Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 21;70(Pt 7):o797. doi: 10.1107/S1600536814013191

6-Bromo-N-(6-bromo­pyridin-2-yl)-N-[4-(2,3-di­hydro­thieno[3,4-b][1,4]dioxin-5-yl)phen­yl]pyridin-2-amine

Lauren A Mitchell a, Bradley J Holliday a,*
PMCID: PMC4120601  PMID: 25161578

Abstract

In the title mol­ecule, C22H15Br2N3O2S, the central benzene ring forms dihedral angles of 12.39 (17), 56.66 (17) and 74.71 (19)°, respectively, with the mean planes of the thio­phene and two pyridine rings. The dioxane ring is in a half-chair conformation. An intra­molecular C—H⋯O hydrogen forms an S(6) ring. The amine N atom is sp 2-hybridized.

Related literature  

For related structures, see: Chen et al. (2011); Sotzing & Reynolds (1996); de Betterncourt-Dias et al. (2011). For applications of simliar compounds, see: Chahma et al. (2007); Roncali et al. (2005). For the synthesis of the starting material 4-(2,3-di­hydro­thieno[3,4-b][1,4]dioxin-5-yl)aniline, see: Trippé-Allard & Lacroix (2013). For the calculation of the functionality of the amine group in terms of hybridization, see: Allen et al. (1995). For hydrogen-bond graph-set motifs, see: Bernstein et al. (1995).graphic file with name e-70-0o797-scheme1.jpg

Experimental  

Crystal data  

  • C22H15Br2N3O2S

  • M r = 545.25

  • Triclinic, Inline graphic

  • a = 4.483 (4) Å

  • b = 12.151 (9) Å

  • c = 18.958 (13) Å

  • α = 75.807 (18)°

  • β = 87.67 (3)°

  • γ = 89.62 (2)°

  • V = 1000.3 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.18 mm−1

  • T = 100 K

  • 0.22 × 0.03 × 0.03 mm

Data collection  

  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 2001) T min = 0.563, T max = 1.000

  • 13439 measured reflections

  • 3521 independent reflections

  • 2732 reflections with I > 2σ(I)

  • R int = 0.079

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.128

  • S = 1.00

  • 3521 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.83 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and POV-RAY (Cason, 2004); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814013191/lh5709sup1.cif

e-70-0o797-sup1.cif (28.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013191/lh5709Isup2.hkl

e-70-0o797-Isup2.hkl (169.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013191/lh5709Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯O2 0.93 2.42 3.036 (7) 124

Acknowledgments

The data were collected using instrumentation purchased with funds provided by the National Science Foundation (grant No. CHE-0741973). The Welch Foundation (grant No. F-1631) and the National Science Foundation (grant No. CHE-0847763) are acknowledged for financial support of this research.

supplementary crystallographic information

S1. Comment

The optical and electronic properties of 3,4-ethylenedioxythiophene (EDOT) containing compounds have spurred the development of materials for use in light-emitting devices, non-linear optics, and organic semi-conductors (Roncali et al., 2005). Triphenylamines with EDOT substituants have been utilized in the development of electroactive polymers with high redox stabilities (Chahma et al., 2007). The title compound is a promising precurser to branched unsymmetric electroactive polymers.

The geometry of the EDOT moiety is similar to other ethylenedioxythiophene containing compounds reported in the literature (Chen et al., 2011; Sotzing & Reynolds, 1996). The dihedral angle between the thiophene and central benzene is 12.39 (17)°. The two pyridine rings are twisted out of plane of the benzene ring. The dihedral angle between the benzene ring and the pyridine ring containing N1 is 56.66 (17)°, and the dihedral angle between the benzene ring and the pyridine ring containing N2 is 74.71 (19)°. An intramolecular C—H···O hydrogen forms an S(6) ring (Bernstein et al., 1995).

The pyramidality of the amine functionality, measured by χn, the angle between the C10—N2 vector and the N2/C13/C18 plane, described by Allen et al. (1995), is 2.3 (6)°, indicating that the hybridization of the nitrogen atom is mainly sp2 (sp2χn≈ 0°, sp3χn≈ 60°).

S2. Experimental

In an air-free glovebox tris(dibenzylideneacetone)dipalladium(0) (0.488 g, 0.5 mmol) was added to a dry schlenk flask. The reaction flask was pumped out, dry toluene was transferred into the flask by cannula and 4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)aniline, synthesized from Trippé-Allard & Lacroix (2013), (4.508 g, 19.3 mmol), 2,6-dibromopyridine (9.387 g, 39.6 mmol), 1,1'-bis(diphenylphosphino)ferrocene (0.632 g, 1.1 mmol), and sodium tert-butoxide (3.989 g, 41.5 mmol) were added to the solution. The solution was refluxed at 393 K for 20 h. The solution was cooled to room temperature and the toluene was removed by rotoevaporation. The product was extracted into CH2Cl2 (x3) washing with H2O. The crude solid was purified by silica gel column chromatography with 45% ethyl acetate: 55% hexanes by volume (Rf = 0.59) to yield a bright yellow solid (2.298 g, 21.8%). Crystals suitable for X-ray diffraction were obtained by slow evaporation from a 45% ethyl acetate, 55% hexanes solution (v/v). m.p. 433 K. 1H NMR (300 MHz, CDCl3) δ: 7.72 (d, 2H, J = 8.4), 7.36 (t, 2H, J = 7.9), 7.15 (d, 2H, J = 8.4), 7.09 (d, 2H, J = 5.1), 6.93 (d, 2H, J = 8.4), 6.30 (s, 1H), 4.31 – 4.25 (m, 4H), 13C{1H} NMR (75 MHz, CDCl3) δ: 156.9, 142.2, 141.5, 139.6, 139.4, 138.3, 131.51, 127.2, 122.1, 116.6, 114.9, 97.9, 64.8, 64.4. Anal. calcd. for C22H15Br2N3O2S: C, 48.46; H, 2.77; N, 7.71. Found: C, 48.63; H, 2.51; N, 7.59.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2 times Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Ellipsoids are drawn at the 50% probability level.

Crystal data

C22H15Br2N3O2S Z = 2
Mr = 545.25 F(000) = 540
Triclinic, P1 Dx = 1.810 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 4.483 (4) Å Cell parameters from 3281 reflections
b = 12.151 (9) Å θ = 1.7–27.7°
c = 18.958 (13) Å µ = 4.18 mm1
α = 75.807 (18)° T = 100 K
β = 87.67 (3)° Prism, colorless
γ = 89.62 (2)° 0.22 × 0.03 × 0.03 mm
V = 1000.3 (13) Å3

Data collection

Rigaku Saturn724+ diffractometer 3521 independent reflections
Radiation source: fine-focus sealed tube 2732 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.079
Detector resolution: 28.5714 pixels mm-1 θmax = 25.0°, θmin = 1.7°
dtprofit.ref scans h = −5→5
Absorption correction: multi-scan (ABSCOR; Higashi, 2001) k = −14→14
Tmin = 0.563, Tmax = 1.000 l = −22→22
13439 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0638P)2] where P = (Fo2 + 2Fc2)/3
3521 reflections (Δ/σ)max = 0.001
271 parameters Δρmax = 1.06 e Å3
0 restraints Δρmin = −0.83 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.4149 (12) 0.8677 (5) 0.3436 (3) 0.0254 (13)
H1 0.4019 0.9100 0.2958 0.030*
C2 0.5672 (11) 0.7710 (5) 0.3635 (3) 0.0223 (12)
C3 0.7454 (12) 0.6007 (5) 0.3458 (3) 0.0244 (13)
H3A 0.8736 0.5675 0.3141 0.029*
H3B 0.5491 0.5663 0.3489 0.029*
C4 0.8723 (12) 0.5774 (5) 0.4210 (3) 0.0238 (12)
H4A 0.8982 0.4962 0.4395 0.029*
H4B 1.0666 0.6133 0.4177 0.029*
C5 0.5503 (10) 0.7210 (5) 0.4403 (3) 0.0188 (11)
C6 0.3812 (11) 0.7836 (5) 0.4784 (3) 0.0214 (12)
C7 0.3032 (11) 0.7649 (4) 0.5558 (3) 0.0181 (11)
C8 0.0814 (12) 0.8290 (5) 0.5805 (3) 0.0238 (12)
H8 −0.0179 0.8841 0.5467 0.029*
C9 0.0052 (12) 0.8131 (5) 0.6533 (3) 0.0235 (12)
H9 −0.1470 0.8560 0.6680 0.028*
C10 0.1546 (11) 0.7335 (5) 0.7049 (3) 0.0216 (12)
C11 0.3738 (11) 0.6680 (5) 0.6820 (3) 0.0215 (12)
H11 0.4733 0.6138 0.7163 0.026*
C12 0.4468 (11) 0.6822 (5) 0.6089 (3) 0.0208 (12)
H12 0.5927 0.6366 0.5945 0.025*
C13 0.0144 (11) 0.8117 (5) 0.8102 (3) 0.0201 (12)
C14 0.1319 (11) 0.9198 (5) 0.7798 (3) 0.0248 (13)
H14 0.2632 0.9325 0.7393 0.030*
C15 0.0499 (12) 1.0077 (5) 0.8109 (3) 0.0264 (13)
H15 0.1216 1.0809 0.7910 0.032*
C16 −0.1433 (12) 0.9848 (5) 0.8729 (3) 0.0257 (13)
H16 −0.2045 1.0416 0.8954 0.031*
C17 −0.2361 (11) 0.8761 (5) 0.8984 (3) 0.0235 (12)
C18 0.0708 (11) 0.6057 (5) 0.8273 (3) 0.0204 (12)
C19 0.2220 (12) 0.5796 (5) 0.8916 (3) 0.0230 (12)
H19 0.3344 0.6341 0.9057 0.028*
C20 0.2000 (11) 0.4706 (5) 0.9338 (3) 0.0239 (12)
H20 0.2952 0.4508 0.9778 0.029*
C21 0.0373 (11) 0.3899 (5) 0.9114 (3) 0.0221 (12)
H21 0.0175 0.3157 0.9394 0.027*
C22 −0.0947 (11) 0.4255 (5) 0.8448 (3) 0.0214 (12)
N1 −0.1728 (9) 0.7893 (4) 0.8702 (2) 0.0208 (10)
N2 0.0834 (10) 0.7185 (4) 0.7811 (2) 0.0223 (10)
N3 −0.0829 (9) 0.5300 (4) 0.8032 (2) 0.0208 (10)
O1 0.7239 (8) 0.7215 (3) 0.31571 (18) 0.0250 (9)
O2 0.6761 (8) 0.6202 (3) 0.47078 (18) 0.0228 (9)
S1 0.2461 (3) 0.90420 (13) 0.41770 (7) 0.0266 (3)
Br1 −0.49638 (12) 0.83856 (5) 0.98380 (3) 0.02763 (19)
Br2 −0.31232 (12) 0.31910 (5) 0.80909 (3) 0.02536 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.042 (3) 0.024 (3) 0.009 (3) 0.000 (3) 0.005 (2) −0.002 (2)
C2 0.028 (3) 0.026 (3) 0.017 (3) −0.004 (2) 0.004 (2) −0.014 (2)
C3 0.033 (3) 0.025 (3) 0.019 (3) 0.002 (2) 0.001 (2) −0.014 (3)
C4 0.028 (3) 0.025 (3) 0.022 (3) 0.002 (2) 0.001 (2) −0.012 (2)
C5 0.018 (3) 0.026 (3) 0.015 (3) 0.000 (2) 0.0007 (19) −0.009 (2)
C6 0.026 (3) 0.023 (3) 0.018 (3) 0.002 (2) −0.002 (2) −0.010 (2)
C7 0.025 (3) 0.019 (3) 0.011 (2) 0.001 (2) 0.001 (2) −0.006 (2)
C8 0.029 (3) 0.024 (3) 0.019 (3) 0.007 (2) −0.003 (2) −0.006 (2)
C9 0.032 (3) 0.021 (3) 0.018 (3) 0.004 (2) 0.009 (2) −0.009 (2)
C10 0.026 (3) 0.024 (3) 0.018 (3) −0.003 (2) 0.001 (2) −0.011 (2)
C11 0.029 (3) 0.022 (3) 0.015 (3) 0.000 (2) −0.001 (2) −0.006 (2)
C12 0.025 (3) 0.020 (3) 0.018 (3) 0.004 (2) 0.003 (2) −0.007 (2)
C13 0.028 (3) 0.019 (3) 0.014 (3) 0.001 (2) 0.001 (2) −0.008 (2)
C14 0.029 (3) 0.027 (3) 0.020 (3) −0.001 (2) 0.005 (2) −0.010 (3)
C15 0.033 (3) 0.024 (3) 0.022 (3) −0.005 (2) 0.002 (2) −0.006 (2)
C16 0.038 (3) 0.023 (3) 0.021 (3) 0.001 (3) 0.004 (2) −0.015 (3)
C17 0.025 (3) 0.033 (4) 0.017 (3) 0.006 (2) −0.003 (2) −0.016 (3)
C18 0.022 (3) 0.025 (3) 0.018 (3) 0.005 (2) 0.001 (2) −0.013 (2)
C19 0.024 (3) 0.033 (3) 0.016 (3) 0.003 (2) −0.001 (2) −0.014 (3)
C20 0.028 (3) 0.027 (3) 0.018 (3) 0.003 (2) −0.001 (2) −0.008 (3)
C21 0.025 (3) 0.022 (3) 0.018 (3) 0.002 (2) 0.001 (2) −0.003 (2)
C22 0.029 (3) 0.023 (3) 0.015 (3) −0.001 (2) 0.008 (2) −0.011 (2)
N1 0.027 (2) 0.021 (3) 0.016 (2) 0.0047 (19) −0.0002 (18) −0.009 (2)
N2 0.032 (2) 0.021 (3) 0.017 (2) −0.001 (2) 0.0055 (18) −0.011 (2)
N3 0.029 (2) 0.022 (3) 0.013 (2) 0.000 (2) 0.0068 (18) −0.009 (2)
O1 0.035 (2) 0.030 (2) 0.0138 (18) −0.0010 (17) 0.0057 (15) −0.0128 (17)
O2 0.031 (2) 0.027 (2) 0.0130 (18) 0.0098 (17) 0.0015 (15) −0.0090 (17)
S1 0.0396 (8) 0.0243 (8) 0.0158 (7) 0.0065 (6) 0.0026 (6) −0.0057 (6)
Br1 0.0357 (3) 0.0294 (4) 0.0196 (3) 0.0038 (3) 0.0076 (2) −0.0111 (3)
Br2 0.0329 (3) 0.0260 (4) 0.0200 (3) −0.0033 (2) 0.0029 (2) −0.0115 (2)

Geometric parameters (Å, º)

C1—C2 1.335 (7) C11—H11 0.9300
C1—S1 1.719 (5) C12—H12 0.9300
C1—H1 0.9300 C13—N1 1.360 (6)
C2—O1 1.374 (6) C13—C14 1.396 (8)
C2—C5 1.433 (7) C13—N2 1.403 (7)
C3—O1 1.442 (6) C14—C15 1.382 (8)
C3—C4 1.517 (7) C14—H14 0.9300
C3—H3A 0.9700 C15—C16 1.403 (7)
C3—H3B 0.9700 C15—H15 0.9300
C4—O2 1.450 (6) C16—C17 1.353 (8)
C4—H4A 0.9700 C16—H16 0.9300
C4—H4B 0.9700 C17—N1 1.318 (7)
C5—O2 1.351 (6) C17—Br1 1.919 (5)
C5—C6 1.376 (7) C18—N3 1.330 (7)
C6—C7 1.457 (7) C18—C19 1.386 (7)
C6—S1 1.748 (5) C18—N2 1.435 (7)
C7—C8 1.394 (7) C19—C20 1.371 (8)
C7—C12 1.409 (7) C19—H19 0.9300
C8—C9 1.375 (7) C20—C21 1.384 (8)
C8—H8 0.9300 C20—H20 0.9300
C9—C10 1.386 (7) C21—C22 1.386 (7)
C9—H9 0.9300 C21—H21 0.9300
C10—C11 1.382 (7) C22—N3 1.319 (7)
C10—N2 1.433 (6) C22—Br2 1.893 (6)
C11—C12 1.380 (7)
C2—C1—S1 111.4 (4) C11—C12—H12 119.6
C2—C1—H1 124.3 C7—C12—H12 119.6
S1—C1—H1 124.3 N1—C13—C14 122.3 (5)
C1—C2—O1 124.1 (5) N1—C13—N2 115.4 (5)
C1—C2—C5 113.8 (5) C14—C13—N2 122.3 (5)
O1—C2—C5 122.1 (5) C15—C14—C13 118.9 (5)
O1—C3—C4 109.9 (4) C15—C14—H14 120.6
O1—C3—H3A 109.7 C13—C14—H14 120.6
C4—C3—H3A 109.7 C14—C15—C16 118.9 (6)
O1—C3—H3B 109.7 C14—C15—H15 120.5
C4—C3—H3B 109.7 C16—C15—H15 120.5
H3A—C3—H3B 108.2 C17—C16—C15 116.7 (5)
O2—C4—C3 111.0 (4) C17—C16—H16 121.6
O2—C4—H4A 109.4 C15—C16—H16 121.6
C3—C4—H4A 109.4 N1—C17—C16 127.3 (5)
O2—C4—H4B 109.4 N1—C17—Br1 113.8 (4)
C3—C4—H4B 109.4 C16—C17—Br1 118.9 (4)
H4A—C4—H4B 108.0 N3—C18—C19 123.6 (5)
O2—C5—C6 124.2 (5) N3—C18—N2 116.0 (4)
O2—C5—C2 122.8 (4) C19—C18—N2 120.3 (5)
C6—C5—C2 112.9 (5) C20—C19—C18 117.6 (5)
C5—C6—C7 131.5 (5) C20—C19—H19 121.2
C5—C6—S1 109.3 (4) C18—C19—H19 121.2
C7—C6—S1 119.2 (4) C19—C20—C21 120.5 (5)
C8—C7—C12 117.1 (5) C19—C20—H20 119.8
C8—C7—C6 120.9 (4) C21—C20—H20 119.8
C12—C7—C6 122.0 (4) C20—C21—C22 116.3 (5)
C9—C8—C7 121.9 (5) C20—C21—H21 121.8
C9—C8—H8 119.0 C22—C21—H21 121.8
C7—C8—H8 119.0 N3—C22—C21 125.0 (5)
C8—C9—C10 120.2 (5) N3—C22—Br2 116.1 (4)
C8—C9—H9 119.9 C21—C22—Br2 118.9 (4)
C10—C9—H9 119.9 C17—N1—C13 115.8 (5)
C11—C10—C9 119.1 (5) C13—N2—C10 121.0 (4)
C11—C10—N2 120.1 (5) C13—N2—C18 119.9 (4)
C9—C10—N2 120.8 (5) C10—N2—C18 119.0 (4)
C12—C11—C10 120.8 (5) C22—N3—C18 116.9 (4)
C12—C11—H11 119.6 C2—O1—C3 110.1 (4)
C10—C11—H11 119.6 C5—O2—C4 113.7 (4)
C11—C12—C7 120.9 (5) C1—S1—C6 92.6 (3)
S1—C1—C2—O1 179.9 (4) C18—C19—C20—C21 1.4 (8)
S1—C1—C2—C5 0.8 (6) C19—C20—C21—C22 0.8 (7)
O1—C3—C4—O2 62.8 (6) C20—C21—C22—N3 −2.0 (8)
C1—C2—C5—O2 176.4 (5) C20—C21—C22—Br2 178.4 (4)
O1—C2—C5—O2 −2.7 (8) C16—C17—N1—C13 2.2 (8)
C1—C2—C5—C6 −0.5 (7) Br1—C17—N1—C13 −179.1 (3)
O1—C2—C5—C6 −179.6 (5) C14—C13—N1—C17 −0.3 (7)
O2—C5—C6—C7 2.6 (9) N2—C13—N1—C17 179.3 (4)
C2—C5—C6—C7 179.5 (5) N1—C13—N2—C10 151.1 (5)
O2—C5—C6—S1 −176.9 (4) C14—C13—N2—C10 −29.4 (7)
C2—C5—C6—S1 −0.1 (6) N1—C13—N2—C18 −26.2 (7)
C5—C6—C7—C8 −167.6 (6) C14—C13—N2—C18 153.3 (5)
S1—C6—C7—C8 11.9 (7) C11—C10—N2—C13 142.0 (5)
C5—C6—C7—C12 12.5 (9) C9—C10—N2—C13 −38.1 (7)
S1—C6—C7—C12 −168.0 (4) C11—C10—N2—C18 −40.6 (7)
C12—C7—C8—C9 0.2 (8) C9—C10—N2—C18 139.2 (5)
C6—C7—C8—C9 −179.7 (5) N3—C18—N2—C13 130.1 (5)
C7—C8—C9—C10 1.5 (9) C19—C18—N2—C13 −52.2 (7)
C8—C9—C10—C11 −2.0 (9) N3—C18—N2—C10 −47.3 (6)
C8—C9—C10—N2 178.1 (5) C19—C18—N2—C10 130.4 (5)
C9—C10—C11—C12 0.8 (9) C21—C22—N3—C18 0.8 (7)
N2—C10—C11—C12 −179.4 (5) Br2—C22—N3—C18 −179.6 (3)
C10—C11—C12—C7 1.0 (9) C19—C18—N3—C22 1.7 (7)
C8—C7—C12—C11 −1.5 (8) N2—C18—N3—C22 179.4 (4)
C6—C7—C12—C11 178.4 (5) C1—C2—O1—C3 −153.8 (5)
N1—C13—C14—C15 −1.5 (8) C5—C2—O1—C3 25.2 (7)
N2—C13—C14—C15 179.0 (5) C4—C3—O1—C2 −53.4 (5)
C13—C14—C15—C16 1.4 (8) C6—C5—O2—C4 −173.1 (5)
C14—C15—C16—C17 0.2 (8) C2—C5—O2—C4 10.3 (7)
C15—C16—C17—N1 −2.3 (9) C3—C4—O2—C5 −39.1 (6)
C15—C16—C17—Br1 179.2 (4) C2—C1—S1—C6 −0.7 (5)
N3—C18—C19—C20 −2.8 (8) C5—C6—S1—C1 0.4 (4)
N2—C18—C19—C20 179.6 (4) C7—C6—S1—C1 −179.2 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···O2 0.93 2.42 3.036 (7) 124

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5709).

References

  1. Allen, F. H., Bird, C. M., Rowland, R. S., Harris, S. E. & Schwalbe, C. H. (1995). Acta Cryst. B51, 1068–1081.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  3. Bernstein, J., David, R. E., Shimoni, N.-L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  4. Betterncourt-Dias, A. de, Beeler, R. M. & Tse, S. S. (2011). J. Chem. Crystallogr. 41, 192–197.
  5. Cason, C. J. (2004). POV-RAY for Windows Persistence of Vision, Raytracer Pty. Ltd, Victoria, Australia. URL: http://www.povray.org.
  6. Chahma, M., Gilroy, J. B. & Hicks, R. G. (2007). J. Mater. Chem. 17, 4768–4771.
  7. Chen, X.-Y., Yang, X. & Holliday, B. J. (2011). Acta Cryst. E67, o3021. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Higashi, T. (2001). ABSCOR Rigaku Corporation, Tokyo, Japan.
  10. Rigaku (2008). CrystalClear Rigaku Americas Corporation, The Woodlands, Texas, USA.
  11. Roncali, J., Blanchard, P. & Frère, P. (2005). J. Mater. Chem. 15, 1589–1610.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sotzing, G. A. & Reynolds, J. R. (1996). Chem. Mater. 8, 882–889.
  14. Trippé-Allard, G. & Lacroix, J.-C. (2013). Tetrahedron, 69, 861–866.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814013191/lh5709sup1.cif

e-70-0o797-sup1.cif (28.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013191/lh5709Isup2.hkl

e-70-0o797-Isup2.hkl (169.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013191/lh5709Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES