Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 14;70(Pt 7):o781. doi: 10.1107/S1600536814013348

1-{3-(4-Chloro­phen­yl)-5-[4-(propan-2-yl)phen­yl]-4,5-di­hydro-1H-pyrazol-1-yl}ethanone

B Narayana a, Vinutha V Salian a, Balladka K Sarojini b, Jerry P Jasinski c,*
PMCID: PMC4120582  PMID: 25161567

Abstract

In the title compound, C20H21ClN2O, the dihedral angles between the pyrazole ring (r.m.s. deviation = 0.049 Å) and the benzene and chloro­benzene rings are 84.65 (10) and 3.35 (10)°, respectively. In the crystal, inversion dimers linked by pairs of weak C—H⋯O inter­actions generate R 2 2(16) loops. Weak π–π stacking inter­actions [centroid–centroid distance = 3.8490 (11) Å] are also observed.

Related literature  

For background to pyrazolines, see: Manna et al. (2005); Samshuddin et al. (2012). For a related structure, see: Jasinski et al. (2010).graphic file with name e-70-0o781-scheme1.jpg

Experimental  

Crystal data  

  • C20H21ClN2O

  • M r = 340.84

  • Triclinic, Inline graphic

  • a = 6.4836 (6) Å

  • b = 9.6524 (9) Å

  • c = 14.439 (1) Å

  • α = 81.178 (7)°

  • β = 89.720 (7)°

  • γ = 77.488 (8)°

  • V = 871.35 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.00 mm−1

  • T = 173 K

  • 0.44 × 0.22 × 0.12 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.552, T max = 1.000

  • 5081 measured reflections

  • 3287 independent reflections

  • 2770 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.142

  • S = 1.03

  • 3287 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814013348/hb7234sup1.cif

e-70-0o781-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013348/hb7234Isup2.hkl

e-70-0o781-Isup2.hkl (180.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013348/hb7234Isup3.cml

CCDC reference: 1007161

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.95 2.44 3.364 (2) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. VVS thanks the DST for financial assistance through a PURSE grant. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

S1. Comment

Pyrazoline derivatives possess many biological activities such as anticancer (Manna et al., 2005) and antioxidant properties (Samshuddin et al., 2012). As part of our ongoing studies in this area (Jasinski et al., 2010), we now describe the structure of the title compound, C20H21ClN2O.

The dihedral angle between the mean planes of the phenyl rings is 81.3 (0)° while the pyrazole ring is separated from each of the phenyl rings by 3.3 (5)° (C5–C10) and 84.6 (5)° (C11–C16), respectively (Fig. 1). In the crystal, a weak C—H···O intermolecular interaction between the phenyl ring and the ethanone group is observed forming dimers in an R22(16) ring-set motif stacked along the ab plane (Fig. 2). In addition, weak π–π intermolecular stacking interactions (Cg1–Cg3 = 3.8490 (11)Å, x, y, z, Cg1: N1/N2/C2/C3/C4; Cg3: C11–C16) are present.

S2. Experimental

To a mixture of (2E)-1-(4-chlorophenyl)-3-[4-(propan-2-yl) phenyl] prop-2-en-1-one (2.85g, 0.01 mol) and hydrazine hydrate (0.5mL, 0.01 mol) in 25 mL acetic acid was refluxed for 9h (Fig. 3). The reaction mixture was cooled and poured into ice-cold water. The precipitate formed was collected by filtration and purified by recrystallization from ethanol. Colourless, irregular, crystals were grown from ethanol solution by the slow evaporation method (m.p.: 389–391 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95 - 1.00Å (CH), 0.99Å (CH2) or 0.98Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as a rotating group.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of (I), C20H21ClN2O, showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing for (I) viewed along the c axis. Dashed lines indicate weak C—H···O interactions between the phenyl ring and the ethanone group forming dimers in an R22(16) ring motif stacked along the ab plane. H atoms not involved with these weak interactions have been removed for clarity.

Fig. 3.

Fig. 3.

Synthesis of (I), C20H21ClN2O.

Crystal data

C20H21ClN2O Z = 2
Mr = 340.84 F(000) = 360
Triclinic, P1 Dx = 1.299 Mg m3
a = 6.4836 (6) Å Cu Kα radiation, λ = 1.54184 Å
b = 9.6524 (9) Å Cell parameters from 2061 reflections
c = 14.439 (1) Å θ = 4.7–71.3°
α = 81.178 (7)° µ = 2.00 mm1
β = 89.720 (7)° T = 173 K
γ = 77.488 (8)° Irregular, colourless
V = 871.35 (13) Å3 0.44 × 0.22 × 0.12 mm

Data collection

Agilent Eos Gemini diffractometer 3287 independent reflections
Radiation source: Enhance (Cu) X-ray Source 2770 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 16.0416 pixels mm-1 θmax = 71.3°, θmin = 4.8°
ω scans h = −7→7
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) k = −11→11
Tmin = 0.552, Tmax = 1.000 l = −17→13
5081 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.1082P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3287 reflections Δρmax = 0.39 e Å3
220 parameters Δρmin = −0.30 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.38093 (9) 0.20917 (6) −0.11269 (4) 0.0519 (2)
O1 0.7663 (2) 0.28686 (15) 0.34910 (10) 0.0410 (4)
N1 0.5281 (2) 0.23124 (16) 0.25819 (10) 0.0274 (3)
N2 0.4029 (2) 0.26002 (16) 0.17744 (10) 0.0281 (3)
C1 0.6681 (3) 0.31158 (19) 0.27431 (14) 0.0312 (4)
C2 0.4721 (3) 0.11838 (19) 0.33008 (12) 0.0270 (4)
H2 0.4340 0.1587 0.3892 0.032*
C3 0.2714 (3) 0.0933 (2) 0.28392 (12) 0.0296 (4)
H3A 0.2847 −0.0094 0.2789 0.036*
H3B 0.1441 0.1262 0.3196 0.036*
C4 0.2629 (3) 0.18369 (18) 0.18828 (12) 0.0270 (4)
C5 0.1068 (3) 0.18983 (19) 0.11335 (12) 0.0286 (4)
C6 0.0992 (3) 0.2857 (2) 0.02914 (13) 0.0367 (4)
H6 0.1983 0.3456 0.0193 0.044*
C7 −0.0529 (3) 0.2928 (2) −0.03959 (14) 0.0398 (5)
H7 −0.0602 0.3586 −0.0962 0.048*
C8 −0.1938 (3) 0.2031 (2) −0.02500 (14) 0.0357 (4)
C9 −0.1890 (3) 0.1079 (2) 0.05667 (14) 0.0353 (4)
H9 −0.2875 0.0474 0.0657 0.042*
C10 −0.0374 (3) 0.1018 (2) 0.12568 (13) 0.0310 (4)
H10 −0.0325 0.0362 0.1823 0.037*
C11 0.6507 (3) −0.01311 (17) 0.35070 (11) 0.0238 (4)
C12 0.7114 (3) −0.10535 (19) 0.28520 (12) 0.0281 (4)
H12 0.6388 −0.0860 0.2261 0.034*
C13 0.8759 (3) −0.22467 (19) 0.30517 (13) 0.0291 (4)
H13 0.9145 −0.2856 0.2592 0.035*
C14 0.9860 (3) −0.25741 (18) 0.39120 (12) 0.0264 (4)
C15 0.9230 (3) −0.16548 (19) 0.45676 (12) 0.0294 (4)
H15 0.9934 −0.1859 0.5164 0.035*
C16 0.7603 (3) −0.04536 (19) 0.43676 (12) 0.0281 (4)
H16 0.7227 0.0162 0.4824 0.034*
C17 1.1712 (3) −0.38433 (19) 0.41496 (13) 0.0310 (4)
H17 1.1640 −0.4224 0.4831 0.037*
C18 1.3796 (3) −0.3346 (2) 0.40136 (17) 0.0429 (5)
H18A 1.3855 −0.2630 0.4420 0.064*
H18B 1.3885 −0.2919 0.3358 0.064*
H18C 1.4982 −0.4172 0.4176 0.064*
C19 1.1692 (3) −0.5078 (2) 0.36083 (17) 0.0432 (5)
H19A 1.1930 −0.4775 0.2944 0.065*
H19B 1.0319 −0.5347 0.3672 0.065*
H19C 1.2813 −0.5905 0.3861 0.065*
C20 0.6915 (3) 0.4311 (2) 0.19747 (15) 0.0405 (5)
H20A 0.8279 0.4566 0.2055 0.061*
H20B 0.5770 0.5151 0.2004 0.061*
H20C 0.6847 0.3993 0.1365 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0532 (4) 0.0469 (3) 0.0508 (3) 0.0024 (3) −0.0251 (3) −0.0103 (2)
O1 0.0397 (8) 0.0346 (8) 0.0482 (8) −0.0092 (6) −0.0126 (7) −0.0028 (6)
N1 0.0275 (8) 0.0219 (7) 0.0303 (8) −0.0028 (6) −0.0031 (6) −0.0005 (6)
N2 0.0270 (8) 0.0227 (7) 0.0318 (8) −0.0004 (6) −0.0019 (6) −0.0023 (6)
C1 0.0268 (9) 0.0221 (8) 0.0428 (11) −0.0001 (7) 0.0004 (8) −0.0062 (7)
C2 0.0247 (9) 0.0246 (8) 0.0295 (9) −0.0022 (7) 0.0013 (7) −0.0014 (7)
C3 0.0219 (8) 0.0311 (9) 0.0320 (9) −0.0020 (7) −0.0002 (7) 0.0018 (7)
C4 0.0231 (8) 0.0231 (8) 0.0311 (9) 0.0024 (7) 0.0025 (7) −0.0035 (7)
C5 0.0262 (9) 0.0262 (9) 0.0301 (9) 0.0014 (7) 0.0005 (7) −0.0050 (7)
C6 0.0410 (11) 0.0344 (10) 0.0332 (10) −0.0085 (9) −0.0002 (8) −0.0009 (8)
C7 0.0470 (12) 0.0364 (10) 0.0313 (10) −0.0023 (9) −0.0053 (9) −0.0002 (8)
C8 0.0330 (10) 0.0325 (10) 0.0377 (10) 0.0050 (8) −0.0082 (8) −0.0108 (8)
C9 0.0310 (10) 0.0327 (10) 0.0410 (10) −0.0025 (8) −0.0024 (8) −0.0082 (8)
C10 0.0274 (9) 0.0281 (9) 0.0343 (9) −0.0005 (7) 0.0002 (7) −0.0030 (7)
C11 0.0220 (8) 0.0203 (8) 0.0282 (8) −0.0037 (7) 0.0006 (7) −0.0022 (6)
C12 0.0288 (9) 0.0278 (9) 0.0268 (8) −0.0050 (7) −0.0029 (7) −0.0033 (7)
C13 0.0313 (9) 0.0254 (9) 0.0313 (9) −0.0039 (7) 0.0037 (7) −0.0094 (7)
C14 0.0237 (8) 0.0206 (8) 0.0340 (9) −0.0041 (7) 0.0025 (7) −0.0026 (7)
C15 0.0305 (9) 0.0277 (9) 0.0277 (9) −0.0026 (7) −0.0054 (7) −0.0028 (7)
C16 0.0305 (9) 0.0245 (8) 0.0283 (9) −0.0027 (7) 0.0004 (7) −0.0061 (7)
C17 0.0279 (9) 0.0246 (9) 0.0371 (10) −0.0006 (7) 0.0026 (8) −0.0019 (7)
C18 0.0279 (10) 0.0339 (10) 0.0636 (14) −0.0024 (8) −0.0021 (9) −0.0036 (10)
C19 0.0379 (11) 0.0246 (9) 0.0647 (14) 0.0023 (8) 0.0018 (10) −0.0126 (9)
C20 0.0400 (11) 0.0263 (9) 0.0536 (13) −0.0074 (8) 0.0014 (9) −0.0006 (9)

Geometric parameters (Å, º)

Cl1—C8 1.744 (2) C11—C12 1.395 (2)
O1—C1 1.221 (2) C11—C16 1.393 (2)
N1—N2 1.381 (2) C12—H12 0.9500
N1—C1 1.357 (2) C12—C13 1.384 (2)
N1—C2 1.489 (2) C13—H13 0.9500
N2—C4 1.282 (2) C13—C14 1.394 (3)
C1—C20 1.505 (3) C14—C15 1.395 (2)
C2—H2 1.0000 C14—C17 1.516 (2)
C2—C3 1.546 (2) C15—H15 0.9500
C2—C11 1.514 (2) C15—C16 1.382 (2)
C3—H3A 0.9900 C16—H16 0.9500
C3—H3B 0.9900 C17—H17 1.0000
C3—C4 1.510 (2) C17—C18 1.531 (3)
C4—C5 1.471 (3) C17—C19 1.524 (3)
C5—C6 1.405 (3) C18—H18A 0.9800
C5—C10 1.387 (3) C18—H18B 0.9800
C6—H6 0.9500 C18—H18C 0.9800
C6—C7 1.386 (3) C19—H19A 0.9800
C7—H7 0.9500 C19—H19B 0.9800
C7—C8 1.383 (3) C19—H19C 0.9800
C8—C9 1.376 (3) C20—H20A 0.9800
C9—H9 0.9500 C20—H20B 0.9800
C9—C10 1.389 (3) C20—H20C 0.9800
C10—H10 0.9500
N2—N1—C2 113.23 (13) C16—C11—C2 120.39 (15)
C1—N1—N2 122.58 (15) C16—C11—C12 117.85 (15)
C1—N1—C2 123.64 (15) C11—C12—H12 119.5
C4—N2—N1 108.69 (14) C13—C12—C11 120.92 (16)
O1—C1—N1 120.05 (17) C13—C12—H12 119.5
O1—C1—C20 122.85 (18) C12—C13—H13 119.3
N1—C1—C20 117.09 (17) C12—C13—C14 121.44 (16)
N1—C2—H2 109.5 C14—C13—H13 119.3
N1—C2—C3 100.98 (14) C13—C14—C15 117.33 (16)
N1—C2—C11 112.19 (14) C13—C14—C17 123.21 (16)
C3—C2—H2 109.5 C15—C14—C17 119.44 (16)
C11—C2—H2 109.5 C14—C15—H15 119.3
C11—C2—C3 114.97 (15) C16—C15—C14 121.43 (16)
C2—C3—H3A 111.2 C16—C15—H15 119.3
C2—C3—H3B 111.2 C11—C16—H16 119.5
H3A—C3—H3B 109.2 C15—C16—C11 121.02 (16)
C4—C3—C2 102.59 (15) C15—C16—H16 119.5
C4—C3—H3A 111.2 C14—C17—H17 107.3
C4—C3—H3B 111.2 C14—C17—C18 110.08 (15)
N2—C4—C3 114.03 (16) C14—C17—C19 114.25 (16)
N2—C4—C5 121.42 (16) C18—C17—H17 107.3
C5—C4—C3 124.53 (16) C19—C17—H17 107.3
C6—C5—C4 120.82 (17) C19—C17—C18 110.38 (16)
C10—C5—C4 120.14 (16) C17—C18—H18A 109.5
C10—C5—C6 119.03 (17) C17—C18—H18B 109.5
C5—C6—H6 120.0 C17—C18—H18C 109.5
C7—C6—C5 119.98 (19) H18A—C18—H18B 109.5
C7—C6—H6 120.0 H18A—C18—H18C 109.5
C6—C7—H7 120.3 H18B—C18—H18C 109.5
C8—C7—C6 119.40 (19) C17—C19—H19A 109.5
C8—C7—H7 120.3 C17—C19—H19B 109.5
C7—C8—Cl1 119.34 (16) C17—C19—H19C 109.5
C9—C8—Cl1 118.93 (17) H19A—C19—H19B 109.5
C9—C8—C7 121.73 (18) H19A—C19—H19C 109.5
C8—C9—H9 120.6 H19B—C19—H19C 109.5
C8—C9—C10 118.71 (19) C1—C20—H20A 109.5
C10—C9—H9 120.6 C1—C20—H20B 109.5
C5—C10—C9 121.13 (18) C1—C20—H20C 109.5
C5—C10—H10 119.4 H20A—C20—H20B 109.5
C9—C10—H10 119.4 H20A—C20—H20C 109.5
C12—C11—C2 121.76 (15) H20B—C20—H20C 109.5
Cl1—C8—C9—C10 178.96 (14) C3—C4—C5—C6 174.73 (17)
N1—N2—C4—C3 2.3 (2) C3—C4—C5—C10 −4.4 (3)
N1—N2—C4—C5 −179.36 (14) C4—C5—C6—C7 −178.18 (17)
N1—C2—C3—C4 6.52 (17) C4—C5—C10—C9 178.66 (16)
N1—C2—C11—C12 −69.6 (2) C5—C6—C7—C8 −1.1 (3)
N1—C2—C11—C16 110.32 (18) C6—C5—C10—C9 −0.5 (3)
N2—N1—C1—O1 175.76 (16) C6—C7—C8—Cl1 −178.48 (15)
N2—N1—C1—C20 −3.2 (3) C6—C7—C8—C9 0.8 (3)
N2—N1—C2—C3 −6.06 (18) C7—C8—C9—C10 −0.3 (3)
N2—N1—C2—C11 116.86 (15) C8—C9—C10—C5 0.2 (3)
N2—C4—C5—C6 −3.5 (3) C10—C5—C6—C7 0.9 (3)
N2—C4—C5—C10 177.42 (16) C11—C2—C3—C4 −114.46 (16)
C1—N1—N2—C4 −169.07 (16) C11—C12—C13—C14 0.3 (3)
C1—N1—C2—C3 165.62 (16) C12—C11—C16—C15 −0.5 (3)
C1—N1—C2—C11 −71.5 (2) C12—C13—C14—C15 0.4 (3)
C2—N1—N2—C4 2.71 (19) C12—C13—C14—C17 −178.11 (16)
C2—N1—C1—O1 4.8 (3) C13—C14—C15—C16 −1.1 (3)
C2—N1—C1—C20 −174.12 (16) C13—C14—C17—C18 98.9 (2)
C2—C3—C4—N2 −5.9 (2) C13—C14—C17—C19 −26.0 (2)
C2—C3—C4—C5 175.76 (15) C14—C15—C16—C11 1.1 (3)
C2—C11—C12—C13 179.65 (16) C15—C14—C17—C18 −79.6 (2)
C2—C11—C16—C15 179.65 (16) C15—C14—C17—C19 155.55 (18)
C3—C2—C11—C12 45.1 (2) C16—C11—C12—C13 −0.2 (3)
C3—C2—C11—C16 −135.05 (17) C17—C14—C15—C16 177.47 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C15—H15···O1i 0.95 2.44 3.364 (2) 165

Symmetry code: (i) −x+2, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7234).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  3. Jasinski, J. P., Guild, C. J., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o1948–o1949. [DOI] [PMC free article] [PubMed]
  4. Manna, F., Chimenti, F., Fioravanti, F., Bolasco, A., Seecci, D., Chimenti, P., Ferlini, C. & Scambia, G. (2005). Bioorg. Med. Chem. Lett. 15, 4632–4635. [DOI] [PubMed]
  5. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  6. Samshuddin, S., Narayana, B., Sarojini, B. K., Khan, M. T. H., Yathirajan, H. S., Darsan Raj, C. G. & Ragavendra, R. (2012). Med. Chem. Res. 21, 2012–2022.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814013348/hb7234sup1.cif

e-70-0o781-sup1.cif (26.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013348/hb7234Isup2.hkl

e-70-0o781-Isup2.hkl (180.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013348/hb7234Isup3.cml

CCDC reference: 1007161

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES