Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 18;70(Pt 7):o783. doi: 10.1107/S1600536814012847

(tert-But­yl)(2-hy­droxy­eth­yl)ammonium chloride

Cintya Valerio-Cárdenas a,*, Simón Hernández-Ortega a, David Morales-Morales a
PMCID: PMC4120598  PMID: 25161569

Abstract

In the cation of the title mol­ecular salt, C6H16NO+·Cl, the N—C—C—O torsion angle is 176.5 (2)°. In the crystal, the cations and chloride ions are linked by N—H⋯O and O—H⋯O hydrogen bonds, generating a two-dimensional network parallel to (100).

Related literature  

For the chiral pool synthesis of naturally occurring mol­ecules, see: Coppola & Schuster (1987); Bergmeier & Stanchina (1999). For pharmacologic synthesis, see: Gante (1994); Tok & Rando (1998). graphic file with name e-70-0o783-scheme1.jpg

Experimental  

Crystal data  

  • C6H16NO+·Cl

  • M r = 153.65

  • Monoclinic, Inline graphic

  • a = 8.5204 (3) Å

  • b = 7.8742 (3) Å

  • c = 14.1844 (5) Å

  • β = 105.804 (1)°

  • V = 915.68 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 298 K

  • 0.40 × 0.10 × 0.03 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • 5487 measured reflections

  • 1668 independent reflections

  • 1071 reflections with I > 2σ(I)

  • R int = 0.058

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.124

  • S = 1.00

  • 1668 reflections

  • 94 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012847/gw2144sup1.cif

e-70-0o783-sup1.cif (182.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012847/gw2144Isup2.hkl

e-70-0o783-Isup2.hkl (92KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012847/gw2144Isup3.cml

CCDC reference: 1006385

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1i 0.86 (1) 2.29 (1) 3.140 (2) 167 (3)
N3—H3A⋯Cl1 0.90 (1) 2.27 (1) 3.144 (2) 166 (2)
N3—H3B⋯Cl1ii 0.89 (1) 2.30 (1) 3.190 (2) 175 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

CVC would like to thank CONACYT for a postdoctoral scholarship (290805–UNAM). Support of this research by CONACYT (CB2010–154732) and PAPIIT (IN201711–3 and IN213214–3) is gratefully acknowledged.

supplementary crystallographic information

S1. Comment

Amino alcohols are some of the most versatile starting materials both at the laboratory and at the industrial scale and have been widely used for a large number of applications. Among which stands the chiral pool synthesis of naturally occurring molecules (Coppola et al. 1987; Bergmeier et al. 1999). These compounds have also displayed important biological activities and are of interest for the development of synthetic methods in the pharmaceutical industry (Gante, 1994; Tok et al. 1998). Based on the above, we report here the crystal structure of N-((2-hydroxyethyl)tertbutyl)ammonium chloride and discuss its geometry and intermolecular interactions.

The molecular structure of the title compound [(HOC2H4)((CH3)3C)NH2]Cl- (Fig. 1), consists of an ionic species, exhibiting the nitrogen atom in a tetrahedral geometry. The dihedral angle between the tertbutyl and the 2-hydroxyethyl moieties is almost plane (173.34 (2)°) as a result of the reduced steric effects. In the asymmetric unit the Cl atom is linked by a N3—H3A···Cl1 interaction (2.266 (11) Å). In the crystal the Cl atom is acting as tri-acceptor H-bonding, such that, the anion and cation species are linked through O1—H1···Cl1 with distances of 2.294 (13) Å, leading to stairs aligned along the ac plane (symmetry code x, -y + 3/2, z + 1/2). These stairs are expanded by a third intermolecular interaction N3—H3B···Cl1 (2.304 (10) Å) along the b axis with symmetry code -x + 1,y - 1/2,-z + 3/2 (see Table 1, Fig. 2).

S2. Experimental

The title compound was isolated from the reaction of [S2CN(tBu)(EtOH)] and [NiCl2(PPh3)2] in a 1:1 molar ratio in ethanol. Colourless crystals suitable for single-crystal X-ray diffraction analysis were obtained from a solvent system ether/CH2Cl2.

S3. Refinement

The atoms H1, H3A and H3B were located from a difference Fourier map and N3—H3A, N3—H3B and O1—H1 distances are restrained to 0.90 and 0.85 Å respectively. H atoms were included in calculated position (C—H = 0.97 Å for methylene H, and C—H = 0.96 Å for methyl H), and refined using a riding model with Uiso(H) = 1.2 Ueq of the carrier atoms. 3 badly fitting reflections were omitted from the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing the atom labelling and displacement ellipsoids at the 40% of probability.

Fig. 2.

Fig. 2.

A view in projection on the direction of the chain. The O—H···Cl and N—H···Cl interactions are shown as dashed lines.

Crystal data

C6H16NO+·Cl F(000) = 336
Mr = 153.65 Dx = 1.115 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2475 reflections
a = 8.5204 (3) Å θ = 2.5–25.3°
b = 7.8742 (3) Å µ = 0.35 mm1
c = 14.1844 (5) Å T = 298 K
β = 105.804 (1)° Prism, colourless
V = 915.68 (6) Å3 0.40 × 0.10 × 0.03 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer Rint = 0.058
Detector resolution: 0.83 pixels mm-1 θmax = 25.3°, θmin = 2.5°
ω scans h = −5→10
5487 measured reflections k = −8→9
1668 independent reflections l = −17→16
1071 reflections with I > 2σ(I)

Refinement

Refinement on F2 3 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0584P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.001
1668 reflections Δρmax = 0.48 e Å3
94 parameters Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.44289 (9) 0.82425 (9) 0.62991 (4) 0.0579 (3)
O1 0.2643 (2) 0.8483 (3) 0.92991 (15) 0.0690 (6)
H1 0.303 (4) 0.811 (4) 0.9889 (11) 0.083*
C1 0.3512 (3) 0.7606 (4) 0.87548 (19) 0.0531 (7)
H1A 0.3003 0.7781 0.8062 0.064*
H1B 0.3488 0.6400 0.8889 0.064*
C2 0.5253 (3) 0.8207 (3) 0.90041 (18) 0.0436 (6)
H2A 0.5280 0.9397 0.8832 0.052*
H2B 0.5742 0.8098 0.9704 0.052*
N3 0.6212 (2) 0.7191 (3) 0.84643 (15) 0.0383 (5)
H3A 0.579 (3) 0.734 (3) 0.7818 (8) 0.046*
H3B 0.607 (3) 0.6079 (13) 0.8511 (17) 0.046*
C4 0.8038 (3) 0.7496 (3) 0.87151 (19) 0.0454 (7)
C5 0.8775 (3) 0.7126 (4) 0.9796 (2) 0.0686 (9)
H5A 0.8423 0.6028 0.9950 0.082*
H5B 0.8427 0.7976 1.0181 0.082*
H5C 0.9944 0.7142 0.9941 0.082*
C6 0.8687 (3) 0.6245 (4) 0.8087 (2) 0.0728 (9)
H6A 0.8452 0.5105 0.8247 0.087*
H6B 0.9845 0.6386 0.8214 0.087*
H6C 0.8172 0.6459 0.7407 0.087*
C7 0.8344 (3) 0.9303 (4) 0.8456 (2) 0.0678 (9)
H7A 0.9497 0.9489 0.8584 0.081*
H7B 0.7906 1.0071 0.8844 0.081*
H7C 0.7825 0.9498 0.7774 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0865 (6) 0.0441 (4) 0.0413 (4) 0.0031 (3) 0.0142 (4) −0.0011 (3)
O1 0.0533 (13) 0.0912 (16) 0.0646 (13) 0.0179 (11) 0.0194 (11) 0.0001 (13)
C1 0.0387 (17) 0.0772 (19) 0.0429 (15) 0.0068 (14) 0.0103 (12) −0.0066 (15)
C2 0.0407 (16) 0.0462 (15) 0.0467 (14) 0.0013 (11) 0.0166 (12) −0.0050 (13)
N3 0.0377 (13) 0.0364 (11) 0.0406 (11) 0.0007 (9) 0.0101 (10) −0.0003 (11)
C4 0.0342 (15) 0.0438 (14) 0.0584 (17) 0.0013 (11) 0.0130 (13) −0.0028 (14)
C5 0.0472 (19) 0.084 (2) 0.0657 (19) 0.0039 (15) −0.0004 (15) 0.0017 (18)
C6 0.0513 (19) 0.079 (2) 0.095 (2) 0.0051 (16) 0.0311 (17) −0.020 (2)
C7 0.0463 (18) 0.0607 (19) 0.099 (2) −0.0077 (14) 0.0232 (17) 0.0038 (19)

Geometric parameters (Å, º)

O1—C1 1.390 (3) C4—C5 1.519 (4)
O1—H1 0.862 (10) C4—C6 1.529 (4)
C1—C2 1.504 (4) C5—H5A 0.9600
C1—H1A 0.9700 C5—H5B 0.9600
C1—H1B 0.9700 C5—H5C 0.9600
C2—N3 1.495 (3) C6—H6A 0.9600
C2—H2A 0.9700 C6—H6B 0.9600
C2—H2B 0.9700 C6—H6C 0.9600
N3—C4 1.518 (3) C7—H7A 0.9600
N3—H3A 0.896 (9) C7—H7B 0.9600
N3—H3B 0.888 (10) C7—H7C 0.9600
C4—C7 1.510 (4)
C1—O1—H1 104 (2) C7—C4—C6 110.5 (2)
O1—C1—C2 110.7 (2) N3—C4—C6 105.8 (2)
O1—C1—H1A 109.5 C5—C4—C6 110.4 (2)
C2—C1—H1A 109.5 C4—C5—H5A 109.5
O1—C1—H1B 109.5 C4—C5—H5B 109.5
C2—C1—H1B 109.5 H5A—C5—H5B 109.5
H1A—C1—H1B 108.1 C4—C5—H5C 109.5
N3—C2—C1 110.6 (2) H5A—C5—H5C 109.5
N3—C2—H2A 109.5 H5B—C5—H5C 109.5
C1—C2—H2A 109.5 C4—C6—H6A 109.5
N3—C2—H2B 109.5 C4—C6—H6B 109.5
C1—C2—H2B 109.5 H6A—C6—H6B 109.5
H2A—C2—H2B 108.1 C4—C6—H6C 109.5
C2—N3—C4 117.61 (19) H6A—C6—H6C 109.5
C2—N3—H3A 109.4 (16) H6B—C6—H6C 109.5
C4—N3—H3A 108.7 (16) C4—C7—H7A 109.5
C2—N3—H3B 112.9 (15) C4—C7—H7B 109.5
C4—N3—H3B 106.6 (15) H7A—C7—H7B 109.5
H3A—N3—H3B 100 (2) C4—C7—H7C 109.5
C7—C4—N3 109.1 (2) H7A—C7—H7C 109.5
C7—C4—C5 112.0 (2) H7B—C7—H7C 109.5
N3—C4—C5 108.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···Cl1i 0.86 (1) 2.29 (1) 3.140 (2) 167 (3)
N3—H3A···Cl1 0.90 (1) 2.27 (1) 3.144 (2) 166 (2)
N3—H3B···Cl1ii 0.89 (1) 2.30 (1) 3.190 (2) 175 (2)

Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GW2144).

References

  1. Bergmeier, S. C. & Stanchina, D. M. (1999). J. Org. Chem. 64, 2852–2859. [DOI] [PubMed]
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Coppola, G. M. & Schuster, H. F. (1987). In Asymmetric Synthesis Construction of Chiral Molecules Using Amino Acids New York: Wiley.
  4. Gante, J. (1994). Angew. Chem. Int. Ed. Engl. 33, 1699–1720.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tok, J. B.-H. & Rando, R. R. (1998). J. Am. Chem. Soc. 120, 8279–8280.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012847/gw2144sup1.cif

e-70-0o783-sup1.cif (182.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012847/gw2144Isup2.hkl

e-70-0o783-Isup2.hkl (92KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012847/gw2144Isup3.cml

CCDC reference: 1006385

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES