Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 7;70(Pt 7):o752–o753. doi: 10.1107/S1600536814012562

4-[(4-Acetyl­phen­yl)amino]-2-methyl­idene-4-oxo­butanoic acid

B Narayana a, Prakash S Nayak b, Balladka K Sarojini c, Jerry P Jasinski d,*
PMCID: PMC4120591  PMID: 25161547

Abstract

In the title compound, C13H13NO4, the N—C(=O) bond length of 1.354 (2) Å is indicative of amide-type resonance. The dihedral angle between the mean planes of the benzene ring and oxo­amine group is 36.4 (3)°, while the mean plane of the 2-methyl­idene group is inclined by 84.2 (01)° from that of the oxo­amine group. In the crystal, classical O—H⋯O hydrogen bonds formed by the carb­oxy­lic acid groups and weak N—H⋯O weak inter­actions formed by the amide groups and supported by weak C—H⋯O inter­actions between the 2-methyl­idene, phenyl and acetyl groups with the carb­oxy­lic acid, oxo­amine and acetyl O atoms, together link the mol­ecules into dimeric chains along [010]. The O—H⋯O hydrogen bonds form R 2 2(8) graph-set motifs.

Related literature  

For the pharmacological activity of amide derivatives, see: Galanakis et al. (2004); Kumar & Knaus (1993); Ban et al. (1998); Ukrainets et al. (2006), Lesyk & Zimenkovsky (2004); Gududuru et al. (2004). For related structures, see: Nayak et al. (2013a ,b ). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o752-scheme1.jpg

Experimental  

Crystal data  

  • C13H13NO4

  • M r = 247.24

  • Triclinic, Inline graphic

  • a = 5.0164 (5) Å

  • b = 5.2908 (4) Å

  • c = 21.8464 (18) Å

  • α = 92.833 (6)°

  • β = 90.315 (7)°

  • γ = 96.222 (7)°

  • V = 575.67 (8) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.89 mm−1

  • T = 173 K

  • 0.42 × 0.22 × 0.12 mm

Data collection  

  • Agilent Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) T min = 0.756, T max = 1.000

  • 3374 measured reflections

  • 2168 independent reflections

  • 1934 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.134

  • S = 1.05

  • 2168 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus et al., 2012); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012562/zl2589sup1.cif

e-70-0o752-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012562/zl2589Isup2.hkl

e-70-0o752-Isup2.hkl (119.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012562/zl2589Isup3.cml

CCDC reference: 1005968

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.97 (5) 1.66 (5) 2.6262 (17) 174 (4)
N1—H1⋯O1ii 0.88 2.29 3.1039 (17) 154
C5—H5B⋯O2iii 1.00 (3) 2.48 (3) 3.434 (2) 160 (2)
C7—H7⋯O1ii 0.95 2.56 3.254 (2) 130
C13—H13A⋯O4iv 0.98 2.50 3.465 (2) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and DST–PURSE financial assistance. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

S1. Comment

Amide bonds play a major role in the elaboration and composition of biological systems, which are the main chemical bonds that link amino acid building blocks together to give proteins. Amide bonds are not limited to biological systems and are indeed present in a huge array of molecules, including major marketed drugs. Amide derivatives possessing anti-inflammatory (Galanakis et al., 2004; Kumar et al., 1993; Ban et al., 1998), antimicrobial (Ukrainets et al., 2006), anti-tubercular (Lesyk et al., 2004) and antiproliferative (Gududuru et al., 2004) activities are reported in the literature. Crystal structures of some amide derivatives related to the title compound include, viz., 4-(4-iodoanilino)-2-methylene-4-oxobutanoic acid and 4-(3-fluoro-4-methylanilino)-2-methylidene-4-oxobutanoic acid (Nayak et al., 2013a,b). Hence in view of its potential pharmacological importance, the title compound 4-[(4-acetylphenyl)amino]-2-methylidene-4-oxobutanoic acid, C13H13NO4, was synthesized from 3-methylidenedihydrofuran-2,5-dione with good yields and its crystal structure is reported here.

In the title compound, The C=C bond is present as its anti-Saytzeff tautomer. The N–C(=O) bond length of 1.354 (2)A (A) is indicative of amide-type resonance (Fig. 1). All other bond lengths are in normal ranges (Allen et al., 1987). In the crystal, classical O—H···O hydrogen bonds formed by the carboxylic groups and N—H···O weak intermolecular interactions formed by the amide groups and supported additionally by weak C—H···O intermolecular interactions between the 2-methylidene, phenyl and acetyl groups with the carboxylic, oxoamine and acetyl oxygen atoms (Table 1), together link the molecules into dimeric chains along [0 1 0] (Fig. 2). The O—H···O hydrogen bonds form R22(8) graph-set motifs. The dihedral angle between the mean planes of the phenyl ring (C6–C10) and oxoamine group (C1/C2/O1/N1) is 36.4 (3)°, while the mean plane of the 2-methylidene group (C2–C5) is further inclined by 84.2 (1)° from that of the oxoamine group.

S2. Experimental

3-Methylidenedihydrofuran-2,5-dione (0.112 g, 1 mmol) was dissolved in a 30 ml acetone and stirred at ambient temperature. 4-Aminoacetophenone (0.135 g, 1 mmol) in 20 mL acetone was added over 30 mins (Fig. 3). After sirring for 1.5 h the slurry was filtered. The solid was washed with acetone and dried to give the title compound, C13H13NO4. Single crystals were grown from methanol and toluene (1:1) mixture by the slow evaporation method (yield. 0.248 g, 87.32%, m.p.: 461–463 K).

S3. Refinement

The OH atom was located by a difference map and refined isotropocally. All of the remaining H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.95Å (CH), 0.98 - 1.00Å (CH2), 0.98Å (CH3) or 0.88Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me was refined as a rotating group.

Figures

Fig. 1.

Fig. 1.

ORTEP drawing of C13H13NO4, showing the labeling scheme with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Molecular packing for C13H13NO4, viewed along the a axis. Dashed lines indicate O—H···O hydrogen bonds in an R22[8] motif format and weak N—H···O, C—H···O intermolecular interactions together linking the molecules into dimeric chains along [0 1 0]. H atoms not involved in hydrogen bonding have been removed for clarity.

Fig. 3.

Fig. 3.

Synthesis of C13H13NO4.

Crystal data

C13H13NO4 Z = 2
Mr = 247.24 F(000) = 260
Triclinic, P1 Dx = 1.426 Mg m3
a = 5.0164 (5) Å Cu Kα radiation, λ = 1.54184 Å
b = 5.2908 (4) Å Cell parameters from 1583 reflections
c = 21.8464 (18) Å θ = 6.1–71.3°
α = 92.833 (6)° µ = 0.89 mm1
β = 90.315 (7)° T = 173 K
γ = 96.222 (7)° Prism, colourless
V = 575.67 (8) Å3 0.42 × 0.22 × 0.12 mm

Data collection

Agilent Eos Gemini diffractometer 2168 independent reflections
Radiation source: Enhance (Cu) X-ray Source 1934 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.025
ω scans θmax = 71.3°, θmin = 4.1°
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) h = −5→6
Tmin = 0.756, Tmax = 1.000 k = −4→6
3374 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0796P)2 + 0.1341P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2168 reflections Δρmax = 0.31 e Å3
176 parameters Δρmin = −0.29 e Å3
0 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3166 (2) 0.3573 (2) 0.70834 (5) 0.0287 (3)
O2 0.2328 (3) 0.2934 (2) 0.51283 (6) 0.0333 (3)
O3 0.3843 (3) 0.6459 (2) 0.56835 (6) 0.0322 (3)
H3 0.529 (9) 0.681 (8) 0.540 (2) 0.117 (15)*
O4 1.3191 (3) 1.1439 (2) 0.91390 (6) 0.0347 (3)
N1 0.3525 (3) 0.7850 (2) 0.72813 (6) 0.0238 (3)
H1 0.2927 0.9262 0.7169 0.029*
C1 0.2405 (3) 0.5648 (3) 0.70006 (7) 0.0212 (3)
C2 0.0055 (3) 0.5917 (3) 0.65734 (7) 0.0236 (3)
H2A −0.1643 0.5631 0.6801 0.028*
H2B 0.0205 0.7669 0.6428 0.028*
C3 −0.0012 (3) 0.4045 (3) 0.60311 (7) 0.0230 (3)
C4 0.2171 (3) 0.4458 (3) 0.55784 (7) 0.0235 (3)
C5 −0.1886 (4) 0.2087 (3) 0.59389 (8) 0.0302 (4)
H5A −0.335 (4) 0.171 (4) 0.6228 (10) 0.030 (5)*
H5B −0.180 (5) 0.095 (5) 0.5563 (12) 0.051 (7)*
C6 0.5569 (3) 0.8108 (3) 0.77393 (7) 0.0216 (3)
C7 0.7359 (3) 1.0308 (3) 0.77582 (8) 0.0257 (4)
H7 0.7233 1.1541 0.7461 0.031*
C8 0.9319 (3) 1.0702 (3) 0.82088 (8) 0.0254 (4)
H8 1.0534 1.2211 0.8218 0.030*
C9 0.9549 (3) 0.8921 (3) 0.86518 (7) 0.0223 (3)
C10 0.7744 (3) 0.6724 (3) 0.86265 (7) 0.0255 (4)
H10 0.7873 0.5488 0.8923 0.031*
C11 0.5764 (3) 0.6305 (3) 0.81778 (8) 0.0255 (4)
H11 0.4545 0.4799 0.8168 0.031*
C12 1.1696 (3) 0.9468 (3) 0.91332 (7) 0.0253 (4)
C13 1.1922 (4) 0.7541 (3) 0.96093 (8) 0.0343 (4)
H13A 1.2316 0.5927 0.9409 0.051*
H13B 1.0227 0.7275 0.9830 0.051*
H13C 1.3371 0.8164 0.9899 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0355 (7) 0.0221 (6) 0.0288 (6) 0.0058 (5) −0.0079 (5) −0.0017 (4)
O2 0.0372 (7) 0.0338 (7) 0.0269 (6) −0.0017 (5) 0.0063 (5) −0.0077 (5)
O3 0.0316 (7) 0.0325 (7) 0.0301 (7) −0.0053 (5) 0.0045 (5) −0.0039 (5)
O4 0.0393 (7) 0.0265 (6) 0.0362 (7) −0.0048 (5) −0.0101 (5) 0.0006 (5)
N1 0.0264 (7) 0.0206 (6) 0.0253 (7) 0.0068 (5) −0.0025 (5) −0.0003 (5)
C1 0.0228 (8) 0.0233 (8) 0.0178 (7) 0.0037 (6) 0.0017 (6) 0.0009 (6)
C2 0.0227 (8) 0.0266 (8) 0.0223 (8) 0.0067 (6) −0.0002 (6) −0.0004 (6)
C3 0.0238 (8) 0.0249 (8) 0.0212 (8) 0.0057 (6) −0.0024 (6) 0.0023 (6)
C4 0.0258 (8) 0.0243 (7) 0.0206 (7) 0.0031 (6) −0.0027 (6) 0.0009 (6)
C5 0.0304 (9) 0.0330 (9) 0.0262 (8) −0.0001 (7) 0.0015 (7) −0.0001 (7)
C6 0.0230 (8) 0.0213 (7) 0.0206 (7) 0.0047 (6) 0.0018 (6) −0.0025 (6)
C7 0.0302 (9) 0.0217 (8) 0.0257 (8) 0.0038 (6) 0.0007 (6) 0.0038 (6)
C8 0.0264 (8) 0.0210 (7) 0.0281 (8) −0.0001 (6) 0.0007 (6) 0.0016 (6)
C9 0.0240 (8) 0.0219 (7) 0.0212 (8) 0.0044 (6) 0.0016 (6) −0.0026 (6)
C10 0.0328 (9) 0.0216 (7) 0.0218 (8) 0.0016 (6) 0.0001 (6) 0.0019 (6)
C11 0.0286 (8) 0.0218 (7) 0.0251 (8) −0.0014 (6) 0.0000 (6) 0.0003 (6)
C12 0.0288 (8) 0.0224 (8) 0.0245 (8) 0.0038 (6) −0.0006 (6) −0.0030 (6)
C13 0.0427 (10) 0.0312 (9) 0.0281 (9) 0.0000 (7) −0.0097 (7) 0.0027 (7)

Geometric parameters (Å, º)

O1—C1 1.222 (2) C6—C7 1.389 (2)
O2—C4 1.249 (2) C6—C11 1.395 (2)
O3—H3 0.97 (5) C7—H7 0.9500
O3—C4 1.288 (2) C7—C8 1.380 (2)
O4—C12 1.216 (2) C8—H8 0.9500
N1—H1 0.8800 C8—C9 1.397 (2)
N1—C1 1.354 (2) C9—C10 1.392 (2)
N1—C6 1.420 (2) C9—C12 1.497 (2)
C1—C2 1.523 (2) C10—H10 0.9500
C2—H2A 0.9900 C10—C11 1.385 (2)
C2—H2B 0.9900 C11—H11 0.9500
C2—C3 1.504 (2) C12—C13 1.504 (2)
C3—C4 1.485 (2) C13—H13A 0.9800
C3—C5 1.328 (2) C13—H13B 0.9800
C5—H5A 0.98 (2) C13—H13C 0.9800
C5—H5B 1.00 (3)
C4—O3—H3 118 (2) C6—C7—H7 120.0
C1—N1—H1 116.8 C8—C7—C6 120.04 (15)
C1—N1—C6 126.47 (13) C8—C7—H7 120.0
C6—N1—H1 116.8 C7—C8—H8 119.4
O1—C1—N1 123.53 (14) C7—C8—C9 121.16 (15)
O1—C1—C2 121.41 (14) C9—C8—H8 119.4
N1—C1—C2 115.05 (13) C8—C9—C12 118.71 (15)
C1—C2—H2A 109.4 C10—C9—C8 118.15 (15)
C1—C2—H2B 109.4 C10—C9—C12 123.14 (14)
H2A—C2—H2B 108.0 C9—C10—H10 119.3
C3—C2—C1 111.32 (12) C11—C10—C9 121.32 (15)
C3—C2—H2A 109.4 C11—C10—H10 119.3
C3—C2—H2B 109.4 C6—C11—H11 120.2
C4—C3—C2 116.83 (14) C10—C11—C6 119.64 (15)
C5—C3—C2 123.91 (15) C10—C11—H11 120.2
C5—C3—C4 119.26 (15) O4—C12—C9 120.33 (15)
O2—C4—O3 123.36 (16) O4—C12—C13 121.36 (16)
O2—C4—C3 120.94 (15) C9—C12—C13 118.30 (14)
O3—C4—C3 115.70 (14) C12—C13—H13A 109.5
C3—C5—H5A 122.5 (13) C12—C13—H13B 109.5
C3—C5—H5B 118.9 (15) C12—C13—H13C 109.5
H5A—C5—H5B 118.5 (19) H13A—C13—H13B 109.5
C7—C6—N1 117.63 (14) H13A—C13—H13C 109.5
C7—C6—C11 119.68 (15) H13B—C13—H13C 109.5
C11—C6—N1 122.63 (14)
O1—C1—C2—C3 −35.3 (2) C6—N1—C1—C2 174.03 (14)
N1—C1—C2—C3 145.67 (14) C6—C7—C8—C9 0.0 (3)
N1—C6—C7—C8 177.47 (14) C7—C6—C11—C10 −0.1 (2)
N1—C6—C11—C10 −177.45 (14) C7—C8—C9—C10 0.1 (2)
C1—N1—C6—C7 148.44 (16) C7—C8—C9—C12 −179.32 (14)
C1—N1—C6—C11 −34.2 (2) C8—C9—C10—C11 −0.2 (2)
C1—C2—C3—C4 −68.77 (17) C8—C9—C12—O4 0.6 (2)
C1—C2—C3—C5 111.34 (18) C8—C9—C12—C13 179.84 (15)
C2—C3—C4—O2 177.03 (14) C9—C10—C11—C6 0.2 (3)
C2—C3—C4—O3 −3.0 (2) C10—C9—C12—O4 −178.79 (16)
C5—C3—C4—O2 −3.1 (2) C10—C9—C12—C13 0.4 (2)
C5—C3—C4—O3 176.90 (15) C11—C6—C7—C8 0.0 (2)
C6—N1—C1—O1 −5.0 (3) C12—C9—C10—C11 179.19 (14)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2i 0.97 (5) 1.66 (5) 2.6262 (17) 174 (4)
N1—H1···O1ii 0.88 2.29 3.1039 (17) 154
C5—H5B···O2iii 1.00 (3) 2.48 (3) 3.434 (2) 160 (2)
C7—H7···O1ii 0.95 2.56 3.254 (2) 130
C13—H13A···O4iv 0.98 2.50 3.465 (2) 167

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y+1, z; (iii) −x, −y, −z+1; (iv) x, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2589).

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Ban, M., Taguchi, H., Katushima, T., Takahashi, M., Shinoda, K., Watanabe, A. & Tominaga, T. (1998). Bioorg. Med. Chem. 6, 1069–1076. [DOI] [PubMed]
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Galanakis, D., Kourounakis, A. P., Tsiakitzis, K. C., Doulgkeris, C., Rekka, E. A., Gavalas, A., Kravaritou, C., Christos, C. & Kourounakis, P. N. (2004). Bioorg. Med. Chem. Lett. 14, 3639–3643. [DOI] [PubMed]
  6. Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293. [DOI] [PubMed]
  7. Kumar, P. & Knaus, E. E. (1993). Eur. J. Med. Chem. 28, 881–885.
  8. Lesyk, R. & Zimenkovsky, B. (2004). Curr. Org. Chem. 8, 1547–1578.
  9. Nayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013a). Acta Cryst. E69, o83. [DOI] [PMC free article] [PubMed]
  10. Nayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013a). Acta Cryst. E69, o83. [DOI] [PMC free article] [PubMed]
  11. Palatinus, L., Prathapa, S. J. & van Smaalen, S. (2012). J. Appl. Cryst. 45, 575–580.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Ukrainets, I. V., Sidorenko, L. V., Petrushovo, L. A. & Gorokhova, O. V. (2006). Chem. Heterocycl. Comput. 42, 64–69.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012562/zl2589sup1.cif

e-70-0o752-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012562/zl2589Isup2.hkl

e-70-0o752-Isup2.hkl (119.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012562/zl2589Isup3.cml

CCDC reference: 1005968

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES