Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 23;70(Pt 7):31–35. doi: 10.1107/S1600536814011532

Crystal structures of 1,4-di­aza­bicyclo­[2.2.2]octan-1-ium 4-nitro­benzoate dihydrate and 1,4-di­aza­bicyclo­[2.2.2]octane-1,4-diium bis­(4-nitro­benzoate): the influence of solvent upon the stoichiometry of the formed salt

Aina Mardia Akhmad Aznan a, Zanariah Abdullah a,*, Edward R T Tiekink a,*
PMCID: PMC4120614  PMID: 25161500

Solvent-dependent outcomes are noted in co-crystallization experiments between DABCO and 4-nitrobenzoic acid with mono- and diprotonated forms of DABCO are isolated.

Keywords: crystal structure, amine, carb­oxy­lic acid, co-crystallization, salt formation

Abstract

The 1:1 co-crystallization of 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) with 4-nitro­benzoic acid in ethanol–water (3/1) gave the salt dihydrate C6H13N2 +·C7H4NO4 ·2H2O, (1), whereas from methanol, the salt C6H14N2 2+·2C7H4NO4 , (2), was isolated. In (1), the cation and anion are linked by a strong N—H⋯O hydrogen bond, and the carboxyl­ate anion is close to planar [dihedral angle between terminal residues = 6.83 (9)°]. In (2), a three-ion aggregate is assembled by two N—H⋯O hydrogen bonds, and the carboxyl­ate anions are again close to planar [dihedral angles between terminal residues = 1.7 (3) and 5.9 (3)°]. Through the inter­vention of solvent water mol­ecules, which self-assemble into helical supra­molecular chains along the b axis, the three-dimensional architecture in (1) is stabilized by water–DABCO O—H⋯N and water–carboxyl­ate O—H⋯O hydrogen bonds, with additional stability afforded by C—H⋯O inter­actions. The global crystal structure comprises alternating layers of water mol­ecules and ion pairs stacked along the c axis. In the crystal of (2), the three-ion aggregates are assembled into a three-dimensional architecture by a large number of methyl­ene–carboxyl­ate/nitro C—H⋯O inter­actions as well as π–π contacts between inversion-related benzene rings [inter-centroid distances = 3.5644 (16) and 3.6527 (16) Å]. The cations and anions assemble into alternating layers along the c axis.

Chemical context  

The formation of co-crystals or salts is dependent on the difference in pKa of the inter­acting species (Childs et al., 2007). Thus, when the Δ(pKa) [= pKa(base) − pKa(acid)] value is greater than three, a salt is anti­cipated. In this context, it is not surprising that a search of the Cambridge Structural Database (CSD, version 53.5, last update November 2013; Allen, 2002) showed that nearly 90% of the 57 multi-component crystals, containing species derived from highly basic 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO) and a carb­oxy­lic acid, contained at least a mono-protonated form of DABCO. It was in the context of on-going studies of co-crystallization experiments (Broker & Tiekink, 2007; Arman & Tiekink, 2013; Arman et al., 2014) between nitro­gen-containing mol­ecules and carb­oxy­lic acids, that the title salts were isolated. The co-crystallization experiments yielding the title salts produced unexpected outcomes in that while (1) formed as a 1:1 salt dihydrate from the 1:1 co-crystallization of DABCO and 4-nitro­benzoic acid in ethanol/water (3/1) solution, a 1:2 salt (2) was isolated from the 1:1 co-crystallization of DABCO and 4-nitro­benzoic acid in methanol solution. The mol­ecular and crystal structures of (1) and (2) are described herein.graphic file with name e-70-00031-scheme1.jpg

Structural commentary  

The asymmetric unit of (1) comprises a 1,4-di­aza­bicyclo­[2.2.2]octan-1-ium mono-cation, a 4-nitro­benzoate anion and two water mol­ecules of hydration (Fig. 1). The most notable feature in the cation is the elongation of the N2—C bond lengths [1.4951 (16)–1.5007 (15) Å] compared to the N3—C bond lengths [1.4635 (17)–1.4773 (17) Å], consistent with protonation at the N2 atom. In the anion, the near equivalence of the C1—O1,O2 bond lengths of 1.2625 (15) and 1.2495 (16) Å, respectively, is again consistent with proton transfer; the longer bond involves atom O1 which forms a strong N—H⋯O hydrogen bond (Table 1). The dihedral angles between the central ring and the carboxyl­ate and nitro groups are 8.68 (8) and 3.80 (5)°, respectively, and the dihedral angle between the terminal groups is 6.83 (9)°, consistent with an approximately planar mol­ecule.

Figure 1.

Figure 1

The mol­ecular structures of the four independent constituents of (1), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Table 1. Hydrogen-bond geometry (Å, °) for (1) .

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1 0.89 (1) 1.76 (1) 2.6431 (14) 173 (1)
O1W—H1W⋯N3 0.86 (2) 1.95 (2) 2.7974 (15) 172 (2)
O1W—H2W⋯O2W i 0.86 (2) 1.91 (1) 2.7500 (15) 165 (2)
O2W—H3W⋯O1W 0.85 (2) 1.87 (2) 2.7218 (15) 180 (2)
O2W—H4W⋯O2ii 0.86 (1) 1.87 (1) 2.7182 (15) 171 (2)
C10—H10A⋯O3iii 0.99 2.49 3.4253 (17) 158
C12—H12A⋯O2W iv 0.99 2.49 3.3711 (16) 147
C12—H12B⋯O2v 0.99 2.57 3.4818 (16) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

The asymmetric unit of (2) comprises a 1,4-di­aza­bicyclo­[2.2.2]octane-1,4-diium di-cation and two 4-nitro­benzoate anions (Fig. 2). In the dication, the N3—C [1.483 (3)–1.487 (3) Å] and N4—C [1.486 (3)–1.487 (3) Å] bond lengths are experimentally equivalent and consistent with diprotonation. In the anions, the disparity of the C1—O1, O2 bond lengths, i.e. 1.281 (3) and 1.228 (3) Å, is slightly greater than that in C8—O5, O6 of 1.273 (3) and 1.231 (3) Å, respectively. In each case the longer bond forms a strong N—H⋯O hydrogen bond (Table 2). In order to confirm the location of the acidic hydrogen atoms, an unrestrained refinement was conducted, see Refinement for details. While there was some elongation in the N—H bond lengths, unrestrained refinement confirmed protonation at both nitro­gen atoms. In the O1-containing anion, the dihedral angles between the central ring and the carboxyl­ate and nitro groups are 7.0 (3) and 8.7 (2)°, respectively, and the dihedral angle between the terminal groups is 1.7 (3)°. The comparable angles for the O5-containing anion are 2.2 (3), 7.4 (2) and 5.9 (3)°, respectively. As discussed below in Supra­molecular features, the ions participate in strong N—H⋯O hydrogen bonds, forming a three-ion aggregate (Fig. 2) in which the dihedral angle between the benzene rings is 9.26 (14)°.

Figure 2.

Figure 2

The mol­ecular structures of the three independent constituents of (2), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines (see Table 2 for details).

Table 2. Hydrogen-bond geometry (Å, °) for (2) .

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O1 0.88 (2) 1.66 (2) 2.539 (3) 173 (2)
N4—H4N⋯O5 0.89 (2) 1.65 (2) 2.542 (3) 175 (3)
C15—H15A⋯O6i 0.99 2.42 3.193 (3) 134
C16—H16A⋯O4ii 0.99 2.42 3.375 (3) 161
C17—H17A⋯O7iii 0.99 2.42 3.338 (3) 153
C17—H17B⋯O6i 0.99 2.42 3.313 (3) 149
C20—H20A⋯O2iv 0.99 2.41 3.043 (3) 121
C20—H20B⋯O8v 0.99 2.42 3.339 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Supra­molecular features  

In (1), the cation and anion are linked by a strong N2—H⋯O1 hydrogen bond (Fig. 1 and Table 1). The two ion aggregates inter-digitate in columns aligned along the b axis. Adjacent columns stack along the a axis to form layers in the ab plane. The layers are inter­spersed by layers of water mol­ecules which self-assemble into helical chains along the b axis, where each independent water mol­ecule donates and accepts a water-O—H⋯O(water) hydrogen bond (Table 1). This leads to the formation of a three-dimensional structure (Fig. 3).

Figure 3.

Figure 3

Unit-cell contents shown in projection down the a axis for (1). The O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds are shown as orange, blue and green dashed lines, respectively (see Table 1 for details).

Thus, links between layers are of the type water-O1W—H⋯N3 and water-OW2—H⋯O2(carboxyl­ate). Additional stability to the supra­molecular assembly is afforded by methyl­ene-C—H⋯O2(carboxyl­ate) and O2W(water) inter­actions; it is noteworthy that both of the former inter­actions involve hydrogen atoms derived from the same methyl­ene-C12 atom (Table 1). A methyl­ene-C—H⋯O3(nitro) inter­action is also formed; the nitro-O4 atom does not form a significant inter­action in this scenario. Although there is an alignment of benzene rings, the closest π–π contact is 3.7376 (7) Å, occurring between centrosymmetrically related rings [symmetry operation: Inline graphic, Inline graphic, Inline graphic].

In (2), the di-cation is linked to two anions via strong N—H⋯O hydrogen bonds (Fig. 4 and Table 2). Globally, the three ion aggregates assemble into layers in the ab plane that stack along the c axis. A large number of C—H⋯O inter­actions occur, remarkably featuring a narrow range of H⋯O separations, i.e. 2.41–2.42 Å (Table 2). All inter­actions involve methyl­ene-H atoms as donors. The carboxyl­ate-O2 and O4 atoms and all nitro but O3 atoms are acceptors; both methyl­ene-H atoms of methyl­ene-C17 and C20 participate in C—H⋯O inter­actions. The result of these inter­actions is the formation of a three-dimensional architecture (Fig. 4). Additional stability to the supra­molecular assembly is afforded by π—π inter­actions between inversion-related rings, i.e. inter-centroid distances = 3.5644 (16) Å for inter­actions between the C2–C8 rings (symmetry code: −x + 1, −y + 2, −z + 2) and 3.6527 (16) Å between C9–C14 rings (symmetry code: −x + 2, −y + 1, −z). An alternate description of the global crystal packing is based on alternating of layers of cations and layers of anions along the c axis (Fig. 5).

Figure 4.

Figure 4

Unit-cell contents shown in projection down the a axis for (2). The N—H⋯O and C—H⋯O hydrogen bonds are shown as blue and green dashed lines, respectively (see Table 2 for details).

Figure 5.

Figure 5

Unit-cell contents shown in projection down the b axis for (2). The N—H⋯O and C—H⋯O hydrogen bonds are shown as blue and green dashed lines, respectively (see Table 2 for details).

Database survey  

As mentioned in the Chemical context, there are 57 species in the crystallographic literature containing DABCO or its mono- or diprotonated forms and a carb­oxy­lic acid or carboxyl­ate anion. In fact, co-crystals are rare, being around 10% of all structures. Co-crystals are formed with several di­carb­oxy­lic acids where the functional groups are separated by long chains of over four carbon atoms (Braga et al., 2003; Moon & Park, 2012), with phosphono­acetic acid (Bowes et al., 2003) and with isophthalic acid (Marivel et al., 2010). While the majority of the remaining structures contain species derived from a di­carb­oxy­lic acid, there are 13 examples of structures containing species derived from a mono-carb­oxy­lic acid which are more directly suitable for comparison with (1) and (2). Further, in each case the original carb­oxy­lic acid was connected to an aromatic ring. Of the sub-set of 13 structures, three are similar to (1), having the mono-protonated form of DABCO. The carboxyl­ate counter-ions are 2,4-di­nitro­benzoate (Rosli et al., 2006), 3,5-di­hydroxy­benzoate (Burchell et al., 2001a ) and 6-hy­droxy-2-naphtho­ate (Jacobs et al., 2010); the latter two structures were characterized as mono- and sesqui-hydrates, respectively. Analogues of (2) were found in seven examples, namely in both polymorphs of benzoate, and in 2-hy­droxy­benzoate and 2-acet­oxy­benzoate (Skovsgaard & Bond, 2009), 2-chloro­benzoate (Skovsgaard & Bond, 2008), 2-hy­droxy­benzoate (Skovsgaard & Bond, 2008), and in polymorphic hydrates of 3,5-di­nitro­benzoate (Burchell et al., 2001b ; Chantrapromma & Fun, 2004). Finally, there are three intriguing examples where a mono-protonated DABCO cation is present along with a carboxyl­ate anion and the neutral form of the original carb­oxy­lic acid. These contain the following carb­oxy­lic acids: 1-hy­droxy-2-naphthoic acid and 3-hy­droxy-2-naphthoic acid (Jacobs et al., 2010) and 2-amino­benzoic acid (Arman et al., 2011). In light of the foregoing structural diversity, in retrospect perhaps it is not so surprising that solvent can influence product formation, especially when water is involved.

Synthesis and crystallization  

1,4-Di­aza­bicyclo­[2.2.2]octane (Merck; 0.10 g, 0.0009 mol), was mixed with 4-nitro­benzoic acid (Merck; 0.15 g, 0.0009 mol) in a solution containing ethanol (30 ml) and water (10 ml). The solution was heated for 2 h at 350 K. The mixture was then left for slow evaporation and colourless crystals of (1) formed after 4 days. In a similar experiment, 1,4-di­aza­bicyclo­[2.2.2]octane (0.298 g, 0.00265 mol) was mixed with 4-nitro­benzoic acid (0.444 g, 0.00265 mol) in a solution of methanol (50 ml). The solution was heated for 2 h at 345 K. The mixture was then left for slow evaporation and colourless crystals of (2) formed after 4 days.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Carbon-bound H-atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and were included in the refinement in the riding-model approximation, with U iso(H) = 1.2U eq(C). The N-bound H-atoms were located in a difference Fourier map but were refined with a distance restraint: N—H = 0.88 (1) Å with U iso(H) = 1.2U eq(N). For (1), the water-bound H atoms were refined with distance restraints: O—H = 0.84 (1) and H⋯H = 1.39 (2) Å with U iso(H) =1.5U eq(O). For (2), the maximum and minimum residual electron density peaks of 0.60 and 0.58 e Å−3, respectively, were located 0.81 and 0.10 Å from atoms O5 and H4N, respectively. In order to confirm the location of the N-bound H atoms, in a separate refinement these were refined without distance restraints. For (1), the N2—H2N bond length was 0.948 (17) Å. For (2), the N3—H3N and N4—H4N bond lengths were 0.93 (4) and 1.08 (3) Å, respectively. In the refinement of (1), one reflection, i.e. (180), was omitted from the refinement owing to poor agreement. For the same reasons, the following reflections were omitted from the final refinement of (2): (550), (Inline graphic06), (136), (139), (2410), (331), (224) and (662).

Table 3. Experimental details.

  (1) (2)
Crystal data
Chemical formula C6H13N2 +·C7H4NO4 ·2H2O C6H14N2 2+·2C7H4NO4
M r 315.33 446.42
Crystal system, space group Monoclinic, P21/c Triclinic, P Inline graphic
Temperature (K) 100 100
a, b, c (Å) 6.5982 (1), 6.6074 (1), 34.4574 (6) 9.1036 (4), 9.5027 (3), 12.0736 (3)
α, β, γ (°) 90, 94.809 (1), 90 73.982 (3), 83.624 (3), 88.661 (3)
V3) 1496.95 (4) 997.68 (6)
Z 4 2
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.94 0.99
Crystal size (mm) 0.30 × 0.30 × 0.20 0.40 × 0.40 × 0.20
 
Data collection
Diffractometer Agilent SuperNova Dual with an Atlas detector Agilent SuperNova Dual with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013) Multi-scan (CrysAlis PRO; Agilent, 2013)
T min, T max 0.888, 1.000 0.991, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11203, 3072, 2949 17849, 4101, 3775
R int 0.015 0.046
(sin θ/λ)max−1) 0.626 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.099, 1.04 0.074, 0.229, 1.12
No. of reflections 3072 4101
No. of parameters 215 295
No. of restraints 7 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.40, −0.30 0.60, −0.58

Computer programs: CrysAlis PRO (Agilent, 2013), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) 1, 2, global. DOI: 10.1107/S1600536814011532/su0005sup1.cif

e-70-00031-sup1.cif (38.3KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S1600536814011532/su00051sup2.hkl

e-70-00031-1sup2.hkl (150.7KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S1600536814011532/su00052sup3.hkl

e-70-00031-2sup3.hkl (200.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011532/su00051sup4.cml

Supporting information file. DOI: 10.1107/S1600536814011532/su00052sup5.cml

CCDC references: 1004283, 1004284

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Intensity data were provided by the University of Malaya Crystallographic Laboratory. This research is supported by the University of Malaya Research Grant Scheme (RG125/AFC10R).

supplementary crystallographic information

(1) 1,4-Diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate. Crystal data

C6H13N2+·C7H4NO4·2H2O F(000) = 672
Mr = 315.33 Dx = 1.399 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ybc Cell parameters from 7046 reflections
a = 6.5982 (1) Å θ = 3.9–76.3°
b = 6.6074 (1) Å µ = 0.94 mm1
c = 34.4574 (6) Å T = 100 K
β = 94.809 (1)° Prism, colourless
V = 1496.95 (4) Å3 0.30 × 0.30 × 0.20 mm
Z = 4

(1) 1,4-Diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate. Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3072 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 2949 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.015
Detector resolution: 10.4041 pixels mm-1 θmax = 75.0°, θmin = 5.2°
ω scan h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −8→5
Tmin = 0.888, Tmax = 1.000 l = −43→42
11203 measured reflections

(1) 1,4-Diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate. Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.8811P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
3072 reflections Δρmax = 0.40 e Å3
215 parameters Δρmin = −0.30 e Å3
7 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0076 (6)

(1) 1,4-Diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate. Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(1) 1,4-Diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.63866 (13) 0.34327 (15) 0.59514 (3) 0.0233 (2)
O2 0.94425 (14) 0.33794 (16) 0.62902 (3) 0.0261 (2)
O3 1.11387 (14) 0.20664 (15) 0.42606 (3) 0.0234 (2)
O4 1.40402 (14) 0.17440 (16) 0.45978 (3) 0.0262 (2)
N1 1.21908 (16) 0.20014 (15) 0.45723 (3) 0.0175 (2)
C1 0.82971 (19) 0.32425 (18) 0.59836 (4) 0.0178 (3)
C2 0.93105 (18) 0.28490 (18) 0.56096 (3) 0.0153 (2)
C3 1.13841 (18) 0.24078 (18) 0.56251 (3) 0.0162 (3)
H3 1.2149 0.2318 0.5871 0.019*
C4 1.23420 (18) 0.20989 (18) 0.52871 (4) 0.0163 (2)
H4 1.3751 0.1786 0.5297 0.020*
C5 1.11798 (18) 0.22606 (17) 0.49335 (3) 0.0149 (2)
C6 0.91145 (18) 0.26736 (17) 0.49062 (3) 0.0155 (2)
H6 0.8354 0.2752 0.4660 0.019*
C7 0.81863 (17) 0.29702 (18) 0.52492 (3) 0.0156 (2)
H7 0.6772 0.3258 0.5238 0.019*
N2 0.48292 (15) 0.59677 (17) 0.64400 (3) 0.0178 (2)
H2N 0.535 (2) 0.503 (2) 0.6291 (4) 0.021*
N3 0.33337 (16) 0.86385 (17) 0.68589 (3) 0.0207 (2)
C8 0.31552 (19) 0.7058 (2) 0.62050 (4) 0.0213 (3)
H8A 0.2168 0.6074 0.6082 0.026*
H8B 0.3720 0.7863 0.5997 0.026*
C9 0.2099 (2) 0.8456 (2) 0.64826 (4) 0.0309 (3)
H9A 0.1903 0.9811 0.6363 0.037*
H9B 0.0744 0.7900 0.6527 0.037*
C10 0.64491 (19) 0.7447 (2) 0.65768 (4) 0.0212 (3)
H10A 0.7121 0.7988 0.6352 0.025*
H10B 0.7491 0.6777 0.6756 0.025*
C11 0.5423 (2) 0.9174 (2) 0.67881 (5) 0.0325 (3)
H11A 0.6212 0.9456 0.7039 0.039*
H11B 0.5416 1.0418 0.6628 0.039*
C12 0.39871 (18) 0.49677 (19) 0.67830 (4) 0.0199 (3)
H12A 0.5038 0.4108 0.6923 0.024*
H12B 0.2810 0.4105 0.6695 0.024*
C13 0.3323 (2) 0.6654 (2) 0.70520 (4) 0.0257 (3)
H13A 0.1938 0.6361 0.7127 0.031*
H13B 0.4257 0.6688 0.7292 0.031*
O1W 0.19593 (16) 1.12932 (16) 0.74123 (3) 0.0268 (2)
H1W 0.243 (3) 1.058 (3) 0.7232 (4) 0.040*
H2W 0.151 (3) 1.039 (2) 0.7565 (4) 0.040*
O2W −0.12706 (15) 1.33213 (17) 0.70557 (3) 0.0289 (2)
H3W −0.026 (2) 1.268 (3) 0.7167 (5) 0.043*
H4W −0.117 (3) 1.328 (3) 0.6810 (3) 0.043*

(1) 1,4-Diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate. Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0175 (4) 0.0299 (5) 0.0231 (5) 0.0006 (4) 0.0055 (3) −0.0078 (4)
O2 0.0235 (5) 0.0391 (6) 0.0158 (4) 0.0014 (4) 0.0025 (4) −0.0027 (4)
O3 0.0271 (5) 0.0281 (5) 0.0153 (4) 0.0000 (4) 0.0033 (4) 0.0001 (4)
O4 0.0181 (5) 0.0355 (6) 0.0262 (5) 0.0027 (4) 0.0087 (4) 0.0009 (4)
N1 0.0200 (5) 0.0147 (5) 0.0185 (5) −0.0011 (4) 0.0058 (4) 0.0004 (4)
C1 0.0190 (6) 0.0167 (6) 0.0181 (6) −0.0009 (5) 0.0042 (5) −0.0018 (5)
C2 0.0170 (6) 0.0122 (5) 0.0171 (6) −0.0017 (4) 0.0034 (4) −0.0006 (4)
C3 0.0165 (6) 0.0154 (6) 0.0165 (6) −0.0012 (4) −0.0004 (4) 0.0003 (4)
C4 0.0137 (5) 0.0144 (5) 0.0209 (6) −0.0006 (4) 0.0026 (4) 0.0007 (4)
C5 0.0178 (6) 0.0116 (5) 0.0159 (6) −0.0020 (4) 0.0053 (4) −0.0006 (4)
C6 0.0174 (6) 0.0124 (5) 0.0164 (5) −0.0022 (4) −0.0002 (4) 0.0002 (4)
C7 0.0135 (5) 0.0133 (5) 0.0200 (6) −0.0016 (4) 0.0021 (4) −0.0005 (4)
N2 0.0148 (5) 0.0219 (5) 0.0171 (5) 0.0002 (4) 0.0033 (4) −0.0034 (4)
N3 0.0212 (5) 0.0228 (6) 0.0187 (5) 0.0016 (4) 0.0044 (4) −0.0023 (4)
C8 0.0200 (6) 0.0270 (7) 0.0167 (6) 0.0018 (5) 0.0005 (5) −0.0011 (5)
C9 0.0331 (7) 0.0375 (8) 0.0217 (7) 0.0148 (6) −0.0002 (6) −0.0017 (6)
C10 0.0153 (6) 0.0274 (7) 0.0215 (6) −0.0047 (5) 0.0041 (5) −0.0018 (5)
C11 0.0276 (7) 0.0300 (7) 0.0416 (8) −0.0100 (6) 0.0126 (6) −0.0138 (7)
C12 0.0174 (6) 0.0207 (6) 0.0219 (6) −0.0009 (5) 0.0039 (5) 0.0027 (5)
C13 0.0299 (7) 0.0274 (7) 0.0210 (6) 0.0011 (5) 0.0104 (5) 0.0017 (5)
O1W 0.0311 (5) 0.0285 (5) 0.0210 (5) 0.0053 (4) 0.0026 (4) −0.0024 (4)
O2W 0.0258 (5) 0.0420 (6) 0.0191 (5) 0.0084 (4) 0.0041 (4) 0.0005 (4)

(1) 1,4-Diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate. Geometric parameters (Å, º)

O1—C1 1.2625 (15) N3—C13 1.4706 (17)
O2—C1 1.2495 (16) N3—C9 1.4773 (17)
O3—N1 1.2298 (14) C8—C9 1.5381 (18)
O4—N1 1.2279 (14) C8—H8A 0.9900
N1—C5 1.4704 (15) C8—H8B 0.9900
C1—C2 1.5231 (16) C9—H9A 0.9900
C2—C7 1.3943 (17) C9—H9B 0.9900
C2—C3 1.3956 (16) C10—C11 1.5408 (19)
C3—C4 1.3857 (17) C10—H10A 0.9900
C3—H3 0.9500 C10—H10B 0.9900
C4—C5 1.3884 (17) C11—H11A 0.9900
C4—H4 0.9500 C11—H11B 0.9900
C5—C6 1.3852 (17) C12—C13 1.5365 (18)
C6—C7 1.3900 (16) C12—H12A 0.9900
C6—H6 0.9500 C12—H12B 0.9900
C7—H7 0.9500 C13—H13A 0.9900
N2—C10 1.4951 (16) C13—H13B 0.9900
N2—C8 1.4982 (16) O1W—H1W 0.861 (9)
N2—C12 1.5007 (15) O1W—H2W 0.866 (9)
N2—H2N 0.892 (9) O2W—H3W 0.852 (9)
N3—C11 1.4635 (17) O2W—H4W 0.856 (9)
O4—N1—O3 123.50 (10) N2—C8—H8B 110.2
O4—N1—C5 118.32 (10) C9—C8—H8B 110.2
O3—N1—C5 118.18 (10) H8A—C8—H8B 108.5
O2—C1—O1 126.58 (11) N3—C9—C8 110.47 (11)
O2—C1—C2 116.76 (11) N3—C9—H9A 109.6
O1—C1—C2 116.65 (11) C8—C9—H9A 109.6
C7—C2—C3 119.51 (11) N3—C9—H9B 109.6
C7—C2—C1 120.35 (11) C8—C9—H9B 109.6
C3—C2—C1 120.13 (11) H9A—C9—H9B 108.1
C4—C3—C2 120.90 (11) N2—C10—C11 107.60 (10)
C4—C3—H3 119.6 N2—C10—H10A 110.2
C2—C3—H3 119.6 C11—C10—H10A 110.2
C3—C4—C5 117.96 (11) N2—C10—H10B 110.2
C3—C4—H4 121.0 C11—C10—H10B 110.2
C5—C4—H4 121.0 H10A—C10—H10B 108.5
C6—C5—C4 122.86 (11) N3—C11—C10 110.91 (11)
C6—C5—N1 118.62 (11) N3—C11—H11A 109.5
C4—C5—N1 118.52 (10) C10—C11—H11A 109.5
C5—C6—C7 118.10 (11) N3—C11—H11B 109.5
C5—C6—H6 120.9 C10—C11—H11B 109.5
C7—C6—H6 120.9 H11A—C11—H11B 108.0
C6—C7—C2 120.66 (11) N2—C12—C13 107.39 (10)
C6—C7—H7 119.7 N2—C12—H12A 110.2
C2—C7—H7 119.7 C13—C12—H12A 110.2
C10—N2—C8 109.35 (10) N2—C12—H12B 110.2
C10—N2—C12 109.99 (9) C13—C12—H12B 110.2
C8—N2—C12 109.42 (9) H12A—C12—H12B 108.5
C10—N2—H2N 109.7 (10) N3—C13—C12 111.17 (10)
C8—N2—H2N 109.0 (10) N3—C13—H13A 109.4
C12—N2—H2N 109.4 (11) C12—C13—H13A 109.4
C11—N3—C13 109.35 (11) N3—C13—H13B 109.4
C11—N3—C9 109.36 (11) C12—C13—H13B 109.4
C13—N3—C9 107.53 (11) H13A—C13—H13B 108.0
N2—C8—C9 107.72 (10) H1W—O1W—H2W 103.0 (15)
N2—C8—H8A 110.2 H3W—O2W—H4W 107.8 (16)
C9—C8—H8A 110.2
O2—C1—C2—C7 −170.56 (11) C1—C2—C7—C6 178.03 (11)
O1—C1—C2—C7 8.23 (17) C10—N2—C8—C9 −67.76 (13)
O2—C1—C2—C3 8.02 (17) C12—N2—C8—C9 52.77 (14)
O1—C1—C2—C3 −173.19 (11) C11—N3—C9—C8 50.98 (16)
C7—C2—C3—C4 0.32 (18) C13—N3—C9—C8 −67.65 (14)
C1—C2—C3—C4 −178.27 (11) N2—C8—C9—N3 13.17 (16)
C2—C3—C4—C5 0.59 (18) C8—N2—C10—C11 53.58 (13)
C3—C4—C5—C6 −1.34 (18) C12—N2—C10—C11 −66.60 (13)
C3—C4—C5—N1 178.05 (10) C13—N3—C11—C10 51.74 (15)
O4—N1—C5—C6 176.15 (11) C9—N3—C11—C10 −65.75 (15)
O3—N1—C5—C6 −3.43 (16) N2—C10—C11—N3 11.63 (16)
O4—N1—C5—C4 −3.27 (16) C10—N2—C12—C13 53.46 (13)
O3—N1—C5—C4 177.15 (10) C8—N2—C12—C13 −66.68 (13)
C4—C5—C6—C7 1.12 (18) C11—N3—C13—C12 −65.51 (14)
N1—C5—C6—C7 −178.28 (10) C9—N3—C13—C12 53.13 (14)
C5—C6—C7—C2 −0.14 (17) N2—C12—C13—N3 11.20 (14)
C3—C2—C7—C6 −0.56 (18)

(1) 1,4-Diazabicyclo[2.2.2]octan-1-ium 4-nitrobenzoate dihydrate. Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2N···O1 0.89 (1) 1.76 (1) 2.6431 (14) 173 (1)
O1W—H1W···N3 0.86 (2) 1.95 (2) 2.7974 (15) 172 (2)
O1W—H2W···O2Wi 0.86 (2) 1.91 (1) 2.7500 (15) 165 (2)
O2W—H3W···O1W 0.85 (2) 1.87 (2) 2.7218 (15) 180 (2)
O2W—H4W···O2ii 0.86 (1) 1.87 (1) 2.7182 (15) 171 (2)
C10—H10A···O3iii 0.99 2.49 3.4253 (17) 158
C12—H12A···O2Wiv 0.99 2.49 3.3711 (16) 147
C12—H12B···O2v 0.99 2.57 3.4818 (16) 153

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x−1, y+1, z; (iii) −x+2, −y+1, −z+1; (iv) x+1, y−1, z; (v) x−1, y, z.

(2) 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate). Crystal data

C6H14N22+·2C7H4NO4 Z = 2
Mr = 446.42 F(000) = 468
Triclinic, P1 Dx = 1.486 Mg m3
Hall symbol: -P 1 Cu Kα radiation, λ = 1.54184 Å
a = 9.1036 (4) Å Cell parameters from 10186 reflections
b = 9.5027 (3) Å θ = 3.8–76.8°
c = 12.0736 (3) Å µ = 0.99 mm1
α = 73.982 (3)° T = 100 K
β = 83.624 (3)° Prism, colourless
γ = 88.661 (3)° 0.40 × 0.40 × 0.20 mm
V = 997.68 (6) Å3

(2) 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate). Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 4101 independent reflections
Radiation source: SuperNova (Cu) X-ray Source 3775 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.046
Detector resolution: 10.4041 pixels mm-1 θmax = 75.0°, θmin = 3.8°
ω scan h = −11→11
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −11→11
Tmin = 0.991, Tmax = 1.000 l = −15→15
17849 measured reflections

(2) 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate). Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.074 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.229 H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.1192P)2 + 1.3867P] where P = (Fo2 + 2Fc2)/3
4101 reflections (Δ/σ)max < 0.001
295 parameters Δρmax = 0.60 e Å3
2 restraints Δρmin = −0.58 e Å3

(2) 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate). Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(2) 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6213 (2) 0.7377 (2) 0.82692 (16) 0.0320 (5)
O2 0.4577 (2) 0.9073 (2) 0.75460 (15) 0.0301 (4)
O3 0.3598 (2) 0.7520 (2) 1.38056 (16) 0.0365 (5)
O4 0.2049 (2) 0.9218 (2) 1.31087 (17) 0.0343 (5)
N1 0.3033 (3) 0.8347 (2) 1.29939 (18) 0.0278 (5)
C1 0.5159 (3) 0.8269 (3) 0.8358 (2) 0.0230 (5)
C2 0.4601 (3) 0.8288 (3) 0.9588 (2) 0.0225 (5)
C3 0.3361 (3) 0.9096 (3) 0.9783 (2) 0.0239 (5)
H3A 0.2873 0.9646 0.9148 0.029*
C4 0.2829 (3) 0.9105 (3) 1.0906 (2) 0.0245 (5)
H4A 0.1976 0.9649 1.1051 0.029*
C5 0.3578 (3) 0.8300 (3) 1.1807 (2) 0.0244 (5)
C6 0.4829 (3) 0.7496 (3) 1.1642 (2) 0.0269 (5)
H6 0.5320 0.6958 1.2280 0.032*
C7 0.5343 (3) 0.7498 (3) 1.0515 (2) 0.0250 (5)
H7 0.6202 0.6961 1.0374 0.030*
O5 0.8758 (2) 0.7357 (2) 0.20757 (15) 0.0345 (5)
O6 1.0354 (2) 0.5601 (2) 0.27470 (17) 0.0385 (5)
O7 1.3135 (2) 0.6129 (2) −0.29233 (18) 0.0368 (5)
O8 1.1731 (2) 0.7994 (2) −0.35307 (16) 0.0347 (5)
N2 1.2191 (2) 0.7014 (3) −0.27572 (19) 0.0287 (5)
C8 0.9814 (3) 0.6492 (3) 0.1953 (2) 0.0256 (5)
C9 1.0424 (3) 0.6604 (3) 0.0705 (2) 0.0233 (5)
C10 1.1613 (3) 0.5752 (3) 0.0471 (2) 0.0253 (5)
H10 1.2030 0.5075 0.1090 0.030*
C11 1.2196 (3) 0.5889 (3) −0.0670 (2) 0.0264 (5)
H11 1.3010 0.5311 −0.0841 0.032*
C12 1.1562 (3) 0.6885 (3) −0.1550 (2) 0.0252 (5)
C13 1.0376 (3) 0.7750 (3) −0.1345 (2) 0.0259 (5)
H13 0.9963 0.8426 −0.1967 0.031*
C14 0.9806 (3) 0.7597 (3) −0.0201 (2) 0.0255 (5)
H14 0.8989 0.8174 −0.0034 0.031*
N3 0.6982 (2) 0.7378 (2) 0.61824 (18) 0.0254 (5)
H3N 0.665 (3) 0.734 (4) 0.6902 (12) 0.030*
N4 0.7971 (2) 0.7223 (2) 0.41892 (18) 0.0261 (5)
H4N 0.830 (3) 0.728 (4) 0.3454 (12) 0.031*
C15 0.8607 (3) 0.7624 (3) 0.6003 (2) 0.0274 (5)
H15A 0.9072 0.6984 0.6663 0.033*
H15B 0.8832 0.8655 0.5954 0.033*
C16 0.9224 (3) 0.7273 (3) 0.4870 (2) 0.0310 (6)
H16A 0.9946 0.8035 0.4418 0.037*
H16B 0.9733 0.6317 0.5047 0.037*
C17 0.6672 (3) 0.5903 (3) 0.6066 (2) 0.0269 (5)
H17A 0.5616 0.5648 0.6317 0.032*
H17B 0.7276 0.5163 0.6564 0.032*
C18 0.7046 (3) 0.5908 (3) 0.4791 (2) 0.0299 (6)
H18A 0.7592 0.5009 0.4744 0.036*
H18B 0.6127 0.5935 0.4418 0.036*
C19 0.6263 (3) 0.8510 (3) 0.5300 (2) 0.0304 (6)
H19A 0.6328 0.9477 0.5453 0.036*
H19B 0.5206 0.8261 0.5334 0.036*
C20 0.7063 (3) 0.8562 (3) 0.4098 (2) 0.0318 (6)
H20A 0.6330 0.8614 0.3541 0.038*
H20B 0.7704 0.9444 0.3814 0.038*

(2) 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0368 (10) 0.0397 (11) 0.0185 (9) 0.0127 (8) −0.0025 (7) −0.0077 (7)
O2 0.0355 (10) 0.0357 (10) 0.0175 (8) 0.0069 (8) −0.0028 (7) −0.0053 (7)
O3 0.0476 (12) 0.0394 (11) 0.0182 (9) 0.0023 (9) −0.0009 (8) −0.0022 (8)
O4 0.0375 (11) 0.0371 (10) 0.0264 (9) 0.0021 (8) 0.0072 (8) −0.0096 (8)
N1 0.0331 (12) 0.0299 (11) 0.0189 (10) −0.0031 (9) 0.0022 (8) −0.0060 (8)
C1 0.0243 (11) 0.0254 (12) 0.0183 (11) −0.0019 (9) −0.0008 (9) −0.0047 (9)
C2 0.0255 (12) 0.0223 (11) 0.0190 (11) −0.0027 (9) −0.0012 (9) −0.0045 (9)
C3 0.0255 (12) 0.0255 (12) 0.0198 (11) −0.0014 (9) −0.0041 (9) −0.0041 (9)
C4 0.0249 (12) 0.0250 (12) 0.0229 (12) −0.0006 (9) 0.0010 (9) −0.0066 (9)
C5 0.0300 (12) 0.0256 (12) 0.0162 (11) −0.0037 (10) 0.0026 (9) −0.0050 (9)
C6 0.0317 (13) 0.0275 (12) 0.0187 (11) 0.0016 (10) −0.0043 (10) −0.0013 (9)
C7 0.0257 (12) 0.0250 (12) 0.0222 (12) 0.0019 (9) 0.0003 (9) −0.0040 (9)
O5 0.0401 (11) 0.0445 (11) 0.0163 (9) 0.0144 (9) −0.0005 (7) −0.0062 (8)
O6 0.0454 (12) 0.0458 (12) 0.0193 (9) 0.0158 (9) −0.0035 (8) −0.0019 (8)
O7 0.0349 (10) 0.0484 (12) 0.0294 (10) 0.0019 (9) 0.0053 (8) −0.0180 (9)
O8 0.0352 (10) 0.0478 (12) 0.0194 (9) −0.0030 (9) −0.0015 (7) −0.0068 (8)
N2 0.0256 (11) 0.0382 (12) 0.0230 (11) −0.0036 (9) 0.0010 (8) −0.0105 (9)
C8 0.0264 (12) 0.0291 (12) 0.0192 (12) 0.0002 (10) −0.0015 (9) −0.0037 (9)
C9 0.0247 (12) 0.0265 (12) 0.0184 (11) −0.0009 (9) −0.0018 (9) −0.0057 (9)
C10 0.0258 (12) 0.0245 (12) 0.0235 (12) −0.0003 (9) −0.0039 (10) −0.0026 (9)
C11 0.0247 (12) 0.0264 (12) 0.0275 (13) 0.0005 (9) 0.0013 (10) −0.0080 (10)
C12 0.0255 (12) 0.0298 (12) 0.0204 (12) −0.0048 (10) 0.0015 (9) −0.0081 (10)
C13 0.0272 (12) 0.0312 (13) 0.0180 (11) −0.0008 (10) −0.0035 (9) −0.0043 (9)
C14 0.0243 (12) 0.0294 (12) 0.0215 (12) 0.0036 (9) −0.0013 (9) −0.0056 (10)
N3 0.0270 (11) 0.0308 (11) 0.0176 (10) 0.0066 (9) −0.0021 (8) −0.0061 (8)
N4 0.0290 (11) 0.0304 (11) 0.0169 (10) 0.0033 (9) 0.0004 (8) −0.0045 (8)
C15 0.0289 (13) 0.0309 (13) 0.0228 (12) 0.0008 (10) −0.0052 (10) −0.0072 (10)
C16 0.0258 (12) 0.0425 (15) 0.0232 (12) 0.0004 (11) 0.0003 (10) −0.0075 (11)
C17 0.0280 (12) 0.0312 (13) 0.0188 (12) −0.0005 (10) −0.0002 (9) −0.0033 (9)
C18 0.0365 (14) 0.0306 (13) 0.0217 (12) −0.0009 (11) −0.0018 (10) −0.0062 (10)
C19 0.0341 (14) 0.0339 (14) 0.0214 (12) 0.0121 (11) −0.0040 (10) −0.0056 (10)
C20 0.0408 (15) 0.0317 (13) 0.0195 (12) 0.0090 (11) −0.0038 (10) −0.0018 (10)

(2) 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate). Geometric parameters (Å, º)

O1—C1 1.281 (3) C12—C13 1.384 (4)
O2—C1 1.228 (3) C13—C14 1.390 (3)
O3—N1 1.229 (3) C13—H13 0.9500
O4—N1 1.228 (3) C14—H14 0.9500
N1—C5 1.475 (3) N3—C17 1.483 (3)
C1—C2 1.520 (3) N3—C15 1.485 (3)
C2—C3 1.386 (3) N3—C19 1.487 (3)
C2—C7 1.398 (3) N3—H3N 0.879 (10)
C3—C4 1.390 (3) N4—C20 1.486 (3)
C3—H3A 0.9500 N4—C16 1.487 (3)
C4—C5 1.384 (4) N4—C18 1.487 (3)
C4—H4A 0.9500 N4—H4N 0.890 (10)
C5—C6 1.383 (4) C15—C16 1.539 (3)
C6—C7 1.388 (3) C15—H15A 0.9900
C6—H6 0.9500 C15—H15B 0.9900
C7—H7 0.9500 C16—H16A 0.9900
O5—C8 1.273 (3) C16—H16B 0.9900
O6—C8 1.231 (3) C17—C18 1.538 (3)
O7—N2 1.228 (3) C17—H17A 0.9900
O8—N2 1.226 (3) C17—H17B 0.9900
N2—C12 1.479 (3) C18—H18A 0.9900
C8—C9 1.523 (3) C18—H18B 0.9900
C9—C10 1.387 (3) C19—C20 1.538 (3)
C9—C14 1.395 (3) C19—H19A 0.9900
C10—C11 1.393 (4) C19—H19B 0.9900
C10—H10 0.9500 C20—H20A 0.9900
C11—C12 1.382 (4) C20—H20B 0.9900
C11—H11 0.9500
O4—N1—O3 124.0 (2) C17—N3—C15 108.68 (19)
O4—N1—C5 117.9 (2) C17—N3—C19 109.7 (2)
O3—N1—C5 118.0 (2) C15—N3—C19 109.7 (2)
O2—C1—O1 125.6 (2) C17—N3—H3N 105 (2)
O2—C1—C2 119.0 (2) C15—N3—H3N 110 (2)
O1—C1—C2 115.4 (2) C19—N3—H3N 114 (2)
C3—C2—C7 120.3 (2) C20—N4—C16 109.6 (2)
C3—C2—C1 119.7 (2) C20—N4—C18 109.5 (2)
C7—C2—C1 120.0 (2) C16—N4—C18 108.9 (2)
C2—C3—C4 120.2 (2) C20—N4—H4N 103 (2)
C2—C3—H3A 119.9 C16—N4—H4N 111 (2)
C4—C3—H3A 119.9 C18—N4—H4N 115 (2)
C5—C4—C3 118.2 (2) N3—C15—C16 108.8 (2)
C5—C4—H4A 120.9 N3—C15—H15A 109.9
C3—C4—H4A 120.9 C16—C15—H15A 109.9
C6—C5—C4 123.2 (2) N3—C15—H15B 109.9
C6—C5—N1 118.9 (2) C16—C15—H15B 109.9
C4—C5—N1 117.9 (2) H15A—C15—H15B 108.3
C5—C6—C7 117.9 (2) N4—C16—C15 108.4 (2)
C5—C6—H6 121.1 N4—C16—H16A 110.0
C7—C6—H6 121.1 C15—C16—H16A 110.0
C6—C7—C2 120.3 (2) N4—C16—H16B 110.0
C6—C7—H7 119.8 C15—C16—H16B 110.0
C2—C7—H7 119.8 H16A—C16—H16B 108.4
O8—N2—O7 124.1 (2) N3—C17—C18 109.0 (2)
O8—N2—C12 118.0 (2) N3—C17—H17A 109.9
O7—N2—C12 118.0 (2) C18—C17—H17A 109.9
O6—C8—O5 125.5 (2) N3—C17—H17B 109.9
O6—C8—C9 119.2 (2) C18—C17—H17B 109.9
O5—C8—C9 115.3 (2) H17A—C17—H17B 108.3
C10—C9—C14 120.2 (2) N4—C18—C17 108.3 (2)
C10—C9—C8 120.2 (2) N4—C18—H18A 110.0
C14—C9—C8 119.6 (2) C17—C18—H18A 110.0
C9—C10—C11 120.0 (2) N4—C18—H18B 110.0
C9—C10—H10 120.0 C17—C18—H18B 110.0
C11—C10—H10 120.0 H18A—C18—H18B 108.4
C12—C11—C10 118.5 (2) N3—C19—C20 108.2 (2)
C12—C11—H11 120.8 N3—C19—H19A 110.1
C10—C11—H11 120.8 C20—C19—H19A 110.1
C11—C12—C13 122.9 (2) N3—C19—H19B 110.1
C11—C12—N2 117.8 (2) C20—C19—H19B 110.1
C13—C12—N2 119.3 (2) H19A—C19—H19B 108.4
C12—C13—C14 117.9 (2) N4—C20—C19 109.0 (2)
C12—C13—H13 121.1 N4—C20—H20A 109.9
C14—C13—H13 121.1 C19—C20—H20A 109.9
C13—C14—C9 120.5 (2) N4—C20—H20B 109.9
C13—C14—H14 119.7 C19—C20—H20B 109.9
C9—C14—H14 119.7 H20A—C20—H20B 108.3
O2—C1—C2—C3 6.3 (4) C10—C11—C12—N2 −179.8 (2)
O1—C1—C2—C3 −173.0 (2) O8—N2—C12—C11 −172.9 (2)
O2—C1—C2—C7 −173.4 (2) O7—N2—C12—C11 7.4 (3)
O1—C1—C2—C7 7.3 (3) O8—N2—C12—C13 7.4 (3)
C7—C2—C3—C4 −1.2 (4) O7—N2—C12—C13 −172.3 (2)
C1—C2—C3—C4 179.1 (2) C11—C12—C13—C14 −0.1 (4)
C2—C3—C4—C5 0.5 (4) N2—C12—C13—C14 179.7 (2)
C3—C4—C5—C6 0.3 (4) C12—C13—C14—C9 0.2 (4)
C3—C4—C5—N1 178.4 (2) C10—C9—C14—C13 −0.2 (4)
O4—N1—C5—C6 170.3 (2) C8—C9—C14—C13 178.0 (2)
O3—N1—C5—C6 −9.1 (4) C17—N3—C15—C16 50.7 (3)
O4—N1—C5—C4 −7.9 (3) C19—N3—C15—C16 −69.2 (3)
O3—N1—C5—C4 172.7 (2) C20—N4—C16—C15 50.2 (3)
C4—C5—C6—C7 −0.3 (4) C18—N4—C16—C15 −69.6 (3)
N1—C5—C6—C7 −178.4 (2) N3—C15—C16—N4 15.8 (3)
C5—C6—C7—C2 −0.4 (4) C15—N3—C17—C18 −69.4 (2)
C3—C2—C7—C6 1.1 (4) C19—N3—C17—C18 50.5 (3)
C1—C2—C7—C6 −179.2 (2) C20—N4—C18—C17 −68.8 (3)
O6—C8—C9—C10 −2.6 (4) C16—N4—C18—C17 51.1 (3)
O5—C8—C9—C10 177.5 (2) N3—C17—C18—N4 15.8 (3)
O6—C8—C9—C14 179.2 (2) C17—N3—C19—C20 −68.8 (3)
O5—C8—C9—C14 −0.7 (4) C15—N3—C19—C20 50.6 (3)
C14—C9—C10—C11 0.1 (4) C16—N4—C20—C19 −68.9 (3)
C8—C9—C10—C11 −178.1 (2) C18—N4—C20—C19 50.5 (3)
C9—C10—C11—C12 0.0 (4) N3—C19—C20—N4 15.6 (3)
C10—C11—C12—C13 0.0 (4)

(2) 1,4-Diazabicyclo[2.2.2]octane-1,4-diium bis(4-nitrobenzoate). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N3—H3N···O1 0.88 (2) 1.66 (2) 2.539 (3) 173 (2)
N4—H4N···O5 0.89 (2) 1.65 (2) 2.542 (3) 175 (3)
C15—H15A···O6i 0.99 2.42 3.193 (3) 134
C16—H16A···O4ii 0.99 2.42 3.375 (3) 161
C17—H17A···O7iii 0.99 2.42 3.338 (3) 153
C17—H17B···O6i 0.99 2.42 3.313 (3) 149
C20—H20A···O2iv 0.99 2.41 3.043 (3) 121
C20—H20B···O8v 0.99 2.42 3.339 (3) 154

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y, z−1; (iii) x−1, y, z+1; (iv) −x+1, −y+2, −z+1; (v) −x+2, −y+2, −z.

References

  1. Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Arman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 295–302.
  4. Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2933. [DOI] [PMC free article] [PubMed]
  5. Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. 228, 289–294.
  6. Bowes, K. F., Ferguson, G., Lough, A. J., Zakaria, C. M. & Glidewell, C. (2003). Acta Cryst. B59, 87–99. [DOI] [PubMed]
  7. Braga, D., Maini, L., de Sanctis, G., Rubini, K., Grepioni, F., Chierotti, M. R. & Gobetto, R. (2003). Chem. Eur. J. 9, 5538–5548. [DOI] [PubMed]
  8. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  9. Broker, G. A. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 1096–1109.
  10. Burchell, C. J., Ferguson, G., Lough, A. J., Gregson, R. M. & Glidewell, C. (2001a). Acta Cryst. B57, 329–338. [DOI] [PubMed]
  11. Burchell, C. J., Glidewell, C., Lough, A. J. & Ferguson, G. (2001b). Acta Cryst. B57, 201–212. [DOI] [PubMed]
  12. Chantrapromma, S. & Fun, H.-K. (2004). Acta Cryst. E60, o1250–o1252.
  13. Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338. [DOI] [PubMed]
  14. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  15. Jacobs, A., Nassimbeni, L. R., Ramon, G. & Sebogisi, B. K. (2010). CrystEngComm, 12, 3065–3070.
  16. Marivel, S., Braga, D., Grepioni, F. & Lampronti, G. I. (2010). CrystEngComm, 12, 2107–2112.
  17. Moon, S.-H. & Park, K.-M. (2012). Acta Cryst. E68, o2344. [DOI] [PMC free article] [PubMed]
  18. Rosli, M. M., Fun, H.-K., Lee, B. S. & Chantrapromma, S. (2006). Acta Cryst. E62, o4575–o4577.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Skovsgaard, S. & Bond, A. D. (2008). Acta Cryst. E64, o1416. [DOI] [PMC free article] [PubMed]
  21. Skovsgaard, S. & Bond, A. D. (2009). CrystEngComm, 11, 444–453.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) 1, 2, global. DOI: 10.1107/S1600536814011532/su0005sup1.cif

e-70-00031-sup1.cif (38.3KB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S1600536814011532/su00051sup2.hkl

e-70-00031-1sup2.hkl (150.7KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S1600536814011532/su00052sup3.hkl

e-70-00031-2sup3.hkl (200.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814011532/su00051sup4.cml

Supporting information file. DOI: 10.1107/S1600536814011532/su00052sup5.cml

CCDC references: 1004283, 1004284

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES