Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 25;70(Pt 7):o829. doi: 10.1107/S1600536814014810

5-Fluoro-2-(2-fluoro­phen­yl)-3-methyl­sulfinyl-1-benzo­furan

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC4120583  PMID: 25161603

Abstract

In the title compound, C15H10F2O2S, the dihedral angle between the plane of the benzo­furan ring system (r.m.s. deviation = 0.015 Å) and that of the 2-fluoro­phenyl ring is 28.53 (6)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, and by π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.625 (2) Å], forming a three-dimensional network.

Keywords: crystal structure

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2009a ,b , 2012).graphic file with name e-70-0o829-scheme1.jpg

Experimental  

Crystal data  

  • C15H10F2O2S

  • M r = 292.29

  • Monoclinic, Inline graphic

  • a = 8.6184 (2) Å

  • b = 16.8358 (4) Å

  • c = 9.4019 (2) Å

  • β = 111.254 (1)°

  • V = 1271.40 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 173 K

  • 0.55 × 0.27 × 0.24 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.863, T max = 0.937

  • 12086 measured reflections

  • 3118 independent reflections

  • 2650 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.100

  • S = 1.07

  • 3118 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814014810/bt6985sup1.cif

e-70-0o829-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014810/bt6985Isup2.hkl

e-70-0o829-Isup2.hkl (153KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014810/bt6985Isup3.cml

CCDC reference: 1009826

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.52 3.343 (2) 145
C12—H12⋯O2ii 0.95 2.39 3.326 (2) 166
C15—H15A⋯F1iii 0.98 2.54 3.419 (2) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

S1. Comment

As a part of our ongoing project of 5-fluoro-3-methylsulfinyl-1-benzofuran derivatives containing 4-bromophenyl (Choi et al., 2009a), 4-fluorophenyl (Choi et al., 2009b) and 4-methylphenyl (Choi et al., 2012) substituents in 2-position, we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.015 (1) Å from the least-squares plane defined by the nine constituent atoms. The 2-fluorophenyl ring is essentially planar, with a mean deviation of 0.053 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 2-fluorophenyl ring is 28.53 (6)°. In the crystal structure (Fig. 2), molecules are inked by C—H···O and C—H···F hydrogen bonds (Table 1), and by π–π interactions between the furan and benzene rings of neighbouring molecules, with a Cg1···Cg2iv distance of 3.625 (2) Å and an interplanar distance of 3.295 (2) Å resulting in a slippage of 1.511 (2) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively), forming a three-dimensional network.

S2. Experimental

3-Chloroperoxybenzoic acid (77%, 269 mg, 1.2 mmol) was added in small portions to a stirred solution of 5-fluoro-2-(2-fluorophenyl)-3-methylsulfanyl-1-benzofuran (304 mg, 1.1 mmol) in dichloromethane (35 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 73%, m.p. 412–413 K; Rf = 0.46 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in acetone at room temperature.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL-97 command AFIX 137 (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom numbering scheme The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O, C—H···F and π–π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 2, y - 1/2, - z + 3/2; (ii) x - 1, y, z -1; (iii) - x + 2, - y + 1, - z + 2; (iv) - x + 2, - y + 1, - z + 1; (v) - x + 1, y + 1/2, - z + 3/2; (vi) x + 1, y, z + 1.]

Crystal data

C15H10F2O2S F(000) = 600
Mr = 292.29 Dx = 1.527 Mg m3
Monoclinic, P21/c Melting point = 413–412 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 8.6184 (2) Å Cell parameters from 4357 reflections
b = 16.8358 (4) Å θ = 2.4–27.8°
c = 9.4019 (2) Å µ = 0.28 mm1
β = 111.254 (1)° T = 173 K
V = 1271.40 (5) Å3 Block, colourless
Z = 4 0.55 × 0.27 × 0.24 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3118 independent reflections
Radiation source: rotating anode 2650 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.029
Detector resolution: 10.0 pixels mm-1 θmax = 28.3°, θmin = 2.4°
φ and ω scans h = −10→11
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −22→19
Tmin = 0.863, Tmax = 0.937 l = −12→12
12086 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: difference Fourier map
wR(F2) = 0.100 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.3389P] where P = (Fo2 + 2Fc2)/3
3118 reflections (Δ/σ)max = 0.001
182 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.71915 (5) 0.69054 (2) 0.61445 (4) 0.02927 (12)
F1 1.13845 (13) 0.42819 (7) 0.91201 (11) 0.0485 (3)
F2 0.38183 (11) 0.67630 (6) 0.41827 (10) 0.0374 (2)
O1 0.67546 (12) 0.49850 (6) 0.36067 (11) 0.0281 (2)
O2 0.89953 (15) 0.70691 (7) 0.69905 (14) 0.0431 (3)
C1 0.71116 (17) 0.59444 (8) 0.53646 (16) 0.0234 (3)
C2 0.82307 (17) 0.53035 (9) 0.60821 (17) 0.0250 (3)
C3 0.94153 (18) 0.51622 (10) 0.75344 (17) 0.0299 (3)
H3 0.9632 0.5534 0.8344 0.036*
C4 1.02416 (19) 0.44539 (10) 0.77150 (18) 0.0336 (4)
C5 1.0016 (2) 0.38969 (10) 0.6577 (2) 0.0361 (4)
H5 1.0650 0.3421 0.6785 0.043*
C6 0.8859 (2) 0.40384 (9) 0.5134 (2) 0.0330 (3)
H6 0.8681 0.3673 0.4320 0.040*
C7 0.79767 (17) 0.47404 (9) 0.49421 (17) 0.0267 (3)
C8 0.62565 (17) 0.57246 (9) 0.38947 (16) 0.0242 (3)
C9 0.49420 (17) 0.60820 (9) 0.25958 (16) 0.0254 (3)
C10 0.37363 (18) 0.65773 (9) 0.27581 (17) 0.0271 (3)
C11 0.24304 (19) 0.68798 (10) 0.15475 (19) 0.0324 (3)
H11 0.1626 0.7215 0.1713 0.039*
C12 0.2317 (2) 0.66846 (11) 0.00904 (19) 0.0382 (4)
H12 0.1426 0.6886 −0.0764 0.046*
C13 0.3500 (2) 0.61954 (12) −0.01285 (19) 0.0417 (4)
H13 0.3418 0.6064 −0.1136 0.050*
C14 0.4797 (2) 0.58969 (11) 0.10995 (18) 0.0351 (4)
H14 0.5601 0.5562 0.0930 0.042*
C15 0.6325 (2) 0.66632 (12) 0.7563 (2) 0.0435 (4)
H15A 0.6984 0.6239 0.8221 0.065*
H15B 0.5173 0.6484 0.7060 0.065*
H15C 0.6347 0.7135 0.8181 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0313 (2) 0.0205 (2) 0.0279 (2) 0.00149 (14) 0.00106 (15) −0.00264 (14)
F1 0.0421 (6) 0.0544 (7) 0.0399 (6) 0.0162 (5) 0.0039 (5) 0.0204 (5)
F2 0.0311 (5) 0.0469 (6) 0.0322 (5) 0.0074 (4) 0.0092 (4) −0.0046 (4)
O1 0.0285 (5) 0.0232 (5) 0.0278 (5) 0.0023 (4) 0.0045 (4) −0.0042 (4)
O2 0.0356 (6) 0.0315 (7) 0.0463 (7) −0.0063 (5) −0.0041 (5) −0.0079 (5)
C1 0.0240 (7) 0.0200 (7) 0.0239 (7) −0.0001 (5) 0.0060 (5) 0.0002 (5)
C2 0.0239 (7) 0.0225 (7) 0.0278 (7) 0.0003 (5) 0.0085 (6) 0.0026 (6)
C3 0.0289 (7) 0.0308 (8) 0.0271 (8) 0.0014 (6) 0.0068 (6) 0.0047 (6)
C4 0.0273 (7) 0.0373 (9) 0.0332 (8) 0.0043 (6) 0.0073 (6) 0.0148 (7)
C5 0.0333 (8) 0.0262 (8) 0.0509 (10) 0.0080 (6) 0.0177 (7) 0.0123 (7)
C6 0.0354 (8) 0.0223 (8) 0.0426 (9) 0.0026 (6) 0.0155 (7) 0.0013 (7)
C7 0.0256 (7) 0.0234 (7) 0.0293 (8) 0.0004 (6) 0.0079 (6) 0.0026 (6)
C8 0.0233 (7) 0.0207 (7) 0.0269 (7) −0.0001 (5) 0.0071 (6) −0.0013 (6)
C9 0.0229 (7) 0.0235 (7) 0.0251 (7) −0.0021 (5) 0.0029 (5) −0.0002 (6)
C10 0.0250 (7) 0.0253 (7) 0.0277 (7) −0.0033 (6) 0.0056 (6) −0.0001 (6)
C11 0.0247 (7) 0.0280 (8) 0.0398 (9) 0.0000 (6) 0.0059 (6) 0.0058 (7)
C12 0.0305 (8) 0.0389 (10) 0.0333 (9) −0.0031 (7) −0.0027 (7) 0.0103 (7)
C13 0.0409 (9) 0.0522 (11) 0.0237 (8) −0.0017 (8) 0.0020 (7) 0.0002 (7)
C14 0.0332 (8) 0.0390 (10) 0.0286 (8) 0.0031 (7) 0.0059 (6) −0.0041 (7)
C15 0.0510 (11) 0.0494 (11) 0.0300 (9) 0.0126 (9) 0.0143 (8) −0.0051 (8)

Geometric parameters (Å, º)

S1—O2 1.4930 (12) C6—C7 1.381 (2)
S1—C1 1.7675 (14) C6—H6 0.9500
S1—C15 1.7952 (18) C8—C9 1.461 (2)
F1—C4 1.3623 (18) C9—C10 1.383 (2)
F2—C10 1.3521 (17) C9—C14 1.402 (2)
O1—C8 1.3757 (17) C10—C11 1.376 (2)
O1—C7 1.3772 (18) C11—C12 1.377 (2)
C1—C8 1.3606 (19) C11—H11 0.9500
C1—C2 1.441 (2) C12—C13 1.383 (3)
C2—C7 1.388 (2) C12—H12 0.9500
C2—C3 1.397 (2) C13—C14 1.378 (2)
C3—C4 1.368 (2) C13—H13 0.9500
C3—H3 0.9500 C14—H14 0.9500
C4—C5 1.383 (3) C15—H15A 0.9800
C5—C6 1.382 (2) C15—H15B 0.9800
C5—H5 0.9500 C15—H15C 0.9800
O2—S1—C1 105.45 (7) C1—C8—C9 135.03 (14)
O2—S1—C15 106.22 (8) O1—C8—C9 114.27 (12)
C1—S1—C15 97.82 (8) C10—C9—C14 116.59 (14)
C8—O1—C7 106.33 (11) C10—C9—C8 122.83 (13)
C8—C1—C2 107.22 (13) C14—C9—C8 120.49 (14)
C8—C1—S1 126.55 (11) F2—C10—C11 117.86 (14)
C2—C1—S1 124.91 (11) F2—C10—C9 118.49 (13)
C7—C2—C3 119.55 (14) C11—C10—C9 123.63 (14)
C7—C2—C1 104.98 (13) C10—C11—C12 118.45 (15)
C3—C2—C1 135.45 (14) C10—C11—H11 120.8
C4—C3—C2 115.65 (15) C12—C11—H11 120.8
C4—C3—H3 122.2 C11—C12—C13 119.99 (15)
C2—C3—H3 122.2 C11—C12—H12 120.0
F1—C4—C3 117.82 (15) C13—C12—H12 120.0
F1—C4—C5 117.12 (14) C14—C13—C12 120.69 (16)
C3—C4—C5 125.06 (15) C14—C13—H13 119.7
C6—C5—C4 119.46 (15) C12—C13—H13 119.7
C6—C5—H5 120.3 C13—C14—C9 120.65 (16)
C4—C5—H5 120.3 C13—C14—H14 119.7
C7—C6—C5 116.30 (15) C9—C14—H14 119.7
C7—C6—H6 121.9 S1—C15—H15A 109.5
C5—C6—H6 121.9 S1—C15—H15B 109.5
O1—C7—C6 125.31 (14) H15A—C15—H15B 109.5
O1—C7—C2 110.75 (12) S1—C15—H15C 109.5
C6—C7—C2 123.93 (14) H15A—C15—H15C 109.5
C1—C8—O1 110.69 (12) H15B—C15—H15C 109.5
O2—S1—C1—C8 −131.06 (13) C1—C2—C7—C6 177.33 (14)
C15—S1—C1—C8 119.65 (14) C2—C1—C8—O1 −0.41 (16)
O2—S1—C1—C2 34.10 (14) S1—C1—C8—O1 166.89 (10)
C15—S1—C1—C2 −75.19 (14) C2—C1—C8—C9 178.28 (15)
C8—C1—C2—C7 1.30 (15) S1—C1—C8—C9 −14.4 (2)
S1—C1—C2—C7 −166.26 (11) C7—O1—C8—C1 −0.67 (15)
C8—C1—C2—C3 179.85 (16) C7—O1—C8—C9 −179.65 (12)
S1—C1—C2—C3 12.3 (2) C1—C8—C9—C10 −31.3 (3)
C7—C2—C3—C4 −0.5 (2) O1—C8—C9—C10 147.36 (14)
C1—C2—C3—C4 −178.85 (16) C1—C8—C9—C14 152.31 (17)
C2—C3—C4—F1 −178.67 (13) O1—C8—C9—C14 −29.0 (2)
C2—C3—C4—C5 1.7 (2) C14—C9—C10—F2 179.21 (13)
F1—C4—C5—C6 179.35 (14) C8—C9—C10—F2 2.7 (2)
C3—C4—C5—C6 −1.0 (3) C14—C9—C10—C11 0.7 (2)
C4—C5—C6—C7 −0.9 (2) C8—C9—C10—C11 −175.83 (14)
C8—O1—C7—C6 −177.54 (14) F2—C10—C11—C12 −178.95 (14)
C8—O1—C7—C2 1.55 (16) C9—C10—C11—C12 −0.4 (2)
C5—C6—C7—O1 −178.87 (14) C10—C11—C12—C13 0.0 (3)
C5—C6—C7—C2 2.2 (2) C11—C12—C13—C14 0.2 (3)
C3—C2—C7—O1 179.41 (12) C12—C13—C14—C9 0.1 (3)
C1—C2—C7—O1 −1.76 (16) C10—C9—C14—C13 −0.5 (2)
C3—C2—C7—C6 −1.5 (2) C8—C9—C14—C13 176.09 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.95 2.52 3.343 (2) 145
C12—H12···O2ii 0.95 2.39 3.326 (2) 166
C15—H15A···F1iii 0.98 2.54 3.419 (2) 149

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x−1, y, z−1; (iii) −x+2, −y+1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6985).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o3338. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009a). Acta Cryst. E65, o2084. [DOI] [PMC free article] [PubMed]
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009b). Acta Cryst. E65, o2608. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814014810/bt6985sup1.cif

e-70-0o829-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014810/bt6985Isup2.hkl

e-70-0o829-Isup2.hkl (153KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814014810/bt6985Isup3.cml

CCDC reference: 1009826

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES