Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 14;70(Pt 7):o779–o780. doi: 10.1107/S1600536814012872

4-[(4-Bromo­phenyl)amino]-2-methyl­idene-4-oxo­butanoic acid

B Narayana a, Prakash S Nayak a, Balladka K Sarojini b, Jerry P Jasinski c,*
PMCID: PMC4120590  PMID: 25161566

Abstract

In the title compound, C11H10BrNO3, two independent mol­ecules (A and B) crystallize in the asymmetric unit. The dihedral angles between the mean planes of the 4-bromo­phenyl ring and amide group are 24.8 (7) in mol­ecule A and 77.1 (6)° in mol­ecule B. The mean plane of the methyl­idene group is further inclined by 75.6 (4) in mol­ecule A and 72.5 (6)° in mol­ecule B from that of the amide group. In the crystal, N—H⋯O hydrogen bonds formed by amide groups and O—H⋯O hydrogen bonds formed by carb­oxy­lic acid groups are observed and supported additionally by weak C—H⋯O inter­actions between the methyl­idene and amide groups. Together, these link the mol­ecules into chains of dimers along [110] and form R 2 2(8) graph-set motifs.

Related literature  

For the pharmacological activity of amide derivatives, see: Galanakis et al. (2004); Kumar & Knaus (1993); Ban et al. (1998); Ukrainets et al. (2006), Lesyk & Zimenkovsky (2004); Gududuru et al. (2004). For related structures, see: Nayak et al. (2013a ,b ). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o779-scheme1.jpg

Experimental  

Crystal data  

  • C11H10BrNO3

  • M r = 284.11

  • Triclinic, Inline graphic

  • a = 6.2782 (4) Å

  • b = 8.3251 (5) Å

  • c = 21.3244 (12) Å

  • α = 96.462 (5)°

  • β = 92.026 (5)°

  • γ = 95.390 (5)°

  • V = 1101.38 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.04 mm−1

  • T = 173 K

  • 0.44 × 0.28 × 0.14 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.162, T max = 1.000

  • 7163 measured reflections

  • 4131 independent reflections

  • 3490 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.227

  • S = 1.03

  • 4131 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 2.73 e Å−3

  • Δρmin = −0.79 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012872/bt6983sup1.cif

e-70-0o779-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012872/bt6983Isup2.hkl

e-70-0o779-Isup2.hkl (226.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012872/bt6983Isup3.cml

CCDC reference: 1006395

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3A⋯O2B i 0.84 1.85 2.685 (5) 174
N1A—H1A⋯O1B ii 0.88 2.06 2.933 (5) 170
O3B—H3B⋯O2A iii 0.84 1.82 2.654 (5) 170
N1B—H1B⋯O1A iv 0.88 2.04 2.848 (6) 152
C5B—H5BB⋯O1A v 0.95 2.54 3.464 (7) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and DST–PURSE financial assistance. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

S1. Comment

Amide bonds play a major role in the elaboration and composition of biological systems, which are the main chemical bonds that link amino acid building blocks together to give proteins. Amide bonds are not limited to biological systems and are indeed present in a huge array of molecules, including major marketed drugs. Amide derivatives possessing anti-inflammatory (Galanakis et al., 2004; Kumar et al., 1993; Ban et al., 1998), antimicrobial (Ukrainets et al., 2006), anti-tubercular (Lesyk et al., 2004) and antiproliferative (Gududuru et al., 2004) activities are reported in the literature. Crystal structures of some related amide derivatives include, viz., 4-(4-iodoanilino)-2-methylene-4-oxobutanoic acid and 4-(3-fluoro-4-methylanilino)-2-methylidene-4-oxobutanoic acid (Nayak et al., 2013a,b). Hence in view of its pharmacological importance, the title compound 4-[(4-bromophenyl)amino]-2-methylidene-4-oxobutanoic acid (I), C11H10BrNO3, was synthesized from 3-methylidenedihydrofuran-2,5-dione with good yields and its crystal structure is reported here.

In the title compound, two independent molecules (A & B) crystallize in the asymmetric unit (Fig. 1). The N–C(=O) bond lengths of 1.359 (6)A (A) and 1.346 (6)Å (B) are indicative of amide-type resonance. The bond lengths of the remaining atoms are in normal ranges (Allen et al., 1987). In the crystal, classical N—H···O and O—H···O hydrogen bonds are observed supported additionally by weak C—H···O intermolecular interactions between the 2-methylidene and amide groups (Table 1, Fig. 2) linking the molecules into chains of dimers along [1 1 0]. The N—H···O hydrogen bonds are supported by the carbonyl oxygen atom of the amide functionality as the acceptor. The carboxylic acid groups form a dimeric hydrogen bonding pattern commonly seen for many carbolylic acids into R22(8) graph-set motifs (Fig. 3). The dihedral angles between the mean planes of the 4-bromophenyl ring (C6A–C11A or C6B–C11B) and oxoamine group (N1A/C1A/O1A/C2A or N1B/C1B/O1B/C2B) are 24.8 (7)° (A) and 77.1 (6)° (B), respectively. The mean plane of the 2-methylidene group (C2A–C5A or C2B–C5B) is further inclined by 75.6 (4)° (A) and 72.5 (6)° (B) from that of the oxoamine group (N1A/C1A/O1A/C2A or N1B/C1B/O1B/C2B).

S2. Experimental

3-Methylidenedihydrofuran-2,5-dione (0.112 g, 1 mmol) was dissolved in 30 ml acetone and stirred at ambient temperature. 4-Bromoaniline (0.172 g, 1 mmol) in 20 mL acetone was added over 30 mins (Fig. 4). After sirring for 1.5 h the slurry was filtered. The solid was washed with acetone and dried to give title compound, C11H10BrNO3. Single crystals were grown from methanol by the slow evaporation method (yield 0.248 g, 87.32%; m.p.: 441–443 K).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2), 0.88Å (NH) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (OH) times Ueq of the parent atom. The idealised tetrahedral OH was refined as a rotating group: O3A(H3A), O3B(H3B). The highest four peaks in the residual density map are at approximately 1Å from the bromine atoms and have a height of about 2 e-3.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of the title compound, C11H10BrNO3, showing the labeling scheme with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing for the title compound viewed along the a axis. Dashed lines indicate N—H···O, O—H···O hydrogen bonds and weak C—H···O intermolecular interactions linking the molecules into chains of dimers along [1 1 0]. H atoms not involved in hydrogen bonding or weak intermolecular interactions have been removed for clarity.

Fig. 3.

Fig. 3.

Molecular packing for the title compound viewed along the b axis. Dashed lines indicate O—H···O hydrogen bonds between the carboxylic groups forming R22(8) graph-set motifs linking the molecules into chains of dimers along [1 1 0]. H atoms not involved in hydrogen bonding have been removed for clarity.

Fig. 4.

Fig. 4.

Synthesis of C11H10BrNO3.

Crystal data

C11H10BrNO3 V = 1101.38 (11) Å3
Mr = 284.11 Z = 4
Triclinic, P1 F(000) = 568
a = 6.2782 (4) Å Dx = 1.713 Mg m3
b = 8.3251 (5) Å Cu Kα radiation, λ = 1.54184 Å
c = 21.3244 (12) Å µ = 5.04 mm1
α = 96.462 (5)° T = 173 K
β = 92.026 (5)° Prism, colourless
γ = 95.390 (5)° 0.44 × 0.28 × 0.14 mm

Data collection

Agilent Eos Gemini diffractometer 3490 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.033
ω scans θmax = 71.3°, θmin = 4.2°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −7→6
Tmin = 0.162, Tmax = 1.000 k = −8→10
7163 measured reflections l = −26→25
4131 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.076 H-atom parameters constrained
wR(F2) = 0.227 w = 1/[σ2(Fo2) + (0.1446P)2 + 3.2341P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4131 reflections Δρmax = 2.73 e Å3
291 parameters Δρmin = −0.79 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1A 0.19572 (14) 0.90862 (10) 0.46174 (4) 0.0619 (3)
O1A 0.8488 (6) 0.7490 (4) 0.20741 (18) 0.0363 (9)
O2A 0.6832 (6) 0.6335 (5) 0.05368 (18) 0.0338 (8)
O3A 1.0137 (6) 0.7205 (5) 0.02870 (19) 0.0370 (9)
H3A 0.9464 0.7607 0.0005 0.056*
N1A 0.5872 (7) 0.5635 (5) 0.2341 (2) 0.0275 (9)
H1A 0.5246 0.4649 0.2229 0.033*
C1A 0.7571 (7) 0.6114 (6) 0.2006 (2) 0.0240 (9)
C2A 0.8300 (8) 0.4766 (6) 0.1541 (2) 0.0266 (10)
H2AA 0.9036 0.4004 0.1777 0.032*
H2AB 0.7033 0.4152 0.1307 0.032*
C3A 0.9795 (8) 0.5448 (6) 0.1078 (2) 0.0274 (10)
C4A 0.8780 (8) 0.6358 (6) 0.0606 (2) 0.0269 (10)
C5A 1.1839 (9) 0.5217 (7) 0.1064 (3) 0.0354 (11)
H5AA 1.2692 0.5636 0.0749 0.042*
H5AB 1.2461 0.4633 0.1370 0.042*
C6A 0.5009 (8) 0.6552 (6) 0.2849 (2) 0.0279 (10)
C7A 0.6134 (10) 0.7860 (7) 0.3221 (3) 0.0375 (12)
H7A 0.7542 0.8230 0.3118 0.045*
C8A 0.5228 (11) 0.8617 (8) 0.3733 (3) 0.0448 (14)
H8A 0.6006 0.9516 0.3981 0.054*
C9A 0.3196 (10) 0.8086 (7) 0.3892 (3) 0.0400 (13)
C10A 0.2019 (9) 0.6772 (8) 0.3529 (3) 0.0426 (13)
H10A 0.0608 0.6415 0.3634 0.051*
C11A 0.2942 (9) 0.6008 (7) 0.3017 (3) 0.0392 (12)
H11A 0.2172 0.5099 0.2774 0.047*
Br1B 1.30729 (11) 0.53869 (9) 0.55597 (3) 0.0518 (3)
O1B 0.6584 (6) 0.7564 (4) 0.79041 (17) 0.0313 (8)
O2B 0.8098 (5) 0.8720 (5) 0.94320 (18) 0.0333 (8)
O3B 0.4808 (6) 0.7820 (5) 0.96889 (19) 0.0365 (8)
H3B 0.5499 0.7275 0.9919 0.055*
N1B 0.8836 (7) 0.9562 (5) 0.7586 (2) 0.0310 (9)
H1B 0.9272 1.0606 0.7645 0.037*
C1B 0.7305 (7) 0.8992 (6) 0.7954 (2) 0.0237 (9)
C2B 0.6529 (8) 1.0295 (6) 0.8428 (2) 0.0276 (10)
H2BA 0.7784 1.0939 0.8657 0.033*
H2BB 0.5740 1.1040 0.8198 0.033*
C3B 0.5089 (8) 0.9580 (5) 0.8900 (2) 0.0252 (9)
C4B 0.6144 (8) 0.8670 (6) 0.9365 (2) 0.0258 (9)
C5B 0.3032 (8) 0.9786 (7) 0.8930 (2) 0.0331 (11)
H5BA 0.2219 0.9351 0.9250 0.040*
H5BB 0.2367 1.0368 0.8632 0.040*
C6B 0.9792 (8) 0.8566 (6) 0.7107 (2) 0.0297 (10)
C7B 1.1837 (9) 0.8118 (7) 0.7222 (3) 0.0334 (11)
H7B 1.2567 0.8449 0.7620 0.040*
C8B 1.2805 (8) 0.7188 (7) 0.6754 (3) 0.0343 (11)
H8B 1.4207 0.6889 0.6830 0.041*
C9B 1.1733 (9) 0.6699 (7) 0.6181 (2) 0.0336 (11)
C10B 0.9703 (9) 0.7144 (8) 0.6061 (3) 0.0424 (13)
H10B 0.8977 0.6808 0.5663 0.051*
C11B 0.8740 (8) 0.8084 (7) 0.6526 (3) 0.0359 (12)
H11B 0.7350 0.8398 0.6445 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1A 0.0789 (6) 0.0637 (5) 0.0493 (5) 0.0310 (4) 0.0312 (4) 0.0047 (3)
O1A 0.041 (2) 0.0251 (18) 0.040 (2) −0.0048 (16) 0.0117 (16) −0.0027 (14)
O2A 0.0245 (18) 0.039 (2) 0.040 (2) 0.0063 (15) 0.0030 (14) 0.0113 (15)
O3A 0.0278 (18) 0.047 (2) 0.039 (2) 0.0037 (16) 0.0037 (15) 0.0125 (16)
N1A 0.027 (2) 0.0222 (19) 0.032 (2) −0.0017 (16) 0.0045 (16) −0.0020 (15)
C1A 0.026 (2) 0.020 (2) 0.026 (2) 0.0045 (18) 0.0000 (17) 0.0010 (17)
C2A 0.029 (2) 0.021 (2) 0.030 (2) 0.0065 (18) 0.0011 (18) 0.0014 (17)
C3A 0.028 (2) 0.021 (2) 0.031 (2) 0.0035 (18) 0.0017 (19) −0.0039 (18)
C4A 0.026 (2) 0.026 (2) 0.027 (2) 0.0023 (18) 0.0053 (18) −0.0024 (18)
C5A 0.033 (3) 0.040 (3) 0.034 (3) 0.011 (2) 0.001 (2) 0.003 (2)
C6A 0.030 (2) 0.024 (2) 0.032 (2) 0.0059 (19) 0.0064 (19) 0.0058 (18)
C7A 0.044 (3) 0.030 (3) 0.038 (3) 0.000 (2) 0.007 (2) 0.001 (2)
C8A 0.055 (4) 0.040 (3) 0.038 (3) 0.004 (3) 0.007 (3) −0.001 (2)
C9A 0.047 (3) 0.039 (3) 0.039 (3) 0.019 (3) 0.021 (2) 0.008 (2)
C10A 0.030 (3) 0.046 (3) 0.054 (4) 0.009 (2) 0.016 (2) 0.008 (3)
C11A 0.030 (3) 0.034 (3) 0.054 (3) 0.003 (2) 0.011 (2) 0.002 (2)
Br1B 0.0503 (5) 0.0635 (5) 0.0428 (4) 0.0220 (3) 0.0143 (3) −0.0059 (3)
O1B 0.0333 (19) 0.0234 (17) 0.0361 (19) −0.0004 (14) 0.0089 (14) −0.0006 (14)
O2B 0.0243 (18) 0.038 (2) 0.039 (2) 0.0041 (15) 0.0041 (14) 0.0113 (15)
O3B 0.0252 (17) 0.047 (2) 0.040 (2) 0.0045 (16) 0.0022 (14) 0.0143 (16)
N1B 0.030 (2) 0.024 (2) 0.037 (2) 0.0008 (17) 0.0092 (17) −0.0013 (16)
C1B 0.020 (2) 0.024 (2) 0.027 (2) 0.0057 (18) −0.0015 (17) 0.0004 (17)
C2B 0.030 (2) 0.022 (2) 0.032 (2) 0.0050 (19) 0.0047 (19) 0.0008 (18)
C3B 0.026 (2) 0.020 (2) 0.029 (2) 0.0034 (18) 0.0031 (18) −0.0034 (17)
C4B 0.024 (2) 0.025 (2) 0.028 (2) 0.0052 (18) 0.0026 (17) −0.0013 (17)
C5B 0.031 (3) 0.037 (3) 0.031 (3) 0.008 (2) 0.002 (2) −0.001 (2)
C6B 0.028 (2) 0.026 (2) 0.036 (3) 0.0035 (19) 0.0087 (19) 0.0030 (19)
C7B 0.032 (3) 0.035 (3) 0.033 (3) 0.004 (2) 0.002 (2) 0.002 (2)
C8B 0.030 (3) 0.041 (3) 0.034 (3) 0.013 (2) 0.005 (2) 0.004 (2)
C9B 0.033 (3) 0.036 (3) 0.033 (3) 0.008 (2) 0.009 (2) 0.000 (2)
C10B 0.032 (3) 0.060 (4) 0.034 (3) 0.009 (3) −0.002 (2) −0.001 (2)
C11B 0.026 (2) 0.046 (3) 0.038 (3) 0.011 (2) 0.002 (2) 0.006 (2)

Geometric parameters (Å, º)

Br1A—C9A 1.899 (5) Br1B—C9B 1.893 (5)
O1A—C1A 1.223 (6) O1B—C1B 1.224 (6)
O2A—C4A 1.225 (6) O2B—C4B 1.226 (6)
O3A—H3A 0.8400 O3B—H3B 0.8400
O3A—C4A 1.312 (6) O3B—C4B 1.311 (6)
N1A—H1A 0.8800 N1B—H1B 0.8800
N1A—C1A 1.359 (6) N1B—C1B 1.346 (6)
N1A—C6A 1.408 (6) N1B—C6B 1.428 (6)
C1A—C2A 1.527 (6) C1B—C2B 1.525 (6)
C2A—H2AA 0.9900 C2B—H2BA 0.9900
C2A—H2AB 0.9900 C2B—H2BB 0.9900
C2A—C3A 1.506 (7) C2B—C3B 1.511 (7)
C3A—C4A 1.487 (7) C3B—C4B 1.488 (7)
C3A—C5A 1.316 (7) C3B—C5B 1.321 (7)
C5A—H5AA 0.9500 C5B—H5BA 0.9500
C5A—H5AB 0.9500 C5B—H5BB 0.9500
C6A—C7A 1.391 (7) C6B—C7B 1.392 (7)
C6A—C11A 1.406 (7) C6B—C11B 1.382 (8)
C7A—H7A 0.9500 C7B—H7B 0.9500
C7A—C8A 1.367 (8) C7B—C8B 1.385 (8)
C8A—H8A 0.9500 C8B—H8B 0.9500
C8A—C9A 1.377 (9) C8B—C9B 1.375 (8)
C9A—C10A 1.400 (9) C9B—C10B 1.383 (8)
C10A—H10A 0.9500 C10B—H10B 0.9500
C10A—C11A 1.374 (8) C10B—C11B 1.384 (8)
C11A—H11A 0.9500 C11B—H11B 0.9500
C4A—O3A—H3A 109.5 C4B—O3B—H3B 109.5
C1A—N1A—H1A 116.6 C1B—N1B—H1B 118.2
C1A—N1A—C6A 126.8 (4) C1B—N1B—C6B 123.7 (4)
C6A—N1A—H1A 116.6 C6B—N1B—H1B 118.2
O1A—C1A—N1A 123.8 (4) O1B—C1B—N1B 123.0 (4)
O1A—C1A—C2A 122.0 (4) O1B—C1B—C2B 123.2 (4)
N1A—C1A—C2A 114.1 (4) N1B—C1B—C2B 113.8 (4)
C1A—C2A—H2AA 109.4 C1B—C2B—H2BA 109.2
C1A—C2A—H2AB 109.4 C1B—C2B—H2BB 109.2
H2AA—C2A—H2AB 108.0 H2BA—C2B—H2BB 107.9
C3A—C2A—C1A 111.3 (4) C3B—C2B—C1B 112.3 (4)
C3A—C2A—H2AA 109.4 C3B—C2B—H2BA 109.2
C3A—C2A—H2AB 109.4 C3B—C2B—H2BB 109.2
C4A—C3A—C2A 115.1 (4) C4B—C3B—C2B 116.0 (4)
C5A—C3A—C2A 123.7 (5) C5B—C3B—C2B 123.6 (5)
C5A—C3A—C4A 121.1 (5) C5B—C3B—C4B 120.3 (5)
O2A—C4A—O3A 123.5 (5) O2B—C4B—O3B 123.7 (4)
O2A—C4A—C3A 121.9 (5) O2B—C4B—C3B 122.0 (5)
O3A—C4A—C3A 114.5 (4) O3B—C4B—C3B 114.2 (4)
C3A—C5A—H5AA 120.0 C3B—C5B—H5BA 120.0
C3A—C5A—H5AB 120.0 C3B—C5B—H5BB 120.0
H5AA—C5A—H5AB 120.0 H5BA—C5B—H5BB 120.0
C7A—C6A—N1A 124.1 (5) C7B—C6B—N1B 119.2 (5)
C7A—C6A—C11A 118.7 (5) C11B—C6B—N1B 121.0 (5)
C11A—C6A—N1A 117.0 (5) C11B—C6B—C7B 119.8 (5)
C6A—C7A—H7A 119.7 C6B—C7B—H7B 120.1
C8A—C7A—C6A 120.5 (6) C8B—C7B—C6B 119.8 (5)
C8A—C7A—H7A 119.7 C8B—C7B—H7B 120.1
C7A—C8A—H8A 119.7 C7B—C8B—H8B 120.1
C7A—C8A—C9A 120.5 (6) C9B—C8B—C7B 119.8 (5)
C9A—C8A—H8A 119.7 C9B—C8B—H8B 120.1
C8A—C9A—Br1A 120.8 (5) C8B—C9B—Br1B 118.8 (4)
C8A—C9A—C10A 120.5 (5) C8B—C9B—C10B 120.8 (5)
C10A—C9A—Br1A 118.6 (4) C10B—C9B—Br1B 120.4 (4)
C9A—C10A—H10A 120.6 C9B—C10B—H10B 120.3
C11A—C10A—C9A 118.7 (5) C9B—C10B—C11B 119.4 (5)
C11A—C10A—H10A 120.6 C11B—C10B—H10B 120.3
C6A—C11A—H11A 119.5 C6B—C11B—C10B 120.3 (5)
C10A—C11A—C6A 121.1 (5) C6B—C11B—H11B 119.8
C10A—C11A—H11A 119.5 C10B—C11B—H11B 119.8
Br1A—C9A—C10A—C11A −177.6 (5) Br1B—C9B—C10B—C11B 179.0 (5)
O1A—C1A—C2A—C3A −15.6 (6) O1B—C1B—C2B—C3B 10.3 (6)
N1A—C1A—C2A—C3A 166.0 (4) N1B—C1B—C2B—C3B −170.7 (4)
N1A—C6A—C7A—C8A −175.5 (5) N1B—C6B—C7B—C8B −178.3 (5)
N1A—C6A—C11A—C10A 176.3 (5) N1B—C6B—C11B—C10B 178.8 (5)
C1A—N1A—C6A—C7A −22.1 (8) C1B—N1B—C6B—C7B −103.4 (6)
C1A—N1A—C6A—C11A 163.5 (5) C1B—N1B—C6B—C11B 78.4 (7)
C1A—C2A—C3A—C4A −70.4 (5) C1B—C2B—C3B—C4B 69.5 (5)
C1A—C2A—C3A—C5A 112.3 (5) C1B—C2B—C3B—C5B −113.4 (5)
C2A—C3A—C4A—O2A −10.9 (7) C2B—C3B—C4B—O2B 11.7 (7)
C2A—C3A—C4A—O3A 167.5 (4) C2B—C3B—C4B—O3B −168.0 (4)
C5A—C3A—C4A—O2A 166.4 (5) C5B—C3B—C4B—O2B −165.5 (5)
C5A—C3A—C4A—O3A −15.1 (7) C5B—C3B—C4B—O3B 14.8 (7)
C6A—N1A—C1A—O1A −6.1 (8) C6B—N1B—C1B—O1B −0.6 (8)
C6A—N1A—C1A—C2A 172.3 (4) C6B—N1B—C1B—C2B −179.6 (4)
C6A—C7A—C8A—C9A 0.7 (9) C6B—C7B—C8B—C9B −0.6 (8)
C7A—C6A—C11A—C10A 1.6 (9) C7B—C6B—C11B—C10B 0.6 (9)
C7A—C8A—C9A—Br1A 178.0 (5) C7B—C8B—C9B—Br1B −178.5 (4)
C7A—C8A—C9A—C10A −0.6 (10) C7B—C8B—C9B—C10B 0.9 (9)
C8A—C9A—C10A—C11A 1.0 (9) C8B—C9B—C10B—C11B −0.4 (10)
C9A—C10A—C11A—C6A −1.5 (9) C9B—C10B—C11B—C6B −0.3 (9)
C11A—C6A—C7A—C8A −1.1 (8) C11B—C6B—C7B—C8B −0.1 (8)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3A—H3A···O2Bi 0.84 1.85 2.685 (5) 174
N1A—H1A···O1Bii 0.88 2.06 2.933 (5) 170
O3B—H3B···O2Aiii 0.84 1.82 2.654 (5) 170
N1B—H1B···O1Aiv 0.88 2.04 2.848 (6) 152
C5B—H5BB···O1Av 0.95 2.54 3.464 (7) 164

Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+1, −z+1; (iii) x, y, z+1; (iv) −x+2, −y+2, −z+1; (v) −x+1, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6983).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Ban, M., Taguchi, H., Katushima, T., Takahashi, M., Shinoda, K., Watanabe, A. & Tominaga, T. (1998). Bioorg. Med. Chem. 6, 1069–1076. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Galanakis, D., Kourounakis, A. P., Tsiakitzis, K. C., Doulgkeris, C., Rekka, E. A., Gavalas, A., Kravaritou, C., Christos, C. & Kourounakis, P. N. (2004). Bioorg. Med. Chem. Lett. 14, 3639–3643. [DOI] [PubMed]
  6. Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293. [DOI] [PubMed]
  7. Kumar, P. & Knaus, E. E. (1993). Eur. J. Med. Chem. 28, 881–885.
  8. Lesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547–1578.
  9. Nayak, P. S., Narayana, B., Jasinski, J. P., Yathirajan, H. S. & Kaur, M. (2013b). Acta Cryst. E69, o1752. [DOI] [PMC free article] [PubMed]
  10. Nayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013a). Acta Cryst. E69, o83. [DOI] [PMC free article] [PubMed]
  11. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Ukrainets, I. V., Sidorenko, L. V., Petrushovo, L. A. & Gorokhova, O. V. (2006). Chem. Heterocycl. Comput. 42, 64–69.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012872/bt6983sup1.cif

e-70-0o779-sup1.cif (28.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012872/bt6983Isup2.hkl

e-70-0o779-Isup2.hkl (226.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012872/bt6983Isup3.cml

CCDC reference: 1006395

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES