Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 23;70(Pt 7):23–26. doi: 10.1107/S1600536814011520

Crystal structure of poly[[(acetato-κO){μ3-N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamidato-κ4 N:N 1,N 2:N 4]copper(II)] dihydrate]: a metal–organic framework (MOF)1

Dilovan S Cati a, Helen Stoeckli-Evans b,*
PMCID: PMC4120597  PMID: 25161498

The title compound, a hydrated copper acetate complex of the ligand N-[(pyridin-4-yl)methyl]pyrazine-2-carboxamide, has a metal-organic framework (MOF) structure with a 10 (3) network topology. The water molecules are located in the cavities of the framework and linked to it by O—H⋯O hydrogen bonds.

Keywords: crystal structure, metal-organic framework, 10 (3) network topology, copper(II), pyrazine-2-carboxamide

Abstract

The title compound, [Cu(C11H9N4O)(CH3CO2)]·2H2O (CuL), is a hydrated copper acetate complex of the ligand N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamide (HL). Complex CuL has a metal–organic framework (MOF) structure with a 10 (3) network topology. The ligand coordinates in a bidentate and a bis-monodentate manner, bridging three equivalent CuII atoms via the pyridine N atom and the second pyrazine N atom. The CuII atom has a fivefold coordination sphere, CuN4O, being coordinated to three N atoms of the ligand and the acetate O atom in the equatorial plane and to the second pyrazine atom in the apical position. This gives rise to a fairly regular square-pyramidal geometry. In the crystal, the water mol­ecules are linked to each other and to the three-dimensional framework via O—H⋯O hydrogen bonds. There are also a number of C—H⋯O hydrogen bonds present within the framework.

Chemical context  

The ligand N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamide (HL) is one of a series of ligands which were synthesized in order to study their coordination behaviour towards first-row transition metals (Cati, 2002; Cati et al., 2004; Cati & Stoeckli-Evans, 2014). HL is expected to coordinate in a bidentate and possibly a monodentate manner, with eventual bridging of metal atoms to construct two- or three-dimensional networks. A excellent review on the subject of coordination polymers and network structures has been published by Batten et al. (2009).graphic file with name e-70-00023-scheme1.jpg

Structural commentary  

The title compound, CuL, is a copper acetate complex of the ligand N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamide (HL) [Cati & Stoeckli-Evans, 2014]. In complex CuL the ligand coordinates in a bidentate and a bis-monodentate manner, so bridging three equivalent copper atoms (Fig. 1). This gives rise to the formation of a three-dimensional coordination polymer, or MOF (metal–organic framework) structure, as shown in Fig. 2. The copper⋯copper distances are 7.156 (2) Å via the bridging pyrazine ring (Cu1⋯Cu1iii) and 7.420 (2) Å via the pyridine N atom Cu1⋯Cu1iv; see Fig. 1). Atom Cu1 has a fivefold coordination sphere, CuN4O, with three N atoms (N1, N3 and N4i) and the acetate O atom, O2, in the equatorial plane and the second pyrazine N atom, N2ii, in the apical position [Fig. 2; symmetry codes: (i) x, −y, z − Inline graphic; (ii) x − Inline graphic, −y + Inline graphic, z − Inline graphic]. The apical Cu1—N2 bond distance of 2.393 (3) Å is considerably longer that the Cu1–N1, Cu1—N3 and Cu1—N4 bond lengths [2.003 (8), 1.964 (9) and 1.993 (7) Å, respectively], and the Cu1—O2 bond length [1.947 (7) Å] in the equatorial plane. Bond angles O2—Cu1—N3 and N4—Cu1—N1 are 172.2 (3) and 170.6 (3)°, respectively, and this leads to a perfect square-pyramidal geometry with τ = 0.03 (τ = 0 square-pyramidal; τ = 1 trigonal-bipyramidal; Addison et al., 1984). The pyridine ring is inclined to the pyrazine ring by 79.6 (5)° compared to 84.33 (12)° in the free ligand (Cati & Stoeckli-Evans, 2014). The bond distances and angles are normal when compared with geometrical parameters of related copper(II) complexes in the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002), and are similar to those observed in the mononuclear copper(II) acetate complex of the analogous ligand N-[(pyridin-2-yl)methyl]pyrazine-2-carboxamide (Moh­a­­madou et al., 2012). The title compound crystallizes with two solvent water mol­ecules per asymmetric unit.

Figure 1.

Figure 1

A view of the asymmetric unit of complex CuL, with atom labelling [symmetry codes: (i) x, −y, z − Inline graphic; (ii) x − Inline graphic, −y + Inline graphic, z − Inline graphic; (iii) x + Inline graphic, −y + Inline graphic, z + Inline graphic; (iv) x, −y, z + Inline graphic]. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2.

Figure 2

A view along the a axis of the metal–organic framework (MOF) structure of complex CuL. Solvent water mol­ecules and H atoms have been omitted for clarity.

Supra­molecular features  

The three-dimensional network of the title MOF structure has a 10 (3) network topology (Fig. 3). It is one of the most commonly encountered 3-connected three-dimensional nets with ten-membered rings (Wells, 1984). It is a cubic (10,3)-a net, also known as the srs (SrSi2) net, which is chiral [note that the Flack x parameter = −0.01 (3)]. Such structures contain fourfold helices along the three axes all of the same hand (Batten et al., 2009).

Figure 3.

Figure 3

A view of the 10 (3) network topology of the title metal–organic framework (MOF) structure, illustrating the 3-connected three-dimensional nets with ten-membered rings.

In the crystal of CuL, the water mol­ecules are located in the cavities of the MOF structure. They are hydrogen bonded to one another and to the ligand and acetate carbonyl O atoms (Table 1 and Fig. 4). There are also a number of C—H⋯O hydrogen bonds present within the framework (Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.84 (3) 2.13 (5) 2.908 (9) 154 (9)
O1W—H1WB⋯O3iii 0.84 (3) 2.23 (5) 2.964 (10) 146 (8)
O2W—H2WA⋯O1W 0.86 (3) 2.11 (4) 2.951 (10) 165 (10)
O2W—H2WB⋯O1iv 0.85 (3) 2.20 (3) 3.033 (8) 169 (10)
C2—H2⋯O2v 0.95 2.37 2.987 (13) 123
C8—H8⋯O3vi 0.95 2.57 3.364 (11) 141
C9—H9⋯O2W vii 0.95 2.50 3.358 (12) 151

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 4.

Figure 4

A view along the c axis of the crystal packing of complex CuL, with the hydrogen bonds involving the water mol­ecules shown as dashed lines (see Table 1 for details; H atoms not involved in these hydrogen bonding have been omitted for clarity).

Database survey  

A search of the Cambridge Structural Database (Version 5.35, last update November 2013; Allen, 2002) indicated that no complexes of the ligand HL have been described previously. The analogous ligand N-[(pyridin-2-yl)methyl]pyrazine-2-carboxamide has been described as well as a number of metal complexes. These include the mononuclear copper acetate complex (Mohamadou et al., 2012). Here this ligand coordin­ates in a tridentate manner but in a number of other complexes it coordinates in a bis-monodentate manner via the pyridine N atom and a pyrazine N atom; for example, in two polymeric mercury chloride complexes (Khavasi et al., 2010), and a polymeric silver tetra­fluoro­borate complex (Hellyer et al., 2009).

Synthesis and crystallization  

The synthesis of the ligand N-[(pyridin-4-yl)meth­yl]pyrazine-2-carboxamide (HL) has been described elsewhere (Cati, 2002; Cati & Stoeckli-Evans, 2014). Complex CuL was prepared by adding Cu(acetate)2·H2O (64 mg, 0.318 mmol) to a hot solution (323 K) of HL (68 mg, 0.318 mmol) in dry methanol (25 ml). In 2 min a precipitate appeared and heating was stopped and the mixture stirred as the temperature decreased to room temperature. After 30 min the precipitate was filtered off and washed with dry methanol. It was then dissolved in a mixture of water (12 ml) and methanol (15 ml) and stirred with warming to between 313 to 323 K for 15 min. The resulting blue solution was allowed to stand at room temperature and yielded blue crystals in a few days [yield 72 mg, 61%]. Analysis for C13H12CuN4O3·2(H2O) (Mr = 371.84). Calculated (%): C 41.99, H 4.34, N 15.07. Found: C 42.17, H 4.33, N 14.75.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The water H atoms were located in difference Fourier maps were refined with distance restraints: O—H = 0.84 (2) and H⋯H = 1.35 (2) Å with U iso(H) = 1.5Ueq(O). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [Cu(C11H9N4O)(C2H3O2)]·2H2O
M r 371.84
Crystal system, space group Monoclinic, C c
Temperature (K) 153
a, b, c (Å) 7.8256 (12), 22.331 (2), 8.9976 (13)
β (°) 110.040 (16)
V3) 1477.2 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.51
Crystal size (mm) 0.40 × 0.30 × 0.30
 
Data collection
Diffractometer Stoe IPDS I
Absorption correction Multi-scan (MULscanABS in PLATON; Spek, 2009)
T min, T max 0.979, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5730, 2705, 1778
R int 0.070
(sin θ/λ)max−1) 0.615
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.072, 0.78
No. of reflections 2705
No. of parameters 203
No. of restraints 8
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.40, −0.59
Absolute structure Flack x determined using 665 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons & Flack, 2004)
Absolute structure parameter −0.01 (3)

Computer programs: EXPOSE in IPDSI, CELL and INTEGRATE in IPDSI (Stoe & Cie, 2004), SHELXS97 and SHELXL2013 (Sheldrick, 2008), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) CuL. DOI: 10.1107/S1600536814011520/hb0008sup1.cif

e-70-00023-sup1.cif (189.1KB, cif)

Structure factors: contains datablock(s) CuL2. DOI: 10.1107/S1600536814011520/hb0008CuL2sup2.hkl

e-70-00023-CuL2sup2.hkl (151.3KB, hkl)

CCDC reference: 1004264

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Swiss National Science Foundation and the University of Neuchâtel.

supplementary crystallographic information

Crystal data

[Cu(C11H9N4O)(C2H3O2)]·2H2O F(000) = 764
Mr = 371.84 Dx = 1.672 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2705 reflections
a = 7.8256 (12) Å θ = 2.1–26.1°
b = 22.331 (2) Å µ = 1.51 mm1
c = 8.9976 (13) Å T = 153 K
β = 110.040 (16)° Block, turquoise blue
V = 1477.2 (4) Å3 0.40 × 0.30 × 0.30 mm
Z = 4

Data collection

Stoe IPDS I diffractometer 2705 independent reflections
Radiation source: fine-focus sealed tube 1778 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.070
φ rotation scans θmax = 25.9°, θmin = 2.9°
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009) h = −9→9
Tmin = 0.979, Tmax = 1.000 k = −27→26
5730 measured reflections l = −11→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.007P)2] where P = (Fo2 + 2Fc2)/3
S = 0.78 (Δ/σ)max < 0.001
2705 reflections Δρmax = 0.40 e Å3
203 parameters Δρmin = −0.59 e Å3
8 restraints Absolute structure: Flack x determined using 665 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons & Flack, 2004)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.01 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.44720 (19) 0.13211 (4) 0.83884 (18) 0.0155 (2)
O1 0.3072 (8) 0.1995 (2) 1.2004 (7) 0.0248 (16)
O2 0.5973 (10) 0.1326 (3) 0.7054 (9) 0.0169 (15)
O3 0.7386 (8) 0.0439 (3) 0.7464 (8) 0.0266 (15)
N1 0.5958 (11) 0.1988 (3) 0.9695 (9) 0.0155 (9)
N2 0.7658 (12) 0.2933 (3) 1.1646 (9) 0.0155 (9)
N3 0.3109 (12) 0.1421 (4) 0.9844 (11) 0.0155 (9)
N4 0.3255 (10) −0.0570 (3) 1.2361 (9) 0.0155 (9)
C1 0.7378 (15) 0.2255 (5) 0.9510 (12) 0.018 (3)
H1 0.7839 0.2120 0.8720 0.022*
C2 0.8206 (16) 0.2742 (5) 1.0483 (12) 0.018 (3)
H2 0.9191 0.2940 1.0304 0.021*
C3 0.6208 (15) 0.2647 (4) 1.1831 (13) 0.015 (2)
H3 0.5771 0.2774 1.2644 0.018*
C4 0.5351 (15) 0.2174 (5) 1.0852 (11) 0.014 (2)
C5 0.3707 (11) 0.1848 (3) 1.0932 (10) 0.0146 (19)
C6 0.1512 (13) 0.1078 (4) 0.9801 (12) 0.015 (2)
H6A 0.0774 0.0987 0.8689 0.018*
H6B 0.0757 0.1320 1.0262 0.018*
C7 0.2058 (11) 0.0497 (3) 1.0721 (11) 0.0124 (17)
C8 0.1360 (11) −0.0045 (4) 1.0059 (11) 0.020 (2)
H8 0.0425 −0.0061 0.9053 0.024*
C9 0.2044 (13) −0.0571 (4) 1.0884 (13) 0.020 (2)
H9 0.1638 −0.0944 1.0381 0.024*
C10 0.3872 (11) −0.0036 (3) 1.3001 (11) 0.019 (2)
H10 0.4747 −0.0028 1.4039 0.023*
C11 0.3310 (12) 0.0503 (4) 1.2239 (10) 0.016 (2)
H11 0.3775 0.0871 1.2748 0.019*
C12 0.6927 (13) 0.0907 (5) 0.6705 (13) 0.016 (2)
C13 0.7531 (12) 0.1058 (4) 0.5323 (10) 0.024 (2)
H13A 0.7724 0.0687 0.4820 0.035*
H13B 0.8669 0.1285 0.5701 0.035*
H13C 0.6591 0.1298 0.4552 0.035*
O1W 0.7662 (12) 0.0650 (3) 0.0791 (10) 0.0313 (19)
H1WA 0.764 (17) 0.042 (4) 0.151 (8) 0.047*
H1WB 0.752 (15) 0.044 (4) −0.002 (7) 0.047*
O2W 0.9960 (9) 0.1546 (3) 0.2989 (8) 0.0358 (18)
H2WA 0.925 (10) 0.134 (4) 0.222 (8) 0.054*
H2WB 1.072 (10) 0.169 (4) 0.261 (10) 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0184 (5) 0.0119 (4) 0.0183 (5) −0.0019 (8) 0.0092 (4) −0.0025 (8)
O1 0.032 (4) 0.021 (3) 0.032 (4) −0.011 (3) 0.025 (4) −0.013 (3)
O2 0.023 (4) 0.008 (3) 0.023 (4) 0.000 (3) 0.012 (3) −0.004 (3)
O3 0.025 (4) 0.019 (3) 0.037 (5) 0.009 (3) 0.013 (3) 0.005 (3)
N1 0.018 (2) 0.0133 (18) 0.018 (2) −0.0018 (16) 0.009 (2) 0.0013 (17)
N2 0.018 (2) 0.0133 (18) 0.018 (2) −0.0018 (16) 0.009 (2) 0.0013 (17)
N3 0.018 (2) 0.0133 (18) 0.018 (2) −0.0018 (16) 0.009 (2) 0.0013 (17)
N4 0.018 (2) 0.0133 (18) 0.018 (2) −0.0018 (16) 0.009 (2) 0.0013 (17)
C1 0.017 (6) 0.017 (5) 0.020 (6) −0.004 (4) 0.007 (5) −0.002 (5)
C2 0.019 (6) 0.022 (6) 0.016 (6) −0.003 (5) 0.011 (5) −0.001 (5)
C3 0.018 (6) 0.014 (5) 0.016 (6) −0.005 (4) 0.012 (5) −0.001 (4)
C4 0.023 (6) 0.010 (5) 0.012 (5) −0.005 (4) 0.010 (5) 0.001 (4)
C5 0.015 (5) 0.016 (4) 0.014 (5) −0.002 (3) 0.006 (4) 0.001 (4)
C6 0.013 (6) 0.010 (5) 0.021 (6) −0.002 (4) 0.004 (5) 0.003 (4)
C7 0.011 (4) 0.009 (4) 0.018 (5) 0.002 (3) 0.006 (4) 0.006 (4)
C8 0.012 (5) 0.020 (4) 0.027 (6) 0.001 (4) 0.005 (4) 0.000 (4)
C9 0.020 (5) 0.012 (5) 0.028 (7) −0.004 (4) 0.009 (5) 0.002 (4)
C10 0.024 (6) 0.017 (4) 0.017 (6) 0.000 (3) 0.009 (5) 0.002 (4)
C11 0.023 (5) 0.007 (4) 0.018 (5) −0.003 (4) 0.008 (5) −0.004 (4)
C12 0.007 (5) 0.022 (6) 0.019 (6) 0.001 (4) 0.004 (5) 0.001 (5)
C13 0.019 (5) 0.035 (5) 0.022 (6) 0.004 (4) 0.014 (5) −0.003 (4)
O1W 0.047 (5) 0.019 (4) 0.033 (5) −0.002 (4) 0.019 (5) 0.001 (3)
O2W 0.042 (5) 0.038 (4) 0.034 (5) −0.007 (3) 0.022 (4) −0.006 (3)

Geometric parameters (Å, º)

Cu1—O2 1.947 (7) C3—H3 0.9500
Cu1—N3 1.964 (9) C4—C5 1.500 (13)
Cu1—N4i 1.993 (7) C6—C7 1.520 (11)
Cu1—N1 2.003 (8) C6—H6A 0.9900
Cu1—N2ii 2.393 (8) C6—H6B 0.9900
O1—C5 1.270 (9) C7—C8 1.376 (11)
O2—C12 1.300 (12) C7—C11 1.382 (12)
O3—C12 1.232 (11) C8—C9 1.395 (13)
N1—C1 1.323 (13) C8—H8 0.9500
N1—C4 1.349 (12) C9—H9 0.9500
N2—C2 1.330 (13) C10—C11 1.381 (11)
N2—C3 1.360 (13) C10—H10 0.9500
N2—Cu1iii 2.393 (8) C11—H11 0.9500
N3—C5 1.332 (11) C12—C13 1.512 (12)
N3—C6 1.455 (13) C13—H13A 0.9800
N4—C10 1.341 (10) C13—H13B 0.9800
N4—C9 1.342 (13) C13—H13C 0.9800
N4—Cu1iv 1.992 (7) O1W—H1WA 0.84 (3)
C1—C2 1.405 (14) O1W—H1WB 0.84 (3)
C1—H1 0.9500 O2W—H2WA 0.86 (3)
C2—H2 0.9500 O2W—H2WB 0.85 (3)
C3—C4 1.393 (13)
O2—Cu1—N3 172.2 (3) O1—C5—N3 127.8 (8)
O2—Cu1—N4i 90.7 (3) O1—C5—C4 118.5 (8)
N3—Cu1—N4i 97.0 (3) N3—C5—C4 113.7 (8)
O2—Cu1—N1 90.4 (3) N3—C6—C7 110.9 (8)
N3—Cu1—N1 82.1 (4) N3—C6—H6A 109.5
N4i—Cu1—N1 170.6 (3) C7—C6—H6A 109.5
O2—Cu1—N2ii 86.5 (3) N3—C6—H6B 109.5
N3—Cu1—N2ii 91.3 (3) C7—C6—H6B 109.5
N4i—Cu1—N2ii 101.5 (3) H6A—C6—H6B 108.0
N1—Cu1—N2ii 87.8 (2) C8—C7—C11 118.6 (8)
C12—O2—Cu1 131.5 (6) C8—C7—C6 121.3 (8)
C1—N1—C4 119.4 (8) C11—C7—C6 120.1 (8)
C1—N1—Cu1 127.3 (7) C7—C8—C9 119.2 (9)
C4—N1—Cu1 113.3 (7) C7—C8—H8 120.4
C2—N2—C3 116.9 (9) C9—C8—H8 120.4
C2—N2—Cu1iii 117.4 (7) N4—C9—C8 122.6 (9)
C3—N2—Cu1iii 125.3 (7) N4—C9—H9 118.7
C5—N3—C6 118.6 (9) C8—C9—H9 118.7
C5—N3—Cu1 115.9 (6) N4—C10—C11 123.8 (8)
C6—N3—Cu1 125.5 (7) N4—C10—H10 118.1
C10—N4—C9 117.0 (7) C11—C10—H10 118.1
C10—N4—Cu1iv 120.3 (6) C10—C11—C7 118.6 (8)
C9—N4—Cu1iv 121.4 (6) C10—C11—H11 120.7
N1—C1—C2 119.9 (10) C7—C11—H11 120.7
N1—C1—H1 120.0 O3—C12—O2 124.0 (9)
C2—C1—H1 120.0 O3—C12—C13 122.0 (9)
N2—C2—C1 122.3 (10) O2—C12—C13 113.9 (8)
N2—C2—H2 118.9 C12—C13—H13A 109.5
C1—C2—H2 118.9 C12—C13—H13B 109.5
N2—C3—C4 121.3 (10) H13A—C13—H13B 109.5
N2—C3—H3 119.3 C12—C13—H13C 109.5
C4—C3—H3 119.3 H13A—C13—H13C 109.5
N1—C4—C3 120.1 (10) H13B—C13—H13C 109.5
N1—C4—C5 115.0 (8) H1WA—O1W—H1WB 107 (4)
C3—C4—C5 124.9 (9) H2WA—O2W—H2WB 104 (4)
C4—N1—C1—C2 −2.0 (14) N1—C4—C5—N3 0.4 (12)
Cu1—N1—C1—C2 176.4 (8) C3—C4—C5—N3 178.4 (10)
C3—N2—C2—C1 −1.9 (15) C5—N3—C6—C7 −95.5 (10)
Cu1iii—N2—C2—C1 172.1 (9) Cu1—N3—C6—C7 85.8 (10)
N1—C1—C2—N2 2.8 (17) N3—C6—C7—C8 −128.6 (9)
C2—N2—C3—C4 0.5 (14) N3—C6—C7—C11 49.7 (12)
Cu1iii—N2—C3—C4 −173.0 (8) C11—C7—C8—C9 −5.2 (12)
C1—N1—C4—C3 0.5 (14) C6—C7—C8—C9 173.2 (8)
Cu1—N1—C4—C3 −178.0 (8) C10—N4—C9—C8 −3.5 (12)
C1—N1—C4—C5 178.7 (9) Cu1iv—N4—C9—C8 −171.0 (7)
Cu1—N1—C4—C5 0.1 (11) C7—C8—C9—N4 5.7 (13)
N2—C3—C4—N1 0.2 (16) C9—N4—C10—C11 1.1 (11)
N2—C3—C4—C5 −177.7 (9) Cu1iv—N4—C10—C11 168.8 (6)
C6—N3—C5—O1 1.8 (14) N4—C10—C11—C7 −0.9 (12)
Cu1—N3—C5—O1 −179.4 (7) C8—C7—C11—C10 2.9 (12)
C6—N3—C5—C4 −179.5 (9) C6—C7—C11—C10 −175.5 (8)
Cu1—N3—C5—C4 −0.7 (10) Cu1—O2—C12—O3 −17.2 (15)
N1—C4—C5—O1 179.2 (8) Cu1—O2—C12—C13 166.2 (7)
C3—C4—C5—O1 −2.8 (15)

Symmetry codes: (i) x, −y, z−1/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) x, −y, z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1WA···O3i 0.84 (3) 2.13 (5) 2.908 (9) 154 (9)
O1W—H1WB···O3v 0.84 (3) 2.23 (5) 2.964 (10) 146 (8)
O2W—H2WA···O1W 0.86 (3) 2.11 (4) 2.951 (10) 165 (10)
O2W—H2WB···O1vi 0.85 (3) 2.20 (3) 3.033 (8) 169 (10)
C2—H2···O2iii 0.95 2.37 2.987 (13) 123
C8—H8···O3vii 0.95 2.57 3.364 (11) 141
C9—H9···O2Wviii 0.95 2.50 3.358 (12) 151

Symmetry codes: (i) x, −y, z−1/2; (iii) x+1/2, −y+1/2, z+1/2; (v) x, y, z−1; (vi) x+1, y, z−1; (vii) x−1, y, z; (viii) x−1, −y, z+1/2.

Footnotes

1

This work is part of the PhD thesis (University of Neuchâtel, 2002) of DSC.

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Batten, S. R., Neville, S. M. & Turner, D. R. (2009). In Coordination Polymers: Design, Analysis and Applications Cambridge: RSC Publishing.
  4. Cati, D. S. (2002). PhD thesis, University of Neuchâtel, Switzerland.
  5. Cati, D. S., Ribas, J., Ribas-Arño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030. [DOI] [PubMed]
  6. Cati, D. S. & Stoeckli-Evans, H. (2014). Acta Cryst. E70, 18–22. [DOI] [PMC free article] [PubMed]
  7. Hellyer, R. M., Larsen, D. S. & Brooker, S. (2009). Eur. J. Inorg. Chem. pp. 1162–1171.
  8. Khavasi, H. R. & Sadegh, B. M. M. (2010). Inorg. Chem. 49, 5356–5358. [DOI] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Mohamadou, A., Moreau, J., Dupont, L. & Wenger, E. (2012). Inorg. Chim. Acta, 383, 267–276.
  11. Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Stoe & Cie (2004). IPDSI – Bedienungshandbuch Stoe & Cie GmbH, Darmstadt, Germany.
  15. Wells, A. F. (1984). Structural Inorganic Chemistry, 5th ed. Oxford University Press.
  16. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) CuL. DOI: 10.1107/S1600536814011520/hb0008sup1.cif

e-70-00023-sup1.cif (189.1KB, cif)

Structure factors: contains datablock(s) CuL2. DOI: 10.1107/S1600536814011520/hb0008CuL2sup2.hkl

e-70-00023-CuL2sup2.hkl (151.3KB, hkl)

CCDC reference: 1004264

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES