Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 25;70(Pt 7):m281–m282. doi: 10.1107/S1600536814014147

(N-Phenyl­thio­urea-κS)bis­(tri­phenylphosphane-κP)silver(I) nitrate

Sofia Mekarat a, Chaveng Pakawatchai b,*, Saowanit Saithong b
PMCID: PMC4120613  PMID: 25161537

Abstract

In the title salt, [Ag(C7H8N2S)(C18H15P)2]NO3, the coordination geometry about the AgI atom is shallow trigonal pyramidal, with the metal atom displaced by 0.372 (1) Å from the plane of the P and S atoms. In the crystal, the cations are linked to the anions by N—H⋯O hydrogen bonds, generating tetra­mers (two cations and two anions), which feature R 2 2(8) and R 4 4(8) loops. The cations are linked by weak C—H⋯π inter­actions, generating a three-dimensional network.

Keywords: N-phenyl­thio­urea, tri­phenyl­phosphane, silver(I)nitrate, crystal structure

Related literature  

For properties of mixed-ligand d 10 metal(I) complexes, see: Oshio et al. (1996); Zheng et al. (2001); Sewead et al. (2003); Isab et al. (2010). For structural studies of mixed-ligand complexes of tri­phenyl­phosphane and thione ligands, see: Skoulika et al. (1991); Aslanidis et al. (1997); Ghassemzadeh et al.(2004); Nimthong et al. (2008); Isab et al. (2010).graphic file with name e-70-0m281-scheme1.jpg

Experimental  

Crystal data  

  • [Ag(C7H8N2S)(C18H15P)2]NO3

  • M r = 846.63

  • Monoclinic, Inline graphic

  • a = 13.6113 (5) Å

  • b = 10.6431 (4) Å

  • c = 26.4365 (10) Å

  • β = 96.068 (1)°

  • V = 3808.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 173 K

  • 0.27 × 0.14 × 0.08 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.863, T max = 1.000

  • 44417 measured reflections

  • 9196 independent reflections

  • 8261 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.064

  • S = 1.05

  • 9196 reflections

  • 478 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814014147/hb7242sup1.cif

e-70-0m281-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014147/hb7242Isup2.hkl

e-70-0m281-Isup2.hkl (440.7KB, hkl)

CCDC reference: 1008627

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.86 2.02 2.877 (2) 180
N1—H1B⋯O3ii 0.86 2.17 2.921 (2) 145
N2—H2⋯O1i 0.86 1.97 2.823 (2) 171
C35—H35⋯Cg2iii 0.93 2.97 3.746 (2) 142
C54—H54⋯Cg2iv 0.93 2.82 3.531 (2) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Financial support from the Center of Excellent for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education Commission, Ministry of Education and Graduate School, Prince of Songkla University, are gratefully acknow­ledged.

supplementary crystallographic information

S1. Chemical context

Mixed-ligand complexes of group 11 metals dispaly many properties such as magnetism (Oshio et al., 1996); microporousity (Zheng et al., 2001); luminescence (Sewead et al., 2003) and anti­microbial activities (Isab et al.,2010). In our earlier work, we synthesized and characterized the neutral monomeric copper(I) complex containing mixed ligands of tri­phenyl­phosphane (PPh3: C18H15P) and N-phynyl­thio­urea (ptu : C7H8N2S), [CuI(ptu)(PPh3)2] (Nimthong et al., 2008). As part of our continuing studies in this area, we now describe the synthesis and structure of the title compound, [Ag(ptu)(PPh3)2]NO3 (Scheme I).

S2. Structural commentary

Unlike the previous complex mentioned above (Nimthong et al., 2008), this complex is an ionic complex and it crystallizes in monoclinic system space group P21/c. The structure consists of the discrete mononuclear [Ag(ptu)(PPh3)2]+cation and the NO3- anion which is similar to those [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997). A perspective view of the molecular structure of [Ag(ptu)(PPh3)2]NO3 with atomic labeling is given in Figure 1. The cation part contains silver(I) atom trigonally coordinated by two phospho­rus atoms from two tri­phenyl­phosphane molecules and one sulfur atom from N–phenyl­thio­urea molecule similar to found in those silver oxyanion complexes containing mixed PPh3/heterocyclic thione ligands (Aslanidis et al., 1997; Ghassemzadeh et al., 2004). The Ag–P bond lengths of 2.4645 (5) and 2.4693 (4)Å are similar to the values of 2.455 (1) and 2.447 (1) Å observed in [Ag(PPh3)2(pymtH)]NO3 (Aslanidis et al., 1997), however, these values are slightly different from the values of 2.458 (2) and 2.507 (2) Å compared to [Ag(TAMTTO)(PPh3)2]NO3.1.5THF (Ghassemzadeh et al., 2004) because of the massive and steric effect of TAMTTO heterocyclic ligand. The Ag–S bond length [2.5307 (7) Å] is shorter than in those complexes [Ag(PPh3)2(pymtH)]NO3 [2.573 (1)Å] and [Ag(TAMTTO)(PPh3)2]NO3.1.5 THF [2.592 (2) Å] (Aslanidis et al., 1997; Ghassemzadeh et al., 2004 ). The P(1)–Ag–P(2), P(1)–Ag–S(1) and P(2)–Ag–S(1) bond angles are 127.55 (1)° ,113.02 (1)° and 112.69 (1)°, respectively. Due to the steric crowding of six phenyl rings from two bulky tri­phenyl phosphane ligands and the π(CH)···Ag inter­action [3.314 Å] between the centriod of phenyl ring (C2—C7) of the N–phenyl­thio­urea and metal atom, the silver centre atom deviates from idealized trigonal planar with this atom lying ca 0.372 (1) Å out of the P2S plane. For the anion, although the oxygen atoms of the nitrate have no influence on coordination, they have great influence on the crystal packing of the complex. It is nearly planar with the bond angles around the nitro­gen atom ranging from 119.01 (1)-120.53 (1)° and N(3)–O bond distances are 1.231 (2) – 1.264 (2) Å.

S3. Supra­molecular features

For the crystal packing, each [Ag(ptu)(PPh3)2]+ cation is connected to another adjacent cationic part via hydrogen bonding inter­actions, N–H···O, which are observed between amino and amide groups and nitrate oxygen atoms generate a cyclic hydrogen bond inter­actions, two R22(8) graph sets for cationic-anionic inter­actions and one R44(8) graph set for anionic-anionic inter­action, [ N(1)–H(1A)···O(3)i : 2.877 (2)Å, N(1)–H(1B)···O(3)ii : 2.921 (2)Å, N(2)–H(2)···O(1) : 2.823 (2) Å and symmetry code : (i) x-1,y,z, (ii) -x+1,-y+1,-z+2] as depicted in Figure 2 and 3. In addition, the cationic parts are linked together by the CH···π inter­actions between the phenyl rings with the distance of 3.746 (2) Å for C35–H35···Cg2 and 3.531 (2) Å for C54–H54···Cg2 [Cg2 : C11–C16] generating the three dimensional supra­molecular network. All inter­actions are depicted in Figure 4.

S4. Synthesis and crystallization

The mixture silver(I) nitrate and tri­phenyl­phosphane in ethanol was refluxed at the temperature ca 60-70 °C for 2 h. After that, N-phenyl­thio­urea ligand was added to the clear mixture solution and then continued to reflux futher for 3 h. The clear filtration was kept and left to evaporate slowly at ambient temperature. After several days, colorless blocks were obtained. The melting point of the complex is 192-194 °C . Elemental analysis,calculated for [Ag(PPh3)2(ptu)]NO3 : C, 60.99;H, 4.52; N, 4.96; S, 3.78%, found: C, 65.16; H, 4.96; N, 5.16; S, 4.04%.

S5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The structures were solved by direct methods and refined by a full-matrix least-squares procedure based on F2. All hydrogen atoms were placed in geometrically idealised positions and refined isotropically with a riding model for both of amine N [N—H = 0.86 Å and with Uiso(H) =1.2Ueq(N)] and phenyl ring C-sp2[C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(C)]. ;

Figures

Fig. 1.

Fig. 1.

The molecular structure of [Ag(ptu)(PPh3)2]NO3 complex. Displacement ellipsoids are shown at 50% probability level.

Fig. 2.

Fig. 2.

The hydrogen bonding interactions of [Ag(ptu)(PPh3)2]NO3 complex (#i: x - 1, y, z, #ii: 1 - x, 1 - y, 2 - z, #iii: -x, 1 - y,2 - z).

Fig. 3.

Fig. 3.

The cyclic of hydrogen bonding interactions containing two R22(8) and one R44(8).

Fig. 4.

Fig. 4.

The three-dimensional supramolecular interactions in crystal packing.

Crystal data

[Ag(C7H8N2S)(C18H15P)2]NO3 F(000) = 1736
Mr = 846.63 Dx = 1.477 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 13.6113 (5) Å Cell parameters from 13930 reflections
b = 10.6431 (4) Å θ = 2.3–28.0°
c = 26.4365 (10) Å µ = 0.71 mm1
β = 96.068 (1)° T = 173 K
V = 3808.3 (2) Å3 Block, colourless
Z = 4 0.27 × 0.14 × 0.08 mm

Data collection

Bruker SMART CCD diffractometer 8261 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.033
Frames each covering 0.3 ° in ω scans θmax = 28.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −17→17
Tmin = 0.863, Tmax = 1.000 k = −14→14
44417 measured reflections l = −34→34
9196 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0264P)2 + 2.6456P] where P = (Fo2 + 2Fc2)/3
9196 reflections (Δ/σ)max = 0.003
478 parameters Δρmax = 0.55 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.30947 (2) 0.80538 (2) 0.87530 (2) 0.01346 (4)
S1 0.27373 (3) 0.65461 (4) 0.94508 (2) 0.01679 (9)
P1 0.48557 (3) 0.81150 (4) 0.86130 (2) 0.01253 (8)
P2 0.18820 (3) 0.97824 (4) 0.86365 (2) 0.01356 (9)
N1 0.10876 (11) 0.54151 (15) 0.96207 (6) 0.0205 (3)
H1A 0.0553 0.5001 0.9535 0.025*
H1B 0.1249 0.5609 0.9934 0.025*
N2 0.13553 (11) 0.54123 (15) 0.87904 (6) 0.0195 (3)
H2 0.0848 0.4926 0.8754 0.023*
N3 0.91546 (11) 0.35396 (14) 0.88996 (6) 0.0200 (3)
O1 0.98030 (10) 0.36618 (14) 0.85981 (5) 0.0285 (3)
O2 0.83834 (11) 0.29694 (14) 0.87678 (6) 0.0339 (4)
O3 0.92984 (10) 0.40319 (15) 0.93362 (5) 0.0320 (3)
C1 0.16649 (13) 0.57551 (16) 0.92682 (6) 0.0166 (3)
C2 0.17639 (13) 0.57559 (16) 0.83349 (6) 0.0165 (3)
C3 0.27222 (13) 0.54423 (18) 0.82506 (7) 0.0203 (4)
H3 0.3129 0.5015 0.8498 0.024*
C4 0.30689 (14) 0.57740 (19) 0.77919 (7) 0.0246 (4)
H4 0.3714 0.5580 0.7735 0.030*
C5 0.24611 (15) 0.63894 (18) 0.74210 (7) 0.0244 (4)
H5 0.2700 0.6612 0.7117 0.029*
C6 0.14981 (15) 0.66765 (17) 0.75003 (7) 0.0233 (4)
H6 0.1086 0.7080 0.7248 0.028*
C7 0.11484 (14) 0.63599 (18) 0.79586 (7) 0.0212 (4)
H7 0.0502 0.6553 0.8013 0.025*
C11 0.56534 (12) 0.68448 (15) 0.88711 (6) 0.0142 (3)
C12 0.66839 (13) 0.69391 (16) 0.88805 (6) 0.0160 (3)
H12 0.6962 0.7659 0.8756 0.019*
C13 0.72891 (13) 0.59703 (17) 0.90730 (6) 0.0168 (3)
H13 0.7970 0.6032 0.9070 0.020*
C14 0.68800 (13) 0.49043 (16) 0.92701 (6) 0.0178 (3)
H14 0.7285 0.4246 0.9394 0.021*
C15 0.58661 (13) 0.48238 (16) 0.92812 (6) 0.0178 (3)
H15 0.5596 0.4123 0.9425 0.021*
C16 0.52496 (13) 0.57825 (16) 0.90794 (6) 0.0154 (3)
H16 0.4569 0.5716 0.9083 0.018*
C21 0.55372 (12) 0.94570 (15) 0.89023 (6) 0.0136 (3)
C22 0.59006 (12) 1.04369 (16) 0.86294 (6) 0.0161 (3)
H22 0.5778 1.0452 0.8277 0.019*
C23 0.64480 (13) 1.13972 (17) 0.88827 (7) 0.0182 (3)
H23 0.6684 1.2056 0.8698 0.022*
C24 0.66425 (13) 1.13752 (17) 0.94081 (7) 0.0195 (4)
H24 0.7028 1.2001 0.9575 0.023*
C25 0.62590 (14) 1.04144 (17) 0.96837 (7) 0.0211 (4)
H25 0.6374 1.0408 1.0037 0.025*
C26 0.57049 (13) 0.94653 (17) 0.94329 (6) 0.0187 (4)
H26 0.5443 0.8829 0.9619 0.022*
C31 0.50225 (12) 0.81928 (15) 0.79374 (6) 0.0135 (3)
C32 0.57450 (13) 0.75263 (17) 0.77151 (7) 0.0183 (3)
H32 0.6192 0.7031 0.7917 0.022*
C33 0.58030 (14) 0.75957 (18) 0.71953 (7) 0.0213 (4)
H33 0.6288 0.7147 0.7050 0.026*
C34 0.51386 (14) 0.83325 (17) 0.68905 (7) 0.0211 (4)
H34 0.5178 0.8377 0.6542 0.025*
C35 0.44182 (14) 0.90008 (17) 0.71074 (7) 0.0208 (4)
H35 0.3974 0.9498 0.6904 0.025*
C36 0.43562 (13) 0.89312 (17) 0.76278 (7) 0.0181 (3)
H36 0.3868 0.9379 0.7771 0.022*
C41 0.06641 (13) 0.94975 (16) 0.88407 (7) 0.0166 (3)
C42 −0.01987 (14) 0.99999 (19) 0.85980 (8) 0.0263 (4)
H42 −0.0179 1.0465 0.8301 0.032*
C43 −0.10945 (14) 0.9812 (2) 0.87964 (9) 0.0314 (5)
H43 −0.1670 1.0157 0.8633 0.038*
C44 −0.11355 (14) 0.91173 (19) 0.92340 (8) 0.0270 (4)
H44 −0.1735 0.8999 0.9367 0.032*
C45 −0.02773 (15) 0.8597 (2) 0.94747 (8) 0.0288 (4)
H45 −0.0301 0.8124 0.9769 0.035*
C46 0.06196 (14) 0.87786 (19) 0.92784 (7) 0.0242 (4)
H46 0.1192 0.8419 0.9440 0.029*
C51 0.23925 (12) 1.10092 (15) 0.90686 (6) 0.0149 (3)
C52 0.33905 (13) 1.12973 (16) 0.90577 (7) 0.0178 (3)
H52 0.3765 1.0845 0.8846 0.021*
C53 0.38268 (14) 1.22486 (17) 0.93583 (7) 0.0216 (4)
H53 0.4492 1.2435 0.9347 0.026*
C54 0.32787 (15) 1.29242 (17) 0.96757 (7) 0.0237 (4)
H54 0.3572 1.3568 0.9876 0.028*
C55 0.22880 (15) 1.26367 (18) 0.96936 (7) 0.0237 (4)
H55 0.1920 1.3084 0.9910 0.028*
C56 0.18420 (14) 1.16877 (17) 0.93912 (7) 0.0206 (4)
H56 0.1177 1.1504 0.9404 0.025*
C61 0.16834 (12) 1.06410 (16) 0.80372 (6) 0.0153 (3)
C62 0.14519 (14) 1.19195 (17) 0.80202 (7) 0.0200 (4)
H62 0.1353 1.2345 0.8318 0.024*
C63 0.13683 (14) 1.25589 (18) 0.75580 (7) 0.0233 (4)
H63 0.1217 1.3411 0.7548 0.028*
C64 0.15107 (14) 1.19286 (19) 0.71128 (7) 0.0230 (4)
H64 0.1459 1.2358 0.6805 0.028*
C65 0.17304 (14) 1.06573 (19) 0.71274 (7) 0.0237 (4)
H65 0.1819 1.0231 0.6828 0.028*
C66 0.18175 (13) 1.00199 (18) 0.75869 (7) 0.0192 (4)
H66 0.1967 0.9167 0.7594 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.01252 (7) 0.01365 (6) 0.01457 (6) −0.00079 (4) 0.00304 (4) 0.00008 (5)
S1 0.0166 (2) 0.0204 (2) 0.01331 (19) −0.00489 (16) 0.00144 (15) 0.00208 (16)
P1 0.01206 (19) 0.01232 (19) 0.01342 (19) −0.00013 (15) 0.00226 (15) 0.00091 (15)
P2 0.0125 (2) 0.0139 (2) 0.0147 (2) 0.00012 (15) 0.00337 (16) 0.00002 (16)
N1 0.0186 (7) 0.0264 (8) 0.0170 (7) −0.0071 (6) 0.0043 (6) 0.0003 (6)
N2 0.0160 (7) 0.0250 (8) 0.0178 (7) −0.0085 (6) 0.0036 (6) −0.0010 (6)
N3 0.0158 (7) 0.0192 (7) 0.0258 (8) −0.0008 (6) 0.0057 (6) −0.0009 (6)
O1 0.0226 (7) 0.0375 (8) 0.0274 (7) −0.0110 (6) 0.0122 (6) −0.0076 (6)
O2 0.0222 (7) 0.0362 (8) 0.0449 (9) −0.0150 (6) 0.0110 (6) −0.0154 (7)
O3 0.0241 (7) 0.0499 (9) 0.0235 (7) −0.0120 (7) 0.0093 (6) −0.0110 (7)
C1 0.0168 (8) 0.0157 (8) 0.0175 (8) −0.0003 (6) 0.0033 (6) 0.0020 (6)
C2 0.0171 (8) 0.0184 (8) 0.0142 (8) −0.0059 (7) 0.0033 (6) −0.0021 (6)
C3 0.0192 (9) 0.0233 (9) 0.0179 (8) −0.0016 (7) 0.0004 (7) −0.0015 (7)
C4 0.0212 (9) 0.0318 (10) 0.0221 (9) −0.0022 (8) 0.0086 (7) −0.0056 (8)
C5 0.0331 (11) 0.0249 (10) 0.0161 (9) −0.0078 (8) 0.0076 (8) −0.0037 (7)
C6 0.0300 (10) 0.0204 (9) 0.0183 (9) −0.0027 (8) −0.0032 (7) −0.0008 (7)
C7 0.0168 (9) 0.0253 (9) 0.0214 (9) −0.0018 (7) 0.0007 (7) −0.0029 (7)
C11 0.0164 (8) 0.0131 (7) 0.0129 (7) 0.0005 (6) 0.0013 (6) −0.0007 (6)
C12 0.0174 (8) 0.0162 (8) 0.0150 (8) −0.0011 (6) 0.0037 (6) 0.0011 (6)
C13 0.0144 (8) 0.0223 (9) 0.0134 (8) 0.0021 (7) 0.0010 (6) −0.0021 (7)
C14 0.0231 (9) 0.0159 (8) 0.0136 (8) 0.0049 (7) −0.0012 (7) −0.0013 (6)
C15 0.0244 (9) 0.0123 (8) 0.0164 (8) −0.0021 (7) 0.0010 (7) 0.0011 (6)
C16 0.0159 (8) 0.0159 (8) 0.0144 (8) −0.0018 (6) 0.0020 (6) −0.0010 (6)
C21 0.0114 (7) 0.0135 (8) 0.0161 (8) 0.0015 (6) 0.0022 (6) −0.0014 (6)
C22 0.0169 (8) 0.0187 (8) 0.0128 (8) −0.0017 (7) 0.0027 (6) −0.0001 (6)
C23 0.0183 (8) 0.0175 (8) 0.0194 (8) −0.0029 (7) 0.0051 (7) 0.0014 (7)
C24 0.0186 (9) 0.0173 (8) 0.0220 (9) −0.0014 (7) −0.0009 (7) −0.0050 (7)
C25 0.0288 (10) 0.0213 (9) 0.0127 (8) 0.0016 (7) −0.0007 (7) −0.0005 (7)
C26 0.0244 (9) 0.0168 (8) 0.0155 (8) 0.0005 (7) 0.0043 (7) 0.0027 (7)
C31 0.0139 (8) 0.0137 (8) 0.0127 (7) −0.0033 (6) 0.0012 (6) −0.0001 (6)
C32 0.0187 (9) 0.0188 (8) 0.0172 (8) 0.0037 (7) 0.0010 (7) 0.0002 (7)
C33 0.0233 (9) 0.0237 (9) 0.0177 (8) 0.0033 (7) 0.0064 (7) −0.0028 (7)
C34 0.0273 (10) 0.0220 (9) 0.0139 (8) −0.0034 (7) 0.0022 (7) −0.0007 (7)
C35 0.0234 (9) 0.0203 (9) 0.0177 (8) 0.0018 (7) −0.0023 (7) 0.0026 (7)
C36 0.0163 (8) 0.0194 (8) 0.0187 (8) 0.0023 (7) 0.0024 (7) 0.0001 (7)
C41 0.0157 (8) 0.0154 (8) 0.0195 (8) −0.0010 (6) 0.0052 (7) −0.0014 (7)
C42 0.0187 (9) 0.0299 (10) 0.0304 (10) 0.0013 (8) 0.0036 (8) 0.0087 (8)
C43 0.0140 (9) 0.0384 (12) 0.0419 (12) 0.0027 (8) 0.0038 (8) 0.0075 (10)
C44 0.0184 (9) 0.0279 (10) 0.0370 (11) −0.0036 (8) 0.0127 (8) −0.0025 (9)
C45 0.0280 (10) 0.0315 (11) 0.0292 (10) 0.0013 (8) 0.0134 (8) 0.0067 (9)
C46 0.0187 (9) 0.0277 (10) 0.0273 (10) 0.0044 (7) 0.0074 (7) 0.0059 (8)
C51 0.0166 (8) 0.0140 (8) 0.0140 (8) 0.0008 (6) 0.0014 (6) 0.0021 (6)
C52 0.0204 (9) 0.0167 (8) 0.0169 (8) 0.0002 (7) 0.0042 (7) 0.0001 (7)
C53 0.0221 (9) 0.0205 (9) 0.0219 (9) −0.0063 (7) 0.0012 (7) 0.0018 (7)
C54 0.0344 (11) 0.0175 (9) 0.0181 (9) −0.0032 (8) −0.0020 (8) −0.0022 (7)
C55 0.0294 (10) 0.0224 (9) 0.0199 (9) 0.0038 (8) 0.0055 (8) −0.0043 (7)
C56 0.0202 (9) 0.0229 (9) 0.0192 (9) 0.0020 (7) 0.0042 (7) −0.0015 (7)
C61 0.0117 (8) 0.0179 (8) 0.0165 (8) −0.0014 (6) 0.0027 (6) 0.0017 (6)
C62 0.0212 (9) 0.0206 (9) 0.0184 (8) 0.0013 (7) 0.0033 (7) 0.0000 (7)
C63 0.0243 (10) 0.0200 (9) 0.0253 (9) −0.0001 (7) 0.0007 (8) 0.0057 (8)
C64 0.0176 (9) 0.0336 (10) 0.0180 (9) −0.0039 (8) 0.0021 (7) 0.0077 (8)
C65 0.0208 (9) 0.0346 (11) 0.0162 (8) −0.0033 (8) 0.0041 (7) −0.0027 (8)
C66 0.0174 (8) 0.0211 (9) 0.0194 (8) −0.0014 (7) 0.0028 (7) −0.0024 (7)

Geometric parameters (Å, º)

Ag1—P1 2.4645 (5) C24—H24 0.9300
Ag1—P2 2.4693 (4) C25—C26 1.387 (3)
Ag1—S1 2.5307 (4) C25—H25 0.9300
S1—C1 1.7098 (18) C26—H26 0.9300
P1—C11 1.8208 (17) C31—C32 1.392 (2)
P1—C31 1.8260 (17) C31—C36 1.398 (2)
P1—C21 1.8262 (17) C32—C33 1.387 (2)
P2—C41 1.8222 (18) C32—H32 0.9300
P2—C51 1.8235 (17) C33—C34 1.389 (3)
P2—C61 1.8241 (17) C33—H33 0.9300
N1—C1 1.331 (2) C34—C35 1.384 (3)
N1—H1A 0.8600 C34—H34 0.9300
N1—H1B 0.8600 C35—C36 1.389 (2)
N2—C1 1.339 (2) C35—H35 0.9300
N2—C2 1.426 (2) C36—H36 0.9300
N2—H2 0.8600 C41—C42 1.385 (3)
N3—O2 1.231 (2) C41—C46 1.394 (3)
N3—O1 1.2568 (19) C42—C43 1.392 (3)
N3—O3 1.264 (2) C42—H42 0.9300
C2—C3 1.387 (2) C43—C44 1.379 (3)
C2—C7 1.389 (2) C43—H43 0.9300
C3—C4 1.392 (3) C44—C45 1.385 (3)
C3—H3 0.9300 C44—H44 0.9300
C4—C5 1.380 (3) C45—C46 1.390 (3)
C4—H4 0.9300 C45—H45 0.9300
C5—C6 1.383 (3) C46—H46 0.9300
C5—H5 0.9300 C51—C56 1.395 (2)
C6—C7 1.389 (3) C51—C52 1.396 (2)
C6—H6 0.9300 C52—C53 1.382 (2)
C7—H7 0.9300 C52—H52 0.9300
C11—C16 1.396 (2) C53—C54 1.382 (3)
C11—C12 1.404 (2) C53—H53 0.9300
C12—C13 1.383 (2) C54—C55 1.388 (3)
C12—H12 0.9300 C54—H54 0.9300
C13—C14 1.389 (2) C55—C56 1.387 (3)
C13—H13 0.9300 C55—H55 0.9300
C14—C15 1.386 (3) C56—H56 0.9300
C14—H14 0.9300 C61—C66 1.391 (2)
C15—C16 1.391 (2) C61—C62 1.396 (2)
C15—H15 0.9300 C62—C63 1.393 (3)
C16—H16 0.9300 C62—H62 0.9300
C21—C22 1.389 (2) C63—C64 1.386 (3)
C21—C26 1.397 (2) C63—H63 0.9300
C22—C23 1.394 (2) C64—C65 1.385 (3)
C22—H22 0.9300 C64—H64 0.9300
C23—C24 1.387 (2) C65—C66 1.386 (3)
C23—H23 0.9300 C65—H65 0.9300
C24—C25 1.389 (3) C66—H66 0.9300
P1—Ag1—P2 127.556 (15) C26—C25—H25 120.0
P1—Ag1—S1 113.029 (15) C24—C25—H25 120.0
P2—Ag1—S1 112.694 (15) C25—C26—C21 120.50 (16)
C1—S1—Ag1 109.30 (6) C25—C26—H26 119.7
C11—P1—C31 105.62 (8) C21—C26—H26 119.7
C11—P1—C21 99.64 (8) C32—C31—C36 118.88 (15)
C31—P1—C21 105.30 (8) C32—C31—P1 123.80 (13)
C11—P1—Ag1 118.36 (6) C36—C31—P1 117.27 (13)
C31—P1—Ag1 111.81 (6) C33—C32—C31 120.52 (16)
C21—P1—Ag1 114.63 (5) C33—C32—H32 119.7
C41—P2—C51 103.41 (8) C31—C32—H32 119.7
C41—P2—C61 106.55 (8) C32—C33—C34 120.23 (17)
C51—P2—C61 101.36 (8) C32—C33—H33 119.9
C41—P2—Ag1 117.14 (6) C34—C33—H33 119.9
C51—P2—Ag1 104.48 (6) C35—C34—C33 119.75 (17)
C61—P2—Ag1 121.15 (6) C35—C34—H34 120.1
C1—N1—H1A 120.0 C33—C34—H34 120.1
C1—N1—H1B 120.0 C34—C35—C36 120.19 (17)
H1A—N1—H1B 120.0 C34—C35—H35 119.9
C1—N2—C2 127.91 (15) C36—C35—H35 119.9
C1—N2—H2 116.0 C35—C36—C31 120.42 (16)
C2—N2—H2 116.0 C35—C36—H36 119.8
O2—N3—O1 120.45 (16) C31—C36—H36 119.8
O2—N3—O3 120.53 (15) C42—C41—C46 119.18 (17)
O1—N3—O3 119.01 (15) C42—C41—P2 123.50 (14)
N1—C1—N2 115.86 (16) C46—C41—P2 117.26 (13)
N1—C1—S1 119.06 (13) C41—C42—C43 120.24 (18)
N2—C1—S1 125.06 (13) C41—C42—H42 119.9
C3—C2—C7 120.16 (16) C43—C42—H42 119.9
C3—C2—N2 122.09 (16) C44—C43—C42 120.54 (19)
C7—C2—N2 117.64 (16) C44—C43—H43 119.7
C2—C3—C4 119.35 (17) C42—C43—H43 119.7
C2—C3—H3 120.3 C43—C44—C45 119.52 (18)
C4—C3—H3 120.3 C43—C44—H44 120.2
C5—C4—C3 120.43 (18) C45—C44—H44 120.2
C5—C4—H4 119.8 C44—C45—C46 120.28 (19)
C3—C4—H4 119.8 C44—C45—H45 119.9
C4—C5—C6 120.25 (18) C46—C45—H45 119.9
C4—C5—H5 119.9 C45—C46—C41 120.23 (18)
C6—C5—H5 119.9 C45—C46—H46 119.9
C5—C6—C7 119.74 (18) C41—C46—H46 119.9
C5—C6—H6 120.1 C56—C51—C52 119.07 (16)
C7—C6—H6 120.1 C56—C51—P2 124.06 (13)
C2—C7—C6 120.05 (17) C52—C51—P2 116.84 (13)
C2—C7—H7 120.0 C53—C52—C51 120.60 (17)
C6—C7—H7 120.0 C53—C52—H52 119.7
C16—C11—C12 119.03 (15) C51—C52—H52 119.7
C16—C11—P1 120.35 (13) C52—C53—C54 120.24 (18)
C12—C11—P1 120.58 (13) C52—C53—H53 119.9
C13—C12—C11 120.56 (16) C54—C53—H53 119.9
C13—C12—H12 119.7 C53—C54—C55 119.64 (17)
C11—C12—H12 119.7 C53—C54—H54 120.2
C12—C13—C14 120.01 (16) C55—C54—H54 120.2
C12—C13—H13 120.0 C56—C55—C54 120.54 (18)
C14—C13—H13 120.0 C56—C55—H55 119.7
C15—C14—C13 119.86 (16) C54—C55—H55 119.7
C15—C14—H14 120.1 C55—C56—C51 119.91 (17)
C13—C14—H14 120.1 C55—C56—H56 120.0
C14—C15—C16 120.54 (16) C51—C56—H56 120.0
C14—C15—H15 119.7 C66—C61—C62 119.03 (16)
C16—C15—H15 119.7 C66—C61—P2 118.99 (13)
C15—C16—C11 119.92 (16) C62—C61—P2 121.89 (13)
C15—C16—H16 120.0 C63—C62—C61 120.10 (17)
C11—C16—H16 120.0 C63—C62—H62 119.9
C22—C21—C26 119.17 (15) C61—C62—H62 119.9
C22—C21—P1 124.26 (13) C64—C63—C62 120.18 (18)
C26—C21—P1 116.56 (13) C64—C63—H63 119.9
C21—C22—C23 120.20 (16) C62—C63—H63 119.9
C21—C22—H22 119.9 C65—C64—C63 119.90 (17)
C23—C22—H22 119.9 C65—C64—H64 120.1
C24—C23—C22 120.30 (16) C63—C64—H64 120.1
C24—C23—H23 119.9 C64—C65—C66 120.05 (18)
C22—C23—H23 119.8 C64—C65—H65 120.0
C23—C24—C25 119.70 (16) C66—C65—H65 120.0
C23—C24—H24 120.2 C65—C66—C61 120.74 (17)
C25—C24—H24 120.2 C65—C66—H66 119.6
C26—C25—C24 120.06 (16) C61—C66—H66 119.6
C2—N2—C1—N1 172.88 (17) P1—C31—C32—C33 177.53 (14)
C2—N2—C1—S1 −8.7 (3) C31—C32—C33—C34 0.0 (3)
Ag1—S1—C1—N1 −147.45 (13) C32—C33—C34—C35 0.1 (3)
Ag1—S1—C1—N2 34.16 (17) C33—C34—C35—C36 −0.3 (3)
C1—N2—C2—C3 61.7 (3) C34—C35—C36—C31 0.4 (3)
C1—N2—C2—C7 −122.0 (2) C32—C31—C36—C35 −0.3 (3)
C7—C2—C3—C4 2.0 (3) P1—C31—C36—C35 −177.86 (14)
N2—C2—C3—C4 178.19 (17) C51—P2—C41—C42 99.52 (17)
C2—C3—C4—C5 −1.1 (3) C61—P2—C41—C42 −6.87 (18)
C3—C4—C5—C6 −0.4 (3) Ag1—P2—C41—C42 −146.22 (15)
C4—C5—C6—C7 1.0 (3) C51—P2—C41—C46 −77.57 (15)
C3—C2—C7—C6 −1.4 (3) C61—P2—C41—C46 176.04 (14)
N2—C2—C7—C6 −177.76 (16) Ag1—P2—C41—C46 36.69 (16)
C5—C6—C7—C2 −0.1 (3) C46—C41—C42—C43 1.5 (3)
C31—P1—C11—C16 −117.34 (14) P2—C41—C42—C43 −175.56 (16)
C21—P1—C11—C16 133.67 (14) C41—C42—C43—C44 −0.4 (3)
Ag1—P1—C11—C16 8.77 (16) C42—C43—C44—C45 −0.5 (3)
C31—P1—C11—C12 65.03 (15) C43—C44—C45—C46 0.3 (3)
C21—P1—C11—C12 −43.97 (15) C44—C45—C46—C41 0.7 (3)
Ag1—P1—C11—C12 −168.87 (11) C42—C41—C46—C45 −1.6 (3)
C16—C11—C12—C13 2.8 (2) P2—C41—C46—C45 175.61 (16)
P1—C11—C12—C13 −179.50 (13) C41—P2—C51—C56 −11.67 (17)
C11—C12—C13—C14 −1.5 (3) C61—P2—C51—C56 98.60 (16)
C12—C13—C14—C15 −1.1 (3) Ag1—P2—C51—C56 −134.76 (14)
C13—C14—C15—C16 2.4 (3) C41—P2—C51—C52 170.39 (13)
C14—C15—C16—C11 −1.0 (3) C61—P2—C51—C52 −79.34 (14)
C12—C11—C16—C15 −1.6 (2) Ag1—P2—C51—C52 47.30 (14)
P1—C11—C16—C15 −179.23 (13) C56—C51—C52—C53 −0.6 (3)
C11—P1—C21—C22 121.60 (15) P2—C51—C52—C53 177.44 (14)
C31—P1—C21—C22 12.36 (16) C51—C52—C53—C54 0.3 (3)
Ag1—P1—C21—C22 −110.96 (14) C52—C53—C54—C55 0.4 (3)
C11—P1—C21—C26 −57.49 (14) C53—C54—C55—C56 −0.8 (3)
C31—P1—C21—C26 −166.73 (13) C54—C55—C56—C51 0.4 (3)
Ag1—P1—C21—C26 69.95 (14) C52—C51—C56—C55 0.2 (3)
C26—C21—C22—C23 1.7 (3) P2—C51—C56—C55 −177.65 (14)
P1—C21—C22—C23 −177.36 (13) C41—P2—C61—C66 −106.80 (14)
C21—C22—C23—C24 0.7 (3) C51—P2—C61—C66 145.35 (14)
C22—C23—C24—C25 −2.3 (3) Ag1—P2—C61—C66 30.55 (16)
C23—C24—C25—C26 1.6 (3) C41—P2—C61—C62 76.64 (16)
C24—C25—C26—C21 0.8 (3) C51—P2—C61—C62 −31.20 (16)
C22—C21—C26—C25 −2.4 (3) Ag1—P2—C61—C62 −146.00 (13)
P1—C21—C26—C25 176.72 (14) C66—C61—C62—C63 −0.7 (3)
C11—P1—C31—C32 −9.27 (17) P2—C61—C62—C63 175.88 (14)
C21—P1—C31—C32 95.60 (15) C61—C62—C63—C64 0.2 (3)
Ag1—P1—C31—C32 −139.30 (13) C62—C63—C64—C65 0.4 (3)
C11—P1—C31—C36 168.20 (13) C63—C64—C65—C66 −0.7 (3)
C21—P1—C31—C36 −86.92 (14) C64—C65—C66—C61 0.2 (3)
Ag1—P1—C31—C36 38.18 (14) C62—C61—C66—C65 0.4 (3)
C36—C31—C32—C33 0.1 (3) P2—C61—C66—C65 −176.21 (14)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C11–C16 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3i 0.86 2.02 2.877 (2) 180
N1—H1B···O3ii 0.86 2.17 2.921 (2) 145
N2—H2···O1i 0.86 1.97 2.823 (2) 171
C35—H35···Cg2iii 0.93 2.97 3.746 (2) 142
C54—H54···Cg2iv 0.93 2.82 3.531 (2) 134

Symmetry codes: (i) x−1, y, z; (ii) −x+1, −y+1, −z+2; (iii) −x+1, y+1/2, −z+3/2; (iv) −x+1, −y+2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7242).

References

  1. Aslanidis, P., Karagiannidis, P., Akrivos, P. D., Krebs, B. & Lage, M. (1997). Inorg. Chim. Acta, 254, 277–284.
  2. Bruker (2003). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Ghassemzadeh, M., Sharifi, A., Malakootikhah, J., Neumuller, B. & Iravani, E. (2004). Inorg. Chim. Acta, 357, 2245–2252.
  5. Isab, A. A., Nawaz, S., Saleem, M., Altaf, M., Monim-ul-Mehboob, M., Ahmad, S. & Evans, H. (2010). Polyhedron, 29, 1251–1256.
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977. [DOI] [PMC free article] [PubMed]
  8. Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472–479. [DOI] [PubMed]
  9. Sewead, C., Chan, J., Song, D. & Wang, S. (2003). Inorg. Chem. 42, 1112–1120. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Skoulika, S., Aubry, A., Karagiannidis, P., Aslanidis, P. & Papastefanou, S. (1991). Inorg. Chim. Acta, 183, 207–211.
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  13. Zheng, S.-L., Tong, M.-L., Fu, R.-W., Chen, X.-M. & Ng, S.-W. (2001). Inorg. Chem. 40, 3562–3569. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814014147/hb7242sup1.cif

e-70-0m281-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814014147/hb7242Isup2.hkl

e-70-0m281-Isup2.hkl (440.7KB, hkl)

CCDC reference: 1008627

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES