5
C7—C6—C5 108.86 (10) C4—C14—H14B 109.5
C1—C6—C15 105.47 (10) H14A—C14—H14B 109.5
C7—C6—C15 108.88 (9) C4—C14—H14C 109.5
C5—C6—C15 114.18 (9) H14A—C14—H14C 109.5
C8—C7—C6 111.50 (9) H14B—C14—H14C 109.5
C8—C7—H7A 109.3 C6—C15—H15A 109.5
C6—C7—H7A 109.3 C6—C15—H15B 109.5
C8—C7—H7B 109.3 H15A—C15—H15B 109.5
C6—C7—H7B 109.3 C6—C15—H15C 109.5
H7A—C7—H7B 108.0 H15A—C15—H15C 109.5
C7—C8—C9 112.27 (9) H15B—C15—H15C 109.5
O1—C1—C2—C3 140.04 (12) C10—C5—C6—C7 58.86 (11)
C6—C1—C2—C3 −45.32 (15) C4—C5—C6—C7 −172.39 (9)
C1—C2—C3—C4 47.77 (14) O2—C5—C6—C15 −178.70 (9)
C2—C3—C4—C14 79.04 (13) C10—C5—C6—C15 −63.02 (12)
C2—C3—C4—C5 −52.02 (12) C4—C5—C6—C15 65.72 (12)
C14—C4—C5—O2 174.50 (10) C1—C6—C7—C8 −177.79 (10)
C3—C4—C5—O2 −57.55 (11) C5—C6—C7—C8 −58.38 (12)
C14—C4—C5—C10 56.22 (14) C15—C6—C7—C8 66.66 (13)
C3—C4—C5—C10 −175.83 (9) C6—C7—C8—C9 55.87 (13)
C14—C4—C5—C6 −71.50 (13) C7—C8—C9—C11 −176.99 (10)
C3—C4—C5—C6 56.45 (11) C7—C8—C9—C10 −52.10 (13)
O1—C1—C6—C7 −20.66 (16) O2—C5—C10—C9 55.14 (12)
C2—C1—C6—C7 164.70 (10) C6—C5—C10—C9 −57.40 (12)
O1—C1—C6—C5 −140.19 (11) C4—C5—C10—C9 172.14 (9)
C2—C1—C6—C5 45.17 (13) C11—C9—C10—C5 179.72 (10)
O1—C1—C6—C15 96.99 (13) C8—C9—C10—C5 53.27 (13)
C2—C1—C6—C15 −77.64 (13) C8—C9—C11—C13 −128.63 (13)
O2—C5—C6—C1 63.91 (10) C10—C9—C11—C13 106.35 (14)
C10—C5—C6—C1 179.59 (9) C8—C9—C11—C12 53.00 (15)
C4—C5—C6—C1 −51.67 (11) C10—C9—C11—C12 −72.02 (14)
O2—C5—C6—C7 −56.81 (10)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.863 (19) 1.993 (19) 2.8513 (12) 172.5 (16)

Symmetry code: (i) −x, y−1/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2741).

References

  1. Agilent (2013). CrysAlis PRO Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Ferraz, H. M. C., Souza, A. J. C., Tenius, B. S. M. & Bianco, G. G. (2006). Tetrahedron, 62, 9232–9236.
  5. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  6. Garbarino, J. A., Gambaro, V. & Chamy, M. C. (1985). J. Nat. Prod. 48, 323–325.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536814012938/su2741sup1.cif

e-70-0o758-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012938/su2741Isup2.hkl

e-70-0o758-Isup2.hkl (129.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012938/su2741Isup3.cml

CCDC reference: 1006604

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES