Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 14;70(Pt 7):o766–o767. doi: 10.1107/S1600536814013257

3-(Adamantan-1-yl)-4-benzyl-1H-1,2,4-triazole-5(4H)-thione

Fatmah A M Al-Omary a, Hazem A Ghabbour a, Ali A El-Emam a,b,*, C S Chidan Kumar c,, Hoong-Kun Fun a,c,*,§
PMCID: PMC4120616  PMID: 25161557

Abstract

The title compound, C19H23N3S, is a functionalized triazoline-3-thione derivative. The benzyl ring is almost normal to the planar 1,2,4-triazole ring (r.m.s. deviation = 0.007 Å) with a dihedral angle of 86.90 (7)°. In the crystal, molecules are linked by pairs of N—H⋯S hydrogen bonds, forming inversion dimers that enclose R 2 2(8) loops. The crystal packing is further stabilized by weak C—H⋯π inter­actions that link adjacent dimeric units into supra­molecular chains extending along the a-axis direction.

Related literature  

For the biological activity of adamantane derivatives, see: Lorenzo et al. (2008); Al-Deeb et al. (2006); Wang et al. (2013); El-Emam et al. (2004); Kadi et al. (2010); Balzarini et al. (2009); Protopopova et al. (2005); Vernier et al. (1969). For related adamantyl-1,2,4-triazole structures, see: El-Emam et al. (2012), Al-Tamimi et al. (2013). For the synthesis of the title compound, see El-Emam & Ibrahim (1991). For hydrogen-bond motifs, see: Bernstein et al. (1995).graphic file with name e-70-0o766-scheme1.jpg

Experimental  

Crystal data  

  • C19H23N3S

  • M r = 325.46

  • Triclinic, Inline graphic

  • a = 7.6407 (4) Å

  • b = 10.5150 (5) Å

  • c = 12.3434 (5) Å

  • α = 67.1806 (13)°

  • β = 72.9688 (13)°

  • γ = 70.0695 (14)°

  • V = 844.42 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.60 × 0.48 × 0.34 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.891, T max = 0.937

  • 43581 measured reflections

  • 5166 independent reflections

  • 4651 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.127

  • S = 1.08

  • 5166 reflections

  • 212 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013257/sj5408sup1.cif

e-70-0o766-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013257/sj5408Isup2.hkl

e-70-0o766-Isup2.hkl (253KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013257/sj5408Isup3.cml

CCDC reference: 1007119

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1–N3/C8/C9 triazole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.85 (2) 2.44 (2) 3.2753 (11) 169.1 (18)
C19—H19BCg1ii 0.97 2.85 3.7885 (17) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. CSCK thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

supplementary crystallographic information

S1. Comment

Adamantane derivatives have long been known for their diverse biological activities (Lorenzo et al., 2008; Al-Deeb et al., 2006; Wang et al., 2013). These also include antiviral activity against influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004; Balzarini et al., 2009). In addition, adamantane derivative were recently reported to exhibit marked antibacterial activity (Kadi et al., 2010; Protopopova et al., 2005). In an earlier publication, we reported the synthesis and potent anti-inflammatory of a series of 5-(1-adamantyl)-4-substituted-4H-1,2,4-triazole-3-thiols and related derivatives including the title compound (El-Emam & Ibrahim, 1991).

In the title compound (Fig. 1), the 1,2,4-triazole (N1—N3/C8/C9) ring is nearly planar with a maximum deviation of -0.007 (1) Å at atom N2. The central 1,2,4-triazole ring forms dihedral angles of 86.90 (7)° and 69 (4)° with the adjacent phenyl (C1–C6) and adamantyl (C10–C19) substituents attached at the 4- and 5-positions, respectively. The attached phenyl ring is almost perpendicular to the plane of the triazole which is evident from the C9–N1–C7–C6 torsion angle of -95.63 (12)°. In the crystal packing (Fig. 2), centrosymmetric dimeric aggregates are formed by pairs of N2—H1N2···S1 hydrogen bonds resulting in an R22(8) ring motif (Bernstein et al., 1995). These are connected into supramolecular chains extending along the a axis direction via weak intermolecular C–H···π(triazole) interactions (Table 1).

S2. Experimental

A mixture of adamantane-1-carbohydrazide (1.94 g, 0.01 mol), benzyl isothiocyanate (1.49 g, 0.01 mol), in ethanol (10 ml) was heated under reflux with stirring for one hour and the solvent was distilled off in vacuo. Aqueous sodium hydroxide solution (10%, 15 ml) was added to the residue and the mixture was heated under reflux for 2 h. then filtered hot. On cooling, the mixture was acidified with hydrochloric acid and the precipitated crude product was filtered, washed with water, dried and crystallized from aqueous ethanol to yield 2.93 g (90%) of the title compound (C19H23N3S) as colorless crystals. M·P.: 241–243 °C.

1H NMR (CDCl3, 700.17 MHz): δ 1.64–1.69 (m, 6H, Adamantane-H), 1.90 (s, 6H, Adamantane-H), 2.20 (s, 3H, Adamantane-H), 5.53 (s, 2H, CH2), 7.04–7.63 (s, 5H, Ar—H), 11.55 (br. s, 1H, NH). 13C NMR (CDCl3, 176.08 MHz): δ 28.51, 35.66, 36.86, 39.08 (Adamantane-C), 63.56 (CH2), 121.25, 123.0, 124.27, 130.54 (Ar—C), 154.06 (C=N), 164.41 (C=S).

S3. Refinement

The nitrogen-bound H-atom was located in a difference Fourier map and was refined freely. Other H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was used for the methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, showing the hydrogen bonding interactions as dashed lines. H-atoms not involved in the hydrogen bonding are omitted for clarity.

Crystal data

C19H23N3S Z = 2
Mr = 325.46 F(000) = 348
Triclinic, P1 Dx = 1.280 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.6407 (4) Å Cell parameters from 9608 reflections
b = 10.5150 (5) Å θ = 2.9–30.6°
c = 12.3434 (5) Å µ = 0.20 mm1
α = 67.1806 (13)° T = 293 K
β = 72.9688 (13)° Block, colourless
γ = 70.0695 (14)° 0.60 × 0.48 × 0.34 mm
V = 844.42 (7) Å3

Data collection

Bruker APEXII CCD diffractometer 5166 independent reflections
Radiation source: fine-focus sealed tube 4651 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
φ and ω scans θmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.891, Tmax = 0.937 k = −15→15
43581 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0747P)2 + 0.1424P] where P = (Fo2 + 2Fc2)/3
5166 reflections (Δ/σ)max = 0.001
212 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.56 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 1.05370 (4) 0.44991 (3) 0.32578 (3) 0.03965 (10)
N1 0.70863 (12) 0.63160 (9) 0.28216 (7) 0.02792 (16)
N2 0.74865 (14) 0.58334 (11) 0.45903 (8) 0.0360 (2)
N3 0.57266 (14) 0.67716 (11) 0.45231 (8) 0.0359 (2)
C1 0.75626 (15) 0.49115 (13) 0.03402 (10) 0.0363 (2)
H1A 0.8142 0.5555 −0.0302 0.044*
C2 0.71844 (19) 0.38114 (15) 0.01658 (13) 0.0471 (3)
H2A 0.7512 0.3719 −0.0593 0.057*
C3 0.6325 (2) 0.28550 (15) 0.11137 (15) 0.0522 (3)
H3A 0.6073 0.2118 0.0995 0.063*
C4 0.5840 (2) 0.29922 (14) 0.22381 (14) 0.0497 (3)
H4A 0.5253 0.2349 0.2876 0.060*
C5 0.62220 (17) 0.40876 (12) 0.24249 (10) 0.0390 (2)
H5A 0.5903 0.4169 0.3187 0.047*
C6 0.70774 (13) 0.50549 (10) 0.14754 (8) 0.02895 (19)
C7 0.75127 (15) 0.62875 (11) 0.15983 (8) 0.03048 (19)
H7A 0.8846 0.6242 0.1282 0.037*
H7B 0.6793 0.7175 0.1113 0.037*
C8 0.83679 (14) 0.55430 (10) 0.35740 (9) 0.03030 (19)
C9 0.54907 (13) 0.70511 (10) 0.34398 (8) 0.02803 (18)
C10 0.37568 (13) 0.81094 (10) 0.29687 (8) 0.02757 (18)
C11 0.22454 (18) 0.84649 (16) 0.40233 (11) 0.0460 (3)
H11A 0.1894 0.7604 0.4584 0.055*
H11B 0.2761 0.8830 0.4439 0.055*
C12 0.04846 (19) 0.95844 (17) 0.35680 (13) 0.0513 (3)
H12A −0.0461 0.9806 0.4247 0.062*
C13 0.1044 (2) 1.09463 (16) 0.26935 (19) 0.0642 (4)
H13A 0.1566 1.1326 0.3094 0.077*
H13B −0.0065 1.1663 0.2411 0.077*
C14 0.2523 (2) 1.05937 (13) 0.16312 (15) 0.0553 (4)
H14A 0.2873 1.1465 0.1064 0.066*
C15 0.1686 (2) 0.99973 (17) 0.10091 (13) 0.0546 (3)
H15A 0.0585 1.0705 0.0709 0.065*
H15B 0.2614 0.9773 0.0336 0.065*
C16 0.11210 (18) 0.86562 (14) 0.18917 (12) 0.0436 (3)
H16A 0.0581 0.8279 0.1488 0.052*
C17 0.28778 (16) 0.75284 (12) 0.23410 (11) 0.0380 (2)
H17A 0.3800 0.7290 0.1672 0.046*
H17B 0.2524 0.6667 0.2897 0.046*
C18 0.42886 (18) 0.94874 (12) 0.20848 (12) 0.0428 (3)
H18A 0.4818 0.9870 0.2479 0.051*
H18B 0.5239 0.9277 0.1415 0.051*
C19 −0.03504 (18) 0.90065 (16) 0.29388 (14) 0.0499 (3)
H19A −0.1464 0.9712 0.2654 0.060*
H19B −0.0728 0.8153 0.3493 0.060*
H1N2 0.798 (3) 0.5628 (19) 0.5188 (16) 0.056 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.03414 (15) 0.04240 (16) 0.04517 (17) 0.00090 (11) −0.01292 (11) −0.02211 (12)
N1 0.0301 (4) 0.0295 (4) 0.0249 (3) −0.0049 (3) −0.0058 (3) −0.0114 (3)
N2 0.0363 (4) 0.0423 (5) 0.0276 (4) −0.0032 (4) −0.0107 (3) −0.0118 (3)
N3 0.0351 (4) 0.0435 (5) 0.0264 (4) −0.0027 (4) −0.0068 (3) −0.0140 (3)
C1 0.0341 (5) 0.0463 (6) 0.0330 (5) −0.0067 (4) −0.0059 (4) −0.0208 (4)
C2 0.0439 (6) 0.0582 (7) 0.0537 (7) −0.0057 (5) −0.0127 (5) −0.0368 (6)
C3 0.0468 (7) 0.0482 (7) 0.0780 (9) −0.0082 (5) −0.0187 (6) −0.0355 (7)
C4 0.0485 (7) 0.0399 (6) 0.0619 (8) −0.0167 (5) −0.0066 (6) −0.0158 (5)
C5 0.0414 (6) 0.0381 (5) 0.0367 (5) −0.0109 (4) −0.0020 (4) −0.0144 (4)
C6 0.0261 (4) 0.0323 (4) 0.0295 (4) −0.0029 (3) −0.0052 (3) −0.0149 (3)
C7 0.0348 (5) 0.0337 (5) 0.0238 (4) −0.0092 (4) −0.0022 (3) −0.0122 (3)
C8 0.0327 (4) 0.0295 (4) 0.0302 (4) −0.0067 (3) −0.0087 (3) −0.0103 (3)
C9 0.0301 (4) 0.0295 (4) 0.0242 (4) −0.0063 (3) −0.0044 (3) −0.0101 (3)
C10 0.0292 (4) 0.0276 (4) 0.0256 (4) −0.0053 (3) −0.0050 (3) −0.0101 (3)
C11 0.0372 (5) 0.0618 (7) 0.0336 (5) 0.0026 (5) −0.0053 (4) −0.0240 (5)
C12 0.0377 (6) 0.0647 (8) 0.0516 (7) 0.0076 (5) −0.0096 (5) −0.0357 (6)
C13 0.0572 (8) 0.0428 (7) 0.1067 (13) 0.0107 (6) −0.0372 (9) −0.0429 (8)
C14 0.0536 (7) 0.0294 (5) 0.0729 (9) −0.0095 (5) −0.0244 (7) 0.0022 (5)
C15 0.0523 (7) 0.0577 (8) 0.0418 (6) −0.0021 (6) −0.0200 (6) −0.0058 (6)
C16 0.0399 (6) 0.0473 (6) 0.0527 (7) −0.0034 (5) −0.0192 (5) −0.0243 (5)
C17 0.0377 (5) 0.0351 (5) 0.0480 (6) −0.0052 (4) −0.0136 (4) −0.0199 (4)
C18 0.0402 (6) 0.0310 (5) 0.0536 (7) −0.0126 (4) −0.0123 (5) −0.0043 (4)
C19 0.0324 (5) 0.0551 (7) 0.0610 (8) −0.0069 (5) −0.0090 (5) −0.0207 (6)

Geometric parameters (Å, º)

S1—C8 1.6784 (10) C10—C17 1.5415 (14)
N1—C8 1.3735 (12) C11—C12 1.5368 (18)
N1—C9 1.3915 (12) C11—H11A 0.9700
N1—C7 1.4586 (12) C11—H11B 0.9700
N2—C8 1.3351 (13) C12—C19 1.517 (2)
N2—N3 1.3732 (13) C12—C13 1.532 (3)
N2—H1N2 0.846 (19) C12—H12A 0.9800
N3—C9 1.3065 (12) C13—C14 1.535 (3)
C1—C2 1.3876 (16) C13—H13A 0.9700
C1—C6 1.3946 (13) C13—H13B 0.9700
C1—H1A 0.9300 C14—C15 1.525 (2)
C2—C3 1.378 (2) C14—C18 1.5344 (18)
C2—H2A 0.9300 C14—H14A 0.9800
C3—C4 1.379 (2) C15—C16 1.520 (2)
C3—H3A 0.9300 C15—H15A 0.9700
C4—C5 1.3929 (17) C15—H15B 0.9700
C4—H4A 0.9300 C16—C19 1.5185 (19)
C5—C6 1.3840 (15) C16—C17 1.5351 (16)
C5—H5A 0.9300 C16—H16A 0.9800
C6—C7 1.5131 (13) C17—H17A 0.9700
C7—H7A 0.9700 C17—H17B 0.9700
C7—H7B 0.9700 C18—H18A 0.9700
C9—C10 1.5086 (13) C18—H18B 0.9700
C10—C11 1.5396 (14) C19—H19A 0.9700
C10—C18 1.5396 (14) C19—H19B 0.9700
C8—N1—C9 108.06 (8) C19—C12—C13 109.53 (12)
C8—N1—C7 121.22 (8) C19—C12—C11 109.84 (11)
C9—N1—C7 130.71 (8) C13—C12—C11 109.41 (12)
C8—N2—N3 113.41 (9) C19—C12—H12A 109.3
C8—N2—H1N2 126.3 (12) C13—C12—H12A 109.3
N3—N2—H1N2 119.1 (12) C11—C12—H12A 109.3
C9—N3—N2 104.79 (8) C12—C13—C14 109.13 (10)
C2—C1—C6 120.22 (11) C12—C13—H13A 109.9
C2—C1—H1A 119.9 C14—C13—H13A 109.9
C6—C1—H1A 119.9 C12—C13—H13B 109.9
C3—C2—C1 120.15 (11) C14—C13—H13B 109.9
C3—C2—H2A 119.9 H13A—C13—H13B 108.3
C1—C2—H2A 119.9 C15—C14—C18 109.88 (12)
C2—C3—C4 119.91 (11) C15—C14—C13 109.38 (12)
C2—C3—H3A 120.0 C18—C14—C13 109.37 (13)
C4—C3—H3A 120.0 C15—C14—H14A 109.4
C3—C4—C5 120.43 (12) C18—C14—H14A 109.4
C3—C4—H4A 119.8 C13—C14—H14A 109.4
C5—C4—H4A 119.8 C16—C15—C14 109.44 (11)
C6—C5—C4 119.92 (11) C16—C15—H15A 109.8
C6—C5—H5A 120.0 C14—C15—H15A 109.8
C4—C5—H5A 120.0 C16—C15—H15B 109.8
C5—C6—C1 119.36 (10) C14—C15—H15B 109.8
C5—C6—C7 123.23 (9) H15A—C15—H15B 108.2
C1—C6—C7 117.40 (9) C19—C16—C15 109.94 (11)
N1—C7—C6 114.42 (8) C19—C16—C17 109.96 (11)
N1—C7—H7A 108.7 C15—C16—C17 109.53 (10)
C6—C7—H7A 108.7 C19—C16—H16A 109.1
N1—C7—H7B 108.7 C15—C16—H16A 109.1
C6—C7—H7B 108.7 C17—C16—H16A 109.1
H7A—C7—H7B 107.6 C16—C17—C10 109.85 (9)
N2—C8—N1 103.79 (9) C16—C17—H17A 109.7
N2—C8—S1 129.01 (8) C10—C17—H17A 109.7
N1—C8—S1 127.19 (8) C16—C17—H17B 109.7
N3—C9—N1 109.93 (9) C10—C17—H17B 109.7
N3—C9—C10 122.14 (9) H17A—C17—H17B 108.2
N1—C9—C10 127.80 (8) C14—C18—C10 109.81 (9)
C9—C10—C11 108.87 (8) C14—C18—H18A 109.7
C9—C10—C18 109.22 (8) C10—C18—H18A 109.7
C11—C10—C18 108.93 (10) C14—C18—H18B 109.7
C9—C10—C17 112.77 (8) C10—C18—H18B 109.7
C11—C10—C17 107.69 (9) H18A—C18—H18B 108.2
C18—C10—C17 109.28 (9) C12—C19—C16 109.24 (10)
C12—C11—C10 110.21 (10) C12—C19—H19A 109.8
C12—C11—H11A 109.6 C16—C19—H19A 109.8
C10—C11—H11A 109.6 C12—C19—H19B 109.8
C12—C11—H11B 109.6 C16—C19—H19B 109.8
C10—C11—H11B 109.6 H19A—C19—H19B 108.3
H11A—C11—H11B 108.1
C8—N2—N3—C9 1.25 (13) N3—C9—C10—C17 −132.65 (10)
C6—C1—C2—C3 0.06 (19) N1—C9—C10—C17 51.96 (13)
C1—C2—C3—C4 0.0 (2) C9—C10—C11—C12 177.91 (10)
C2—C3—C4—C5 −0.4 (2) C18—C10—C11—C12 58.90 (14)
C3—C4—C5—C6 0.7 (2) C17—C10—C11—C12 −59.52 (13)
C4—C5—C6—C1 −0.56 (17) C10—C11—C12—C19 60.43 (15)
C4—C5—C6—C7 179.01 (11) C10—C11—C12—C13 −59.83 (15)
C2—C1—C6—C5 0.21 (16) C19—C12—C13—C14 −60.12 (15)
C2—C1—C6—C7 −179.39 (10) C11—C12—C13—C14 60.33 (15)
C8—N1—C7—C6 85.08 (11) C12—C13—C14—C15 59.48 (15)
C9—N1—C7—C6 −95.63 (12) C12—C13—C14—C18 −60.91 (15)
C5—C6—C7—N1 4.38 (14) C18—C14—C15—C16 60.57 (16)
C1—C6—C7—N1 −176.04 (9) C13—C14—C15—C16 −59.51 (15)
N3—N2—C8—N1 −1.21 (12) C14—C15—C16—C19 60.18 (14)
N3—N2—C8—S1 178.19 (8) C14—C15—C16—C17 −60.75 (14)
C9—N1—C8—N2 0.70 (11) C19—C16—C17—C10 −60.82 (13)
C7—N1—C8—N2 −179.87 (9) C15—C16—C17—C10 60.09 (13)
C9—N1—C8—S1 −178.72 (7) C9—C10—C17—C16 179.74 (9)
C7—N1—C8—S1 0.71 (14) C11—C10—C17—C16 59.61 (12)
N2—N3—C9—N1 −0.74 (11) C18—C10—C17—C16 −58.58 (12)
N2—N3—C9—C10 −176.86 (9) C15—C14—C18—C10 −59.41 (15)
C8—N1—C9—N3 0.04 (11) C13—C14—C18—C10 60.67 (14)
C7—N1—C9—N3 −179.32 (10) C9—C10—C18—C14 −178.04 (10)
C8—N1—C9—C10 175.88 (9) C11—C10—C18—C14 −59.25 (14)
C7—N1—C9—C10 −3.48 (16) C17—C10—C18—C14 58.16 (13)
N3—C9—C10—C11 −13.20 (14) C13—C12—C19—C16 60.51 (14)
N1—C9—C10—C11 171.41 (10) C11—C12—C19—C16 −59.68 (15)
N3—C9—C10—C18 105.64 (11) C15—C16—C19—C12 −60.60 (14)
N1—C9—C10—C18 −69.75 (12) C17—C16—C19—C12 60.06 (14)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the N1–N3/C8/C9 triazole ring.

D—H···A D—H H···A D···A D—H···A
N2—H1N2···S1i 0.85 (2) 2.44 (2) 3.2753 (11) 169.1 (18)
C19—H19B···Cg1ii 0.97 2.85 3.7885 (17) 141

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5408).

References

  1. Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47. [DOI] [PubMed]
  2. Al-Tamimi, A.-M. S., Al-Abdullah, E. S., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o685–o686. [DOI] [PMC free article] [PubMed]
  3. Balzarini, J., Orzeszko-Krzesinska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311. [DOI] [PMC free article] [PubMed]
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113. [DOI] [PubMed]
  7. El-Emam, A. A., El-Brollosy, N. R., Ghabbour, H. A., Quah, C. K. & Fun, H.-K. (2012). Acta Cryst. E68, o1347. [DOI] [PMC free article] [PubMed]
  8. El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264. [PubMed]
  9. Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011. [DOI] [PubMed]
  10. Lorenzo, P., Alvarez, R., Ortiz, M. A., Alvarez, S., Piedrafita, F. J. & de Lera, A. (2008). J. Med. Chem. 51, 5431–5440. [DOI] [PubMed]
  11. Protopopova, M., Hanrahan, C., Nikonenko, B., Samala, R., Chen, P., Gearhart, J., Einck, L. & Nacy, C. A. (2005). J. Antimicrob. Chemother. 56, 968–974. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665. [DOI] [PubMed]
  15. Wang, J., Ma, C., Wang, J., Jo, H., Canturk, B., Fiorin, G., Pinto, L. H., Lamb, R. A., Klein, M. L. & DeGrado, W. F. (2013). J. Med. Chem. 56, 2804–2812. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013257/sj5408sup1.cif

e-70-0o766-sup1.cif (26.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013257/sj5408Isup2.hkl

e-70-0o766-Isup2.hkl (253KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013257/sj5408Isup3.cml

CCDC reference: 1007119

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES