Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 21;70(Pt 7):m274. doi: 10.1107/S160053681401397X

Bis{N-[2-hy­droxy-1,1-bis­(hy­droxy­methyl)eth­yl]glycinato-κ3 O,N,O′}iron(II)

Ning Jiang a, Juan-Juan Hou a,*
PMCID: PMC4120612  PMID: 25161532

Abstract

In the title compound, [Fe(C6H12NO5)2], the FeII ion lies on an inversion center and is coordinated by two N atoms and four O atoms from two tridentate N-[2-hy­droxy-1,1-bis­(hy­droxy­methyl)eth­yl]glycine ligands, forming a slightly distorted octa­hedral coordination environment. In the crystal, O—H⋯O, O—H⋯N and weak C—H⋯O hydrogen bonds link mol­ecules, forming a three-dimensional network.

Keywords: crystal structure

Related literature  

For background to the applications of tripodal alcohols as single-mol­ecule magnets, see: Pilawa et al. (1998); Brechin (2005); Murugesu et al. (2005). graphic file with name e-70-0m274-scheme1.jpg

Experimental  

Crystal data  

  • [Fe(C6H12NO5)2]

  • M r = 412.18

  • Monoclinic, Inline graphic

  • a = 8.8198 (7) Å

  • b = 9.0245 (7) Å

  • c = 12.3533 (7) Å

  • β = 127.224 (4)°

  • V = 782.94 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 298 K

  • 0.19 × 0.16 × 0.08 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.829, T max = 0.923

  • 4000 measured reflections

  • 1708 independent reflections

  • 1230 reflections with I > 2σ(I)

  • R int = 0.056

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.099

  • S = 1.04

  • 1708 reflections

  • 131 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681401397X/lh5715sup1.cif

e-70-0m274-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401397X/lh5715Isup2.hkl

e-70-0m274-Isup2.hkl (84.2KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401397X/lh5715Isup3.cdx

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.87 (2) 2.10 (2) 2.952 (4) 166 (3)
O3—H3A⋯O4ii 0.86 (2) 1.72 (2) 2.562 (4) 167 (5)
O1—H1B⋯O5iii 0.85 (2) 1.96 (2) 2.804 (4) 174 (6)
O1—H1B⋯O4iii 0.85 (2) 2.59 (5) 3.172 (4) 127 (4)
O2—H2C⋯O1ii 0.85 (2) 1.93 (2) 2.779 (4) 170 (5)
C5—H5B⋯O5iv 0.97 2.56 3.452 (4) 153
C2—H2A⋯O1 0.97 2.56 3.184 (4) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors thank the National Science Foundation (21201114).

supplementary crystallographic information

S1. Comment

Tripodal alcohols have been used as poly-dentate ligands in combination with paramagnetic 3d transition metal ions leading to the formation of high nuclear clusters since the discovery of the phenomenon of single-molecule magnetism (Brechin, 2005; Murugesu et al., 2005; Pilawa et al., 1998). During our synthesis to form a poly-nuclear cluster using the N-[tris(hydroxymethyl)ethyl]glycine ligand the title compound was fortuitously obtained.

In the title molecule the FeII ion is located on an inversion center (Fig. 1). The FeII ion is in a slightly distorted octahedral coordination environment formed by two N atoms and four O atoms from two N-[tris(hydroxymethyl)ethyl]glycine ligands. In the crystal, classical O—H···O, O—H···N and weak C—H···O hydrogen bonds (Table 1) connect the molecules into a three-dimensional superamolecular architecture.

S2. Experimental

The title compound was synthesized hydrothermally under autogenous pressure. A mixture of FeSO4 (0.028 g, 0.1 mmol), N-[tris(hydroxymethyl)ethyl]glycine (0.056 g, 0.3 mmol), methanol (3 ml), N,N'-dimethyl formamide (1 ml) and H2O (2 ml), was stirred for 30 min and then sealed in a 15 ml Teflon-lined stainless container and heated to 358K for 60 h. After cooling to room temperature and subjected to filltration, colorless plates were recovered.

S3. Refinement

Hydrogen atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.84 (2) and N—H = 0.87 (2) Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 50% displacement ellipsoids. Unlabeled atoms are related by the symmetry operator (-x+1, -y+1, -z+1).

Crystal data

[Fe(C6H12NO5)2] F(000) = 432
Mr = 412.18 Dx = 1.748 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 621 reflections
a = 8.8198 (7) Å θ = 2.9–21.9°
b = 9.0245 (7) Å µ = 1.02 mm1
c = 12.3533 (7) Å T = 298 K
β = 127.224 (4)° Sheet, colorless
V = 782.94 (10) Å3 0.19 × 0.16 × 0.08 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer 1708 independent reflections
Radiation source: fine-focus sealed tube 1230 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.056
multi–scan θmax = 27.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→11
Tmin = 0.829, Tmax = 0.923 k = −11→11
4000 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.034P)2] where P = (Fo2 + 2Fc2)/3
1708 reflections (Δ/σ)max < 0.001
131 parameters Δρmax = 0.46 e Å3
4 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.5000 0.5000 0.5000 0.01527 (19)
O1 −0.0265 (4) 0.7341 (3) 0.0516 (3) 0.0347 (7)
O2 0.0173 (4) 0.8369 (3) 0.3530 (3) 0.0355 (7)
O3 0.4719 (4) 0.7180 (3) 0.5354 (3) 0.0323 (7)
O4 0.6437 (4) 0.6393 (3) 0.2600 (3) 0.0356 (7)
O5 0.6619 (3) 0.5743 (3) 0.4408 (2) 0.0283 (6)
N1 0.2766 (4) 0.5686 (3) 0.2962 (3) 0.0209 (6)
C1 0.2121 (5) 0.7215 (4) 0.2983 (3) 0.0190 (8)
C2 0.3608 (5) 0.5508 (4) 0.2233 (3) 0.0237 (8)
H2A 0.2927 0.6132 0.1430 0.028*
H2B 0.3466 0.4488 0.1940 0.028*
C3 0.5700 (5) 0.5920 (4) 0.3128 (4) 0.0243 (8)
C4 0.1289 (5) 0.8101 (4) 0.1682 (4) 0.0276 (9)
H4A 0.0855 0.9056 0.1758 0.033*
H4B 0.2274 0.8276 0.1572 0.033*
C5 0.0626 (5) 0.6982 (4) 0.3222 (4) 0.0269 (8)
H5A −0.0516 0.6556 0.2416 0.032*
H5B 0.1112 0.6298 0.3971 0.032*
C6 0.3822 (5) 0.8077 (4) 0.4165 (4) 0.0269 (8)
H6A 0.4712 0.8302 0.3973 0.032*
H6B 0.3396 0.9003 0.4299 0.032*
H1A 0.182 (4) 0.506 (3) 0.259 (3) 0.027 (10)*
H3A 0.514 (6) 0.773 (5) 0.605 (3) 0.078 (18)*
H1B −0.126 (5) 0.787 (5) 0.014 (5) 0.10 (2)*
H2C 0.019 (7) 0.815 (5) 0.421 (4) 0.080 (19)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0159 (4) 0.0181 (3) 0.0101 (4) 0.0003 (3) 0.0069 (3) 0.0009 (3)
O1 0.0265 (16) 0.0462 (18) 0.0188 (15) 0.0048 (14) 0.0070 (14) 0.0003 (13)
O2 0.0443 (18) 0.0349 (16) 0.0402 (19) 0.0148 (13) 0.0323 (16) 0.0086 (14)
O3 0.0379 (17) 0.0292 (15) 0.0160 (15) 0.0004 (13) 0.0091 (14) −0.0017 (12)
O4 0.0293 (15) 0.0513 (18) 0.0283 (16) 0.0014 (13) 0.0185 (14) 0.0135 (13)
O5 0.0234 (14) 0.0396 (15) 0.0174 (14) 0.0003 (12) 0.0100 (12) 0.0048 (12)
N1 0.0203 (16) 0.0195 (16) 0.0220 (17) −0.0026 (13) 0.0123 (15) −0.0040 (13)
C1 0.0192 (18) 0.0201 (18) 0.0148 (19) 0.0020 (14) 0.0087 (16) 0.0019 (14)
C2 0.0213 (19) 0.0286 (19) 0.018 (2) 0.0028 (15) 0.0103 (17) −0.0004 (15)
C3 0.026 (2) 0.0218 (19) 0.024 (2) 0.0015 (16) 0.0141 (18) 0.0035 (16)
C4 0.027 (2) 0.029 (2) 0.022 (2) 0.0025 (17) 0.0123 (19) 0.0029 (17)
C5 0.027 (2) 0.031 (2) 0.025 (2) 0.0050 (17) 0.0166 (19) 0.0038 (17)
C6 0.025 (2) 0.027 (2) 0.023 (2) −0.0003 (16) 0.0121 (18) −0.0005 (17)

Geometric parameters (Å, º)

Fe1—O3i 2.062 (3) N1—C1 1.498 (4)
Fe1—O3 2.062 (3) N1—H1A 0.871 (18)
Fe1—O5i 2.071 (2) C1—C4 1.527 (4)
Fe1—O5 2.071 (2) C1—C6 1.529 (5)
Fe1—N1 2.145 (3) C1—C5 1.531 (4)
Fe1—N1i 2.145 (3) C2—C3 1.515 (5)
O1—C4 1.427 (4) C2—H2A 0.9700
O1—H1B 0.850 (19) C2—H2B 0.9700
O2—C5 1.433 (4) C4—H4A 0.9700
O2—H2C 0.854 (19) C4—H4B 0.9700
O3—C6 1.426 (4) C5—H5A 0.9700
O3—H3A 0.855 (19) C5—H5B 0.9700
O4—C3 1.242 (4) C6—H6A 0.9700
O5—C3 1.277 (4) C6—H6B 0.9700
N1—C2 1.482 (4)
O3i—Fe1—O3 180.000 (1) N1—C1—C5 104.9 (3)
O3i—Fe1—O5i 87.88 (10) C4—C1—C5 110.7 (3)
O3—Fe1—O5i 92.12 (10) C6—C1—C5 110.3 (3)
O3i—Fe1—O5 92.12 (10) N1—C2—C3 111.5 (3)
O3—Fe1—O5 87.88 (10) N1—C2—H2A 109.3
O5i—Fe1—O5 180.0 C3—C2—H2A 109.3
O3i—Fe1—N1 99.75 (10) N1—C2—H2B 109.3
O3—Fe1—N1 80.25 (10) C3—C2—H2B 109.3
O5i—Fe1—N1 99.68 (10) H2A—C2—H2B 108.0
O5—Fe1—N1 80.32 (10) O4—C3—O5 123.4 (3)
O3i—Fe1—N1i 80.25 (10) O4—C3—C2 119.6 (3)
O3—Fe1—N1i 99.75 (10) O5—C3—C2 117.0 (3)
O5i—Fe1—N1i 80.32 (10) O1—C4—C1 111.5 (3)
O5—Fe1—N1i 99.68 (10) O1—C4—H4A 109.3
N1—Fe1—N1i 180.000 (1) C1—C4—H4A 109.3
C4—O1—H1B 109 (4) O1—C4—H4B 109.3
C5—O2—H2C 102 (3) C1—C4—H4B 109.3
C6—O3—Fe1 112.7 (2) H4A—C4—H4B 108.0
C6—O3—H3A 109 (3) O2—C5—C1 110.0 (3)
Fe1—O3—H3A 137 (3) O2—C5—H5A 109.7
C3—O5—Fe1 114.9 (2) C1—C5—H5A 109.7
C2—N1—C1 116.4 (3) O2—C5—H5B 109.7
C2—N1—Fe1 103.9 (2) C1—C5—H5B 109.7
C1—N1—Fe1 109.5 (2) H5A—C5—H5B 108.2
C2—N1—H1A 106 (2) O3—C6—C1 107.9 (3)
C1—N1—H1A 111 (2) O3—C6—H6A 110.1
Fe1—N1—H1A 110 (2) C1—C6—H6A 110.1
N1—C1—C4 114.2 (3) O3—C6—H6B 110.1
N1—C1—C6 108.8 (3) C1—C6—H6B 110.1
C4—C1—C6 107.9 (3) H6A—C6—H6B 108.4
O5i—Fe1—O3—C6 −120.1 (2) Fe1—N1—C1—C6 32.2 (3)
O5—Fe1—O3—C6 59.9 (2) C2—N1—C1—C5 156.7 (3)
N1—Fe1—O3—C6 −20.6 (2) Fe1—N1—C1—C5 −85.9 (3)
N1i—Fe1—O3—C6 159.4 (2) C1—N1—C2—C3 83.5 (4)
O3i—Fe1—O5—C3 84.2 (2) Fe1—N1—C2—C3 −37.0 (3)
O3—Fe1—O5—C3 −95.8 (2) Fe1—O5—C3—O4 178.2 (3)
N1—Fe1—O5—C3 −15.3 (2) Fe1—O5—C3—C2 −2.4 (4)
N1i—Fe1—O5—C3 164.7 (2) N1—C2—C3—O4 −152.0 (3)
O3i—Fe1—N1—C2 −62.5 (2) N1—C2—C3—O5 28.6 (4)
O3—Fe1—N1—C2 117.5 (2) N1—C1—C4—O1 56.5 (4)
O5i—Fe1—N1—C2 −152.0 (2) C6—C1—C4—O1 177.6 (3)
O5—Fe1—N1—C2 28.0 (2) C5—C1—C4—O1 −61.6 (4)
O3i—Fe1—N1—C1 172.4 (2) N1—C1—C5—O2 168.6 (3)
O3—Fe1—N1—C1 −7.6 (2) C4—C1—C5—O2 −67.7 (4)
O5i—Fe1—N1—C1 82.9 (2) C6—C1—C5—O2 51.6 (4)
O5—Fe1—N1—C1 −97.1 (2) Fe1—O3—C6—C1 43.9 (3)
C2—N1—C1—C4 35.4 (4) N1—C1—C6—O3 −49.6 (3)
Fe1—N1—C1—C4 152.8 (2) C4—C1—C6—O3 −174.0 (3)
C2—N1—C1—C6 −85.3 (3) C5—C1—C6—O3 65.0 (3)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2ii 0.87 (2) 2.10 (2) 2.952 (4) 166 (3)
O3—H3A···O4iii 0.86 (2) 1.72 (2) 2.562 (4) 167 (5)
O1—H1B···O5iv 0.85 (2) 1.96 (2) 2.804 (4) 174 (6)
O1—H1B···O4iv 0.85 (2) 2.59 (5) 3.172 (4) 127 (4)
O2—H2C···O1iii 0.85 (2) 1.93 (2) 2.779 (4) 170 (5)
C5—H5B···O5i 0.97 2.56 3.452 (4) 153
C2—H2A···O1 0.97 2.56 3.184 (4) 122

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, y−1/2, −z+1/2; (iii) x, −y+3/2, z+1/2; (iv) x−1, −y+3/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5715).

References

  1. Brandenburg, K. & Putz, H. (2006). DIAMOND Crystal Impact, Bonn, Germany.
  2. Brechin, E. K. (2005). Chem. Commun. pp. 5141–5153. [DOI] [PubMed]
  3. Bruker (2007). SAINT-Plus, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Murugesu, M., Wernsdorfer, W., Abboud, K. A. & Christou, G. (2005). Angew. Chem. Int. Ed. 44, 892–896. [DOI] [PubMed]
  5. Pilawa, B., Kelemen, M. T., Wanka, S., Geisselmann, A. & Barra, A. L. (1998). Europhys. Lett. 43, 7–12.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S160053681401397X/lh5715sup1.cif

e-70-0m274-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401397X/lh5715Isup2.hkl

e-70-0m274-Isup2.hkl (84.2KB, hkl)

Supporting information file. DOI: 10.1107/S160053681401397X/lh5715Isup3.cdx

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES