Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 14;70(Pt 7):m258–m259. doi: 10.1107/S1600536814013336

Redetermination of di­aqua­tris­(4-oxo­pent-2-en-2-olato-κ2 O,O′)lanthanum(III)

Toru Okawara a,*, Kohei Ishihama a, Kenji Takehara a
PMCID: PMC4120584  PMID: 25161523

Abstract

The structure of the title compound, [La(C5H7O2)3(H2O)2], has been redetermined to modern standards with anisotropic displacement parameters for all non-H atoms and the hydrogen-bonding pattern unambiguously established [for the previous study, see Phillips et al. (1968). Inorg. Chem. 7, 2295–2299]. The La3+ ion is coordinated by three O,O′-bidentate acetyl­acetate (acac) ligands and two water mol­ecules, resulting in a fairly regular square-anti­prismatic LaO8 coordination geometry, with both aqua ligands part of the same square face. In the crystal, the neutral complex mol­ecules are linked into [110] chains by O—H⋯O hydrogen bonds.

Related literature  

For the previous report on the title compound, see: Phillips et al. (1968). For related tris­(acetyl­acetonato)lanthanide complexes, see: Watkins et al. (1969); Kooijman et al. (2000). For other lanthanide complexes, see: Richardson et al. (1968); Lama et al. (2007).graphic file with name e-70-0m258-scheme1.jpg

Experimental  

Crystal data  

  • [La(C5H7O2)3(H2O)2]

  • M r = 472.26

  • Triclinic, Inline graphic

  • a = 8.9245 (12) Å

  • b = 10.6597 (15) Å

  • c = 11.3727 (15) Å

  • α = 96.614 (2)°

  • β = 100.601 (2)°

  • γ = 114.325 (2)°

  • V = 946.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 100 K

  • 0.50 × 0.50 × 0.22 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.40, T max = 0.63

  • 13810 measured reflections

  • 5213 independent reflections

  • 5068 reflections with I > 2σ(I)

  • R int = 0.030

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.058

  • S = 1.06

  • 5213 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.04 e Å−3

  • Δρmin = −1.41 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013336/hb7216sup1.cif

e-70-0m258-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013336/hb7216Isup2.hkl

e-70-0m258-Isup2.hkl (255.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013336/hb7216Isup3.cdx

CCDC reference: 1007160

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

La1—O2 2.4365 (14)
La1—O4 2.4754 (13)
La1—O5 2.4917 (14)
La1—O1 2.5013 (14)
La1—O6 2.5067 (13)
La1—O3 2.5241 (13)
La1—O7 2.5381 (13)
La1—O8 2.5811 (14)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H2W⋯O1i 0.76 (3) 2.05 (3) 2.7514 (19) 153 (3)
O7—H1W⋯O3i 0.90 (3) 1.94 (3) 2.7912 (19) 158 (3)
O8—H4W⋯O4ii 0.75 (3) 2.09 (3) 2.7907 (19) 155 (3)
O8—H3W⋯O6ii 0.81 (4) 1.96 (4) 2.721 (2) 155 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by Nanotechnology Platform Project (Kyushu University Mol­ecule and Material Synthesis Platform) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

supplementary crystallographic information

S1. Comment

Lanthanum (La) is the first element of the lanthanide in the periodic table. Although La does not show any luminescent properties, it has worth investigating as referece complexs of other luminescent lanthanide analogs. Because structural features of LaIII complexes are similar to those of other lanthanide cases, they can be structurally characterized by nuclear magnetic resonance spectroscopy. LaIII acetylacetonate complexes are used as a precursor of further functionalized complexes. Herein we redetermined the molecular structure of La(acac)3(H2O)2 (compound I) which has been firstly reported by Phillips et al. (1968). In the previous study, all of the oxygen and carbon atoms have been refined isotropically. We have successfully obtained the reliable anisotropic displacement parameters for all non-hydrogen atoms. The molecular geometry of the compound I was almost identical to previous report. The LaIII is ligated from three acetylacetonate ligands and two aqua ligands which are forming 8-coordinate structure around LaIII (Figure 1). The average distance of oxygen atoms of acetylacetonate (O1—O6) and LaIII is 2.489 (30) Å while the original structure showed the average distance of 2.473 (24) Å. The two aqua ligands also align at parpendicular position each other in which O7—La1—O8 angle of 75.20 (5)o. Similar coordination structures are seen in HoIII(acac)3(H2O)2 by Kooijman et al. (2000) and YbIII(acac)3(H2O) by Watkins et al. (1969). Both complexes have three acac ligands and the former one has nearly identical structure in which two aqua ligands ligate to the central ion and complete 8-coordinated square antiprismatic structure. The longest bond lengths between the central lanthanide ion and the oxygen atoms of acac ligands were observed for the compound I due to difference in their ionic radii. The compound I in the crystal are connected by four hydrogen bonding, O7—O1i (symmetry codes: (i) 2 - x, 2 - y, 1 - z), O7—O3i, O8—O4ii (symmetry codes: (ii) 1 - x, 1 - y, 1 - z) and O8—O6ii, which are forming a one dimensional hydrogen bonding network (Figure 2) propagating in the [110] direction.

S2. Experimental

An water suspension (10 ml) of acetylacetone (161.9 mg, 1.62 mmol) and LaCl3.7H2 O (200.0 mg, 0.54 mmol) were stirred under room temperature. Quantitative amount of NaOH (64.7 mg, 1.62 mmol) was added to the suspension. A white precipitate was immediately generated. The precipitate was filtered and recrystallized from CH2Cl2 and methanol in the presence of small amount of water (ca. 3%). Colorless blocks of the title compound were obtained in a few days and mounted on a glass capillary. Yield: 77.9 mg, (31%). Analysis: calculated for C15H25LaO8 ([La(acac)3(H2O)2]): C 38.15, H 5.34%; found: C 37.80, H 5.16%. ESI-TOF-MS (CH3OH): m/z 336.97 (calcd: 337.00 for [M–acac–2H2O]+).

S3. Refinement

H atoms except two aqua ligands were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C—H).

H atoms attached to O7 (H1W and H2W) and O8 (H3W and H4W) were found in a difference Fourier map. Any restraints were not needed for a stable refinement. All hydrogen atoms were included in the structure factor calculation.

Figures

Fig. 1.

Fig. 1.

An ORTEP view of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of a [110] hydrogen-bonded chain in the title compound. The blue broken lines show the hydrogen bonds. Symmetry codes: (i) 2 - x, 2 - y, 1 - z, (ii) x, y, z, (iii) 1 - x, 1 - y, 1 - z, (iv) x - 1, y - 1, z).

Crystal data

[La(C5H7O2)3(H2O)2] Z = 2
Mr = 472.26 F(000) = 472
Triclinic, P1 Dx = 1.657 Mg m3
a = 8.9245 (12) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.6597 (15) Å Cell parameters from 9940 reflections
c = 11.3727 (15) Å θ = 2.5–30.5°
α = 96.614 (2)° µ = 2.29 mm1
β = 100.601 (2)° T = 100 K
γ = 114.325 (2)° Block, colourless
V = 946.8 (2) Å3 0.50 × 0.50 × 0.22 mm

Data collection

Bruker APEXII CCD diffractometer 5213 independent reflections
Radiation source: fine focus sealed tube 5068 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
Detector resolution: 8.3333 pixels mm-1 θmax = 29.6°, θmin = 1.9°
phi and ω scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −14→14
Tmin = 0.40, Tmax = 0.63 l = −15→15
13810 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0344P)2 + 0.2713P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.003
5213 reflections Δρmax = 1.04 e Å3
240 parameters Δρmin = −1.41 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0149 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
La1 0.770906 (10) 0.782106 (9) 0.614919 (8) 0.01085 (5)
O7 1.00237 (17) 0.85834 (14) 0.50120 (13) 0.0153 (2)
O6 0.67267 (17) 0.56182 (14) 0.69763 (12) 0.0162 (2)
O4 0.45916 (16) 0.69885 (14) 0.55190 (12) 0.0159 (2)
O1 0.95280 (17) 1.03835 (14) 0.70708 (12) 0.0180 (3)
O2 0.72212 (18) 0.84749 (15) 0.81177 (13) 0.0209 (3)
O3 0.68870 (16) 0.90080 (14) 0.45213 (12) 0.0161 (2)
O8 0.66186 (18) 0.58124 (15) 0.42448 (13) 0.0170 (3)
C3 0.9035 (3) 1.0876 (2) 0.90089 (18) 0.0193 (4)
H3 0.9367 1.1593 0.9716 0.023*
C2 0.9814 (2) 1.1236 (2) 0.80637 (17) 0.0170 (3)
C4 0.7789 (2) 0.9524 (2) 0.89890 (17) 0.0175 (3)
C5 0.7027 (3) 0.9307 (2) 1.00763 (19) 0.0239 (4)
H5A 0.6022 0.9485 0.9939 0.036*
H5B 0.7869 0.9961 1.0817 0.036*
H5C 0.6697 0.8336 1.0177 0.036*
C1 1.1092 (3) 1.2747 (2) 0.8198 (2) 0.0281 (4)
H1A 1.2086 1.2767 0.7937 0.042*
H1B 1.1445 1.3239 0.9057 0.042*
H1C 1.0571 1.3216 0.7688 0.042*
C9 0.3503 (2) 0.71969 (18) 0.47772 (17) 0.0142 (3)
C7 0.5536 (2) 0.89906 (19) 0.39080 (17) 0.0146 (3)
C10 0.1669 (2) 0.6312 (2) 0.47366 (19) 0.0188 (4)
H10A 0.1324 0.5336 0.4336 0.028*
H10B 0.0959 0.6679 0.4275 0.028*
H10C 0.1529 0.6344 0.5573 0.028*
C8 0.3893 (2) 0.8151 (2) 0.40103 (18) 0.0174 (3)
H8 0.2974 0.824 0.3518 0.021*
C6 0.5706 (2) 0.9907 (2) 0.29805 (18) 0.0198 (4)
H6A 0.6826 1.0725 0.3242 0.03*
H6B 0.4817 1.0229 0.2913 0.03*
H6C 0.5586 0.9366 0.2183 0.03*
O5 1.01440 (17) 0.74506 (15) 0.72219 (13) 0.0189 (3)
C14 0.7368 (3) 0.5254 (2) 0.78893 (17) 0.0179 (4)
C12 1.0387 (3) 0.6712 (2) 0.79565 (17) 0.0183 (3)
C13 0.9103 (3) 0.5708 (2) 0.83696 (18) 0.0209 (4)
H13 0.9441 0.5314 0.9017 0.025*
C15 0.6127 (3) 0.4243 (3) 0.8472 (2) 0.0299 (5)
H15A 0.5659 0.4746 0.8951 0.045*
H15B 0.6714 0.3842 0.9011 0.045*
H15C 0.52 0.3484 0.7831 0.045*
C11 1.2197 (3) 0.6933 (3) 0.8430 (2) 0.0279 (4)
H11A 1.2719 0.6932 0.7743 0.042*
H11B 1.2194 0.6171 0.8838 0.042*
H11C 1.285 0.7839 0.9014 0.042*
H2W 0.985 (4) 0.867 (3) 0.435 (3) 0.035 (8)*
H1W 1.104 (4) 0.932 (3) 0.536 (3) 0.034 (8)*
H4W 0.659 (4) 0.514 (3) 0.441 (3) 0.027 (7)*
H3W 0.569 (4) 0.561 (3) 0.381 (3) 0.040 (9)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
La1 0.01059 (7) 0.00983 (7) 0.01199 (7) 0.00403 (4) 0.00295 (4) 0.00369 (4)
O7 0.0140 (6) 0.0156 (6) 0.0167 (6) 0.0058 (5) 0.0048 (5) 0.0062 (5)
O6 0.0164 (6) 0.0141 (6) 0.0163 (6) 0.0052 (5) 0.0030 (5) 0.0052 (5)
O4 0.0127 (6) 0.0154 (6) 0.0204 (6) 0.0062 (5) 0.0046 (5) 0.0061 (5)
O1 0.0221 (7) 0.0138 (6) 0.0152 (6) 0.0051 (5) 0.0057 (5) 0.0021 (5)
O2 0.0226 (7) 0.0193 (7) 0.0175 (6) 0.0055 (6) 0.0082 (5) 0.0020 (5)
O3 0.0127 (6) 0.0168 (6) 0.0198 (6) 0.0068 (5) 0.0037 (5) 0.0077 (5)
O8 0.0178 (7) 0.0128 (6) 0.0177 (6) 0.0047 (5) 0.0035 (5) 0.0029 (5)
C3 0.0209 (9) 0.0185 (9) 0.0148 (8) 0.0068 (7) 0.0036 (7) −0.0013 (7)
C2 0.0174 (8) 0.0154 (8) 0.0159 (8) 0.0065 (7) 0.0016 (7) 0.0022 (6)
C4 0.0173 (8) 0.0237 (9) 0.0145 (8) 0.0114 (8) 0.0046 (7) 0.0047 (7)
C5 0.0226 (10) 0.0329 (11) 0.0169 (9) 0.0120 (9) 0.0081 (8) 0.0041 (8)
C1 0.0319 (11) 0.0154 (9) 0.0251 (10) 0.0010 (8) 0.0047 (9) 0.0015 (8)
C9 0.0124 (7) 0.0128 (7) 0.0180 (8) 0.0061 (6) 0.0052 (6) 0.0014 (6)
C7 0.0156 (8) 0.0129 (8) 0.0160 (8) 0.0074 (7) 0.0031 (6) 0.0033 (6)
C10 0.0128 (8) 0.0176 (8) 0.0265 (10) 0.0065 (7) 0.0069 (7) 0.0050 (7)
C8 0.0120 (8) 0.0185 (8) 0.0220 (9) 0.0071 (7) 0.0028 (7) 0.0066 (7)
C6 0.0192 (9) 0.0215 (9) 0.0211 (9) 0.0094 (7) 0.0055 (7) 0.0107 (7)
O5 0.0165 (6) 0.0195 (6) 0.0222 (7) 0.0084 (5) 0.0035 (5) 0.0107 (5)
C14 0.0239 (9) 0.0164 (8) 0.0130 (8) 0.0075 (7) 0.0059 (7) 0.0051 (7)
C12 0.0194 (9) 0.0184 (8) 0.0152 (8) 0.0087 (7) −0.0011 (7) 0.0037 (7)
C13 0.0226 (9) 0.0220 (9) 0.0152 (8) 0.0081 (8) −0.0005 (7) 0.0088 (7)
C15 0.0289 (11) 0.0321 (12) 0.0229 (10) 0.0052 (9) 0.0078 (9) 0.0146 (9)
C11 0.0203 (10) 0.0310 (11) 0.0335 (12) 0.0130 (9) 0.0002 (8) 0.0151 (9)

Geometric parameters (Å, º)

La1—O2 2.4365 (14) C1—H1B 0.98
La1—O4 2.4754 (13) C1—H1C 0.98
La1—O5 2.4917 (14) C9—C8 1.393 (3)
La1—O1 2.5013 (14) C9—C10 1.504 (2)
La1—O6 2.5067 (13) C7—C8 1.404 (2)
La1—O3 2.5241 (13) C7—C6 1.505 (3)
La1—O7 2.5381 (13) C10—H10A 0.98
La1—O8 2.5811 (14) C10—H10B 0.98
O7—H2W 0.76 (3) C10—H10C 0.98
O7—H1W 0.90 (3) C8—H8 0.95
O6—C14 1.270 (2) C6—H6A 0.98
O4—C9 1.274 (2) C6—H6B 0.98
O1—C2 1.278 (2) C6—H6C 0.98
O2—C4 1.258 (2) O5—C12 1.261 (2)
O3—C7 1.269 (2) C14—C13 1.393 (3)
O8—H4W 0.75 (3) C14—C15 1.509 (3)
O8—H3W 0.81 (4) C12—C13 1.408 (3)
C3—C2 1.392 (3) C12—C11 1.514 (3)
C3—C4 1.406 (3) C13—H13 0.95
C3—H3 0.95 C15—H15A 0.98
C2—C1 1.511 (3) C15—H15B 0.98
C4—C5 1.513 (3) C15—H15C 0.98
C5—H5A 0.98 C11—H11A 0.98
C5—H5B 0.98 C11—H11B 0.98
C5—H5C 0.98 C11—H11C 0.98
C1—H1A 0.98
O2—La1—O4 80.43 (5) H5A—C5—H5C 109.5
O2—La1—O5 89.79 (5) H5B—C5—H5C 109.5
O4—La1—O5 147.90 (4) C2—C1—H1A 109.5
O2—La1—O1 68.90 (5) C2—C1—H1B 109.5
O4—La1—O1 117.77 (4) H1A—C1—H1B 109.5
O5—La1—O1 86.07 (5) C2—C1—H1C 109.5
O2—La1—O6 74.35 (5) H1A—C1—H1C 109.5
O4—La1—O6 79.74 (4) H1B—C1—H1C 109.5
O5—La1—O6 68.17 (4) O4—C9—C8 125.02 (16)
O1—La1—O6 134.81 (4) O4—C9—C10 115.96 (16)
O2—La1—O3 114.29 (5) C8—C9—C10 119.01 (16)
O4—La1—O3 68.42 (4) O3—C7—C8 124.70 (17)
O5—La1—O3 142.08 (4) O3—C7—C6 117.55 (16)
O1—La1—O3 76.92 (4) C8—C7—C6 117.74 (16)
O6—La1—O3 144.19 (4) C9—C10—H10A 109.5
O2—La1—O7 139.98 (5) C9—C10—H10B 109.5
O4—La1—O7 133.31 (5) H10A—C10—H10B 109.5
O5—La1—O7 70.81 (5) C9—C10—H10C 109.5
O1—La1—O7 74.97 (4) H10A—C10—H10C 109.5
O6—La1—O7 124.99 (4) H10B—C10—H10C 109.5
O3—La1—O7 72.12 (4) C9—C8—C7 125.12 (17)
O2—La1—O8 143.70 (5) C9—C8—H8 117.4
O4—La1—O8 74.43 (5) C7—C8—H8 117.4
O5—La1—O8 97.74 (5) C7—C6—H6A 109.5
O1—La1—O8 146.72 (4) C7—C6—H6B 109.5
O6—La1—O8 75.73 (5) H6A—C6—H6B 109.5
O3—La1—O8 80.19 (5) C7—C6—H6C 109.5
O7—La1—O8 75.20 (5) H6A—C6—H6C 109.5
La1—O7—H2W 122 (2) H6B—C6—H6C 109.5
La1—O7—H1W 120.9 (19) C12—O5—La1 137.23 (13)
H2W—O7—H1W 103 (3) O6—C14—C13 124.89 (18)
C14—O6—La1 133.49 (12) O6—C14—C15 116.30 (19)
C9—O4—La1 139.02 (12) C13—C14—C15 118.80 (18)
C2—O1—La1 136.92 (12) O5—C12—C13 124.82 (18)
C4—O2—La1 139.63 (13) O5—C12—C11 117.21 (18)
C7—O3—La1 137.69 (12) C13—C12—C11 117.97 (17)
La1—O8—H4W 112 (2) C14—C13—C12 124.17 (17)
La1—O8—H3W 117 (2) C14—C13—H13 117.9
H4W—O8—H3W 106 (3) C12—C13—H13 117.9
C2—C3—C4 124.49 (18) C14—C15—H15A 109.5
C2—C3—H3 117.8 C14—C15—H15B 109.5
C4—C3—H3 117.8 H15A—C15—H15B 109.5
O1—C2—C3 124.97 (18) C14—C15—H15C 109.5
O1—C2—C1 116.52 (17) H15A—C15—H15C 109.5
C3—C2—C1 118.51 (18) H15B—C15—H15C 109.5
O2—C4—C3 124.92 (18) C12—C11—H11A 109.5
O2—C4—C5 116.86 (18) C12—C11—H11B 109.5
C3—C4—C5 118.19 (18) H11A—C11—H11B 109.5
C4—C5—H5A 109.5 C12—C11—H11C 109.5
C4—C5—H5B 109.5 H11A—C11—H11C 109.5
H5A—C5—H5B 109.5 H11B—C11—H11C 109.5
C4—C5—H5C 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O7—H2W···O1i 0.76 (3) 2.05 (3) 2.7514 (19) 153 (3)
O7—H1W···O3i 0.90 (3) 1.94 (3) 2.7912 (19) 158 (3)
O8—H4W···O4ii 0.75 (3) 2.09 (3) 2.7907 (19) 155 (3)
O8—H3W···O6ii 0.81 (4) 1.96 (4) 2.721 (2) 155 (3)

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7216).

References

  1. Bruker (2008). SADABS, SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Kooijman, H., Nijsen, F., Spek, A. L. & Schip, F. van het (2000). Acta Cryst. C56, 156–158. [DOI] [PubMed]
  4. Lama, M., Mamula, O., Kottas, G. S., Rizzo, F., De Cola, L., Nakamura, A., Kuroda, R. & Stoeckli-Evans, H. (2007). Chem. Eur. J. 13, 7358–7373. [DOI] [PubMed]
  5. Phillips, T., Sands, D. E. & Wagner, W. F. (1968). Inorg. Chem. 7, 2295–2299.
  6. Richardson, M. F., Wagner, W. F. & Sands, D. E. (1968). J. Inorg. Nucl. Chem. 30, 1275–1289.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Watkins, E. D., Cunningham, J. A., Phillips, T., Sands, D. E. & Wagner, W. F. (1969). Inorg. Chem. 8, 29–33.
  9. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013336/hb7216sup1.cif

e-70-0m258-sup1.cif (18.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013336/hb7216Isup2.hkl

e-70-0m258-Isup2.hkl (255.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013336/hb7216Isup3.cdx

CCDC reference: 1007160

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES