Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 11;70(Pt 7):m255. doi: 10.1107/S1600536814012975

6-Benzene)­dichlorido­(chloro­dicyclo­hexyl­phosphane-κP)ruthenium(II) chloro­form monosolvate

Saravanan Gowrisankar a, Helfried Neumann b, Anke Spannenberg b, Matthias Beller b,*
PMCID: PMC4120624  PMID: 25161521

Abstract

The title compound, [RuCl26-C6H6)(C12H22ClP)]·CHCl3, was prepared by reaction of [RuCl26-C6H6)]2 with chloro­dicyclo­hexyl­phosphane in CHCl3 at 323 K under argon. The RuII atom is surrounded by one arene ligand, two Cl atoms and a phosphane ligand in a piano-stool geometry. The phosphane ligand is linked by the P atom, with an Ru—P bond length of 2.3247 (4) Å. Both cyclo­hexyl rings at the P atom adopt a chair conformation. In the crystal, the RuII complex mol­ecule and the chloro­form solvent mol­ecule are linked by a bifurcated C—H⋯(Cl,Cl) hydrogen bond. Intra­molecular C—H⋯Cl hydrogen bonds are also observed.

Related literature  

For the mol­ecular structure of Ru complexes with the related chloro­diphenyl­phosphane ligand, see: Jantscher et al. (2009); Torres-Lubián et al. (1999).graphic file with name e-70-0m255-scheme1.jpg

Experimental  

Crystal data  

  • [RuCl2(C6H6)(C12H22ClP)]·CHCl3

  • M r = 602.16

  • Monoclinic, Inline graphic

  • a = 7.9717 (1) Å

  • b = 16.3020 (2) Å

  • c = 18.0602 (3) Å

  • β = 91.244 (1)°

  • V = 2346.45 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 150 K

  • 0.36 × 0.22 × 0.11 mm

Data collection  

  • Bruker Kappa APEXII DUO diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.630, T max = 0.859

  • 37052 measured reflections

  • 5619 independent reflections

  • 4963 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.019

  • wR(F 2) = 0.048

  • S = 1.05

  • 5619 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814012975/is5363sup1.cif

e-70-0m255-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012975/is5363Isup2.hkl

e-70-0m255-Isup2.hkl (275.1KB, hkl)

CCDC reference: 1006720

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯Cl1 0.99 2.56 3.4080 (17) 144
C18—H18A⋯Cl1 0.99 2.74 3.5366 (17) 138
C19—H19⋯Cl1i 1.00 2.69 3.5539 (17) 144
C19—H19⋯Cl2i 1.00 2.77 3.6119 (18) 142

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

S1. Comment

The half-sandwich (η6–C6H6)-dichlorido(chlorodicyclohexylphosphane)ruthenium(II) complex was formed by reaction of one equivalent of [RuCl26-C6H6)]2 with two equivalents of (Cy2P(1-naphthoyl)) ligand under hydrogenation conditions (CHCl3, 60 bar of H2, 353 K, 3 hrs) as a side product. The cleavage of the 1-naphthoyl group from [RuCl26-C6H6)(Cy2P(1-naphthoyl)] complex forms firstly [RuCl26-C6H6)(Cy2PH)] and subsequent chlorination of the dicyclohexylphosphane unit due to CHCl3 yields the title compound in poor yield. Additionally, we could not observe any trace amount of title compound by using non-chlorinated solvents such as MeOH. The substitution of hydrogen next to phosphane by chlorine coming from solvent molecules is also described for the formation of a Ru-complex with the related chlorodiphenylphosphane ligand by Torres-Lubián et al. (1999). More specifically, the title complex was formed by reaction of [RuCl26-C6H6)]2 with chlorodicyclohexylphosphane in CHCl3 at 323 K under argon in 41% yield. Crystals suitable for X-ray crystal structure analysis could be obtained by crystallization from a chloroform/heptane mixture. In the 31P NMR spectrum of the complex the signal for the phosphorus was observed at 156.3 p.p.m., whereas free ligand signal appears at 128.8 p.p.m.. The title compound shows the three legged piano-stool geometry at the ruthenium centre with the arene, chlorodicyclohexylphosphane and two chlorine ligands in the coordination sphere (Fig. 1). The phosphane ligand is linked by the phosphorus with a Ru—P bond length of 2.3247 (4) Å. Both cyclohexyl rings at the phosphorus atom adopt a chair conformation. The Ru complex is co-crystallized with CHCl3.

S2. Experimental

A 50 ml round bottom flask with inert gas valve was charged with 0.05 mmol (25 mg) [RuCl26-C6H6)]2 and 4 ml CHCl3 under argon atmosphere. To this suspension 0.105 mmol (21 µL) chlorodicyclohexylphosphane was added and the reaction mixture was allowed to react 3 h at 323 K. A clear red brown solution has been formed and the volume was reduced carefully in high vacuum to ca 1 ml. Next 20 ml heptane was added to the reaction mixture and cooled for 1 h with ice bath. The precipitate was washed with heptane (3 × 5 ml) to yield the title compound as an orange brown solid (20 mg, 41%). Red single crystals were grown in CHCl3/heptane mixture at 245 K for 1 day. 1H NMR (300 MHz), CDCl3): δ 5.71 (s, 6H, benzene), 2.79 (m, 2H, Cy), 2.06–1.54 (m, 14H, Cy), 1.27 (br s, 6H, Cy). 13C {1H} NMR (75 MHz, CDCl3): δ 89.8 (RuPh), 40.4 (d, JPC = 9.5 Hz, PCH), 27.2, 26.9, 26.7, 26.4, 26.3, 26.0, 26.0, 25.6 (CH2). 31P {1H} NMR (121 MHz, CDCl3): δ 156.3.

S3. Refinement

H atoms were placed in idealized positions with C—H = 0.95–1.00 Å (CH), 0.99 Å (CH2) and refined using a riding model with Uiso(H) fixed at 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 30% displacement ellipsoids. Hydrogen atoms are omitted for clarity.

Crystal data

[RuCl2(C6H6)(C12H22ClP)]·CHCl3 F(000) = 1216
Mr = 602.16 Dx = 1.705 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.9717 (1) Å Cell parameters from 9877 reflections
b = 16.3020 (2) Å θ = 2.3–27.9°
c = 18.0602 (3) Å µ = 1.42 mm1
β = 91.244 (1)° T = 150 K
V = 2346.45 (6) Å3 Prism, orange
Z = 4 0.36 × 0.22 × 0.11 mm

Data collection

Bruker Kappa APEXII DUO diffractometer 5619 independent reflections
Radiation source: fine-focus sealed tube 4963 reflections with I > 2σ(I)
Curved graphite monochromator Rint = 0.031
Detector resolution: 8.3333 pixels mm-1 θmax = 27.9°, θmin = 1.7°
ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2008) k = −21→21
Tmin = 0.630, Tmax = 0.859 l = −23→23
37052 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0187P)2 + 1.4791P] where P = (Fo2 + 2Fc2)/3
5619 reflections (Δ/σ)max = 0.001
244 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.2498 (2) 0.37279 (11) 0.04879 (10) 0.0223 (4)
H1 −0.3279 0.3746 0.0083 0.027*
C2 −0.2406 (2) 0.30292 (11) 0.09373 (10) 0.0227 (4)
H2 −0.3181 0.2592 0.0863 0.027*
C3 −0.1149 (2) 0.29763 (11) 0.15045 (10) 0.0230 (4)
H3 −0.1069 0.2501 0.1808 0.028*
C4 −0.0024 (2) 0.36315 (11) 0.16134 (10) 0.0231 (4)
H4 0.0864 0.3585 0.1970 0.028*
C5 −0.0212 (2) 0.43653 (11) 0.11906 (10) 0.0235 (4)
H5 0.0498 0.4822 0.1291 0.028*
C6 −0.1430 (2) 0.44123 (11) 0.06332 (10) 0.0227 (4)
H6 −0.1552 0.4900 0.0349 0.027*
C7 0.2490 (2) 0.14568 (10) 0.07869 (9) 0.0160 (3)
H7 0.3484 0.1741 0.0577 0.019*
C8 0.2460 (2) 0.16860 (11) 0.16112 (9) 0.0211 (3)
H8A 0.2381 0.2290 0.1661 0.025*
H8B 0.1456 0.1442 0.1837 0.025*
C9 0.4035 (2) 0.13820 (11) 0.20233 (10) 0.0238 (4)
H9A 0.5032 0.1664 0.1828 0.029*
H9B 0.3958 0.1518 0.2556 0.029*
C10 0.4238 (2) 0.04591 (11) 0.19335 (11) 0.0276 (4)
H10A 0.5280 0.0278 0.2193 0.033*
H10B 0.3280 0.0174 0.2160 0.033*
C11 0.4316 (2) 0.02332 (11) 0.11175 (11) 0.0260 (4)
H11A 0.4399 −0.0370 0.1070 0.031*
H11B 0.5337 0.0476 0.0905 0.031*
C12 0.2773 (2) 0.05349 (10) 0.06779 (10) 0.0205 (3)
H12A 0.1771 0.0231 0.0840 0.025*
H12B 0.2924 0.0421 0.0145 0.025*
C13 0.0709 (2) 0.13975 (10) −0.06377 (9) 0.0161 (3)
H13 0.0799 0.0791 −0.0565 0.019*
C14 −0.0879 (2) 0.15535 (10) −0.11130 (10) 0.0200 (3)
H14A −0.1863 0.1318 −0.0865 0.024*
H14B −0.1060 0.2152 −0.1166 0.024*
C15 −0.0711 (2) 0.11651 (12) −0.18795 (10) 0.0270 (4)
H15A −0.0682 0.0561 −0.1828 0.032*
H15B −0.1705 0.1310 −0.2190 0.032*
C16 0.0864 (3) 0.14489 (13) −0.22631 (10) 0.0305 (4)
H16A 0.0799 0.2047 −0.2356 0.037*
H16B 0.0953 0.1167 −0.2746 0.037*
C17 0.2405 (2) 0.12592 (12) −0.17829 (10) 0.0246 (4)
H17A 0.3422 0.1453 −0.2035 0.030*
H17B 0.2503 0.0658 −0.1715 0.030*
C18 0.2299 (2) 0.16729 (10) −0.10279 (9) 0.0193 (3)
H18A 0.2282 0.2276 −0.1092 0.023*
H18B 0.3298 0.1528 −0.0720 0.023*
C19 0.4349 (2) 0.38768 (11) 0.85956 (10) 0.0222 (4)
H19 0.3475 0.3760 0.8970 0.027*
Cl1 0.01613 (5) 0.35589 (2) −0.08323 (2) 0.01901 (8)
Cl2 0.30706 (5) 0.34441 (2) 0.04619 (2) 0.02103 (9)
Cl3 −0.12314 (5) 0.11221 (2) 0.07235 (2) 0.02052 (8)
Cl4 0.54297 (6) 0.47752 (3) 0.88609 (3) 0.03089 (10)
Cl5 0.57325 (6) 0.30361 (3) 0.85639 (3) 0.03164 (11)
Cl6 0.33498 (7) 0.40171 (4) 0.77265 (3) 0.03799 (12)
P1 0.06247 (5) 0.18613 (2) 0.02855 (2) 0.01377 (8)
Ru1 0.007356 (16) 0.324634 (7) 0.046687 (7) 0.01356 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0154 (8) 0.0266 (9) 0.0251 (9) 0.0050 (7) 0.0032 (7) −0.0038 (7)
C2 0.0166 (8) 0.0240 (8) 0.0279 (9) −0.0015 (7) 0.0095 (7) −0.0046 (7)
C3 0.0270 (9) 0.0234 (8) 0.0190 (8) 0.0043 (7) 0.0099 (7) 0.0008 (7)
C4 0.0251 (9) 0.0275 (9) 0.0170 (8) 0.0056 (7) 0.0010 (7) −0.0062 (7)
C5 0.0250 (9) 0.0204 (8) 0.0253 (9) 0.0017 (7) 0.0054 (7) −0.0085 (7)
C6 0.0232 (9) 0.0191 (8) 0.0260 (9) 0.0067 (7) 0.0067 (7) −0.0004 (7)
C7 0.0141 (7) 0.0165 (7) 0.0173 (8) 0.0005 (6) −0.0004 (6) 0.0005 (6)
C8 0.0222 (8) 0.0236 (8) 0.0176 (8) 0.0027 (7) −0.0016 (7) −0.0017 (7)
C9 0.0224 (9) 0.0273 (9) 0.0213 (9) −0.0005 (7) −0.0066 (7) 0.0002 (7)
C10 0.0218 (9) 0.0260 (9) 0.0344 (10) −0.0004 (7) −0.0097 (8) 0.0074 (8)
C11 0.0202 (9) 0.0197 (8) 0.0378 (10) 0.0045 (7) −0.0052 (8) −0.0008 (8)
C12 0.0206 (8) 0.0159 (8) 0.0248 (9) 0.0015 (6) −0.0029 (7) −0.0004 (7)
C13 0.0174 (8) 0.0145 (7) 0.0165 (8) −0.0002 (6) 0.0008 (6) −0.0024 (6)
C14 0.0196 (8) 0.0189 (8) 0.0213 (8) −0.0024 (6) −0.0035 (7) −0.0011 (6)
C15 0.0309 (10) 0.0306 (10) 0.0192 (9) −0.0067 (8) −0.0079 (7) 0.0000 (7)
C16 0.0403 (11) 0.0340 (10) 0.0171 (9) −0.0065 (9) −0.0011 (8) 0.0025 (8)
C17 0.0279 (9) 0.0283 (9) 0.0178 (8) 0.0010 (8) 0.0057 (7) −0.0024 (7)
C18 0.0196 (8) 0.0216 (8) 0.0168 (8) 0.0000 (6) 0.0015 (6) −0.0015 (6)
C19 0.0174 (8) 0.0282 (9) 0.0210 (8) 0.0003 (7) 0.0000 (7) 0.0001 (7)
Cl1 0.02313 (19) 0.01688 (18) 0.01704 (19) −0.00012 (15) 0.00118 (15) 0.00162 (14)
Cl2 0.01470 (18) 0.02085 (19) 0.0275 (2) −0.00415 (15) 0.00011 (16) −0.00070 (16)
Cl3 0.01850 (18) 0.01891 (19) 0.0243 (2) −0.00493 (15) 0.00428 (15) 0.00082 (15)
Cl4 0.0287 (2) 0.0250 (2) 0.0388 (3) −0.00293 (18) −0.0043 (2) −0.00117 (19)
Cl5 0.0251 (2) 0.0273 (2) 0.0425 (3) 0.00382 (18) 0.0000 (2) −0.0002 (2)
Cl6 0.0334 (3) 0.0535 (3) 0.0266 (2) 0.0079 (2) −0.0096 (2) −0.0028 (2)
P1 0.01298 (18) 0.01378 (18) 0.01459 (19) −0.00112 (15) 0.00104 (15) −0.00075 (15)
Ru1 0.01285 (6) 0.01339 (6) 0.01447 (6) −0.00015 (5) 0.00123 (5) −0.00095 (5)

Geometric parameters (Å, º)

C1—C2 1.400 (3) C11—C12 1.530 (2)
C1—C6 1.425 (2) C11—H11A 0.9900
C1—Ru1 2.1966 (17) C11—H11B 0.9900
C1—H1 0.9500 C12—H12A 0.9900
C2—C3 1.420 (3) C12—H12B 0.9900
C2—Ru1 2.1970 (17) C13—C18 1.530 (2)
C2—H2 0.9500 C13—C14 1.535 (2)
C3—C4 1.406 (3) C13—P1 1.8334 (16)
C3—Ru1 2.1759 (17) C13—H13 1.0000
C3—H3 0.9500 C14—C15 1.531 (2)
C4—C5 1.425 (3) C14—H14A 0.9900
C4—Ru1 2.1668 (17) C14—H14B 0.9900
C4—H4 0.9500 C15—C16 1.519 (3)
C5—C6 1.386 (3) C15—H15A 0.9900
C5—Ru1 2.2585 (17) C15—H15B 0.9900
C5—H5 0.9500 C16—C17 1.520 (3)
C6—Ru1 2.2705 (17) C16—H16A 0.9900
C6—H6 0.9500 C16—H16B 0.9900
C7—C12 1.533 (2) C17—C18 1.525 (2)
C7—C8 1.536 (2) C17—H17A 0.9900
C7—P1 1.8457 (16) C17—H17B 0.9900
C7—H7 1.0000 C18—H18A 0.9900
C8—C9 1.528 (2) C18—H18B 0.9900
C8—H8A 0.9900 C19—Cl6 1.7596 (18)
C8—H8B 0.9900 C19—Cl4 1.7602 (18)
C9—C10 1.522 (3) C19—Cl5 1.7609 (18)
C9—H9A 0.9900 C19—H19 1.0000
C9—H9B 0.9900 Cl1—Ru1 2.4036 (4)
C10—C11 1.522 (3) Cl2—Ru1 2.4110 (4)
C10—H10A 0.9900 Cl3—P1 2.0779 (6)
C10—H10B 0.9900 P1—Ru1 2.3247 (4)
C2—C1—C6 120.45 (17) C15—C14—C13 110.48 (14)
C2—C1—Ru1 71.44 (10) C15—C14—H14A 109.6
C6—C1—Ru1 74.25 (10) C13—C14—H14A 109.6
C2—C1—H1 119.8 C15—C14—H14B 109.6
C6—C1—H1 119.8 C13—C14—H14B 109.6
Ru1—C1—H1 126.4 H14A—C14—H14B 108.1
C1—C2—C3 119.69 (16) C16—C15—C14 112.07 (15)
C1—C2—Ru1 71.41 (10) C16—C15—H15A 109.2
C3—C2—Ru1 70.25 (10) C14—C15—H15A 109.2
C1—C2—H2 120.2 C16—C15—H15B 109.2
C3—C2—H2 120.2 C14—C15—H15B 109.2
Ru1—C2—H2 130.8 H15A—C15—H15B 107.9
C4—C3—C2 119.52 (17) C15—C16—C17 110.09 (15)
C4—C3—Ru1 70.76 (10) C15—C16—H16A 109.6
C2—C3—Ru1 71.86 (10) C17—C16—H16A 109.6
C4—C3—H3 120.2 C15—C16—H16B 109.6
C2—C3—H3 120.2 C17—C16—H16B 109.6
Ru1—C3—H3 129.5 H16A—C16—H16B 108.2
C3—C4—C5 120.24 (17) C16—C17—C18 111.10 (15)
C3—C4—Ru1 71.47 (10) C16—C17—H17A 109.4
C5—C4—Ru1 74.74 (10) C18—C17—H17A 109.4
C3—C4—H4 119.9 C16—C17—H17B 109.4
C5—C4—H4 119.9 C18—C17—H17B 109.4
Ru1—C4—H4 125.7 H17A—C17—H17B 108.0
C6—C5—C4 119.95 (17) C17—C18—C13 110.17 (14)
C6—C5—Ru1 72.66 (10) C17—C18—H18A 109.6
C4—C5—Ru1 67.75 (9) C13—C18—H18A 109.6
C6—C5—H5 120.0 C17—C18—H18B 109.6
C4—C5—H5 120.0 C13—C18—H18B 109.6
Ru1—C5—H5 132.5 H18A—C18—H18B 108.1
C5—C6—C1 119.83 (17) Cl6—C19—Cl4 110.13 (10)
C5—C6—Ru1 71.71 (10) Cl6—C19—Cl5 110.11 (10)
C1—C6—Ru1 68.61 (9) Cl4—C19—Cl5 110.69 (9)
C5—C6—H6 120.1 Cl6—C19—H19 108.6
C1—C6—H6 120.1 Cl4—C19—H19 108.6
Ru1—C6—H6 132.6 Cl5—C19—H19 108.6
C12—C7—C8 111.62 (14) C13—P1—C7 104.70 (7)
C12—C7—P1 114.00 (11) C13—P1—Cl3 98.49 (5)
C8—C7—P1 111.07 (11) C7—P1—Cl3 100.29 (6)
C12—C7—H7 106.5 C13—P1—Ru1 122.65 (5)
C8—C7—H7 106.5 C7—P1—Ru1 115.50 (5)
P1—C7—H7 106.5 Cl3—P1—Ru1 111.79 (2)
C9—C8—C7 111.31 (14) C4—Ru1—C3 37.77 (7)
C9—C8—H8A 109.4 C4—Ru1—C1 80.04 (7)
C7—C8—H8A 109.4 C3—Ru1—C1 67.77 (7)
C9—C8—H8B 109.4 C4—Ru1—C2 68.03 (7)
C7—C8—H8B 109.4 C3—Ru1—C2 37.89 (7)
H8A—C8—H8B 108.0 C1—Ru1—C2 37.15 (7)
C10—C9—C8 110.91 (15) C4—Ru1—C5 37.51 (7)
C10—C9—H9A 109.5 C3—Ru1—C5 67.19 (7)
C8—C9—H9A 109.5 C1—Ru1—C5 66.15 (7)
C10—C9—H9B 109.5 C2—Ru1—C5 78.67 (7)
C8—C9—H9B 109.5 C4—Ru1—C6 66.48 (7)
H9A—C9—H9B 108.0 C3—Ru1—C6 78.92 (7)
C11—C10—C9 110.42 (15) C1—Ru1—C6 37.15 (6)
C11—C10—H10A 109.6 C2—Ru1—C6 66.53 (7)
C9—C10—H10A 109.6 C5—Ru1—C6 35.63 (7)
C11—C10—H10B 109.6 C4—Ru1—P1 115.27 (5)
C9—C10—H10B 109.6 C3—Ru1—P1 90.82 (5)
H10A—C10—H10B 108.1 C1—Ru1—P1 121.93 (5)
C10—C11—C12 112.06 (15) C2—Ru1—P1 94.15 (5)
C10—C11—H11A 109.2 C5—Ru1—P1 152.59 (5)
C12—C11—H11A 109.2 C6—Ru1—P1 159.01 (5)
C10—C11—H11B 109.2 C4—Ru1—Cl1 150.91 (5)
C12—C11—H11B 109.2 C3—Ru1—Cl1 155.05 (5)
H11A—C11—H11B 107.9 C1—Ru1—Cl1 89.32 (5)
C11—C12—C7 111.57 (14) C2—Ru1—Cl1 117.20 (5)
C11—C12—H12A 109.3 C5—Ru1—Cl1 113.53 (5)
C7—C12—H12A 109.3 C6—Ru1—Cl1 88.76 (5)
C11—C12—H12B 109.3 P1—Ru1—Cl1 93.366 (15)
C7—C12—H12B 109.3 C4—Ru1—Cl2 91.20 (5)
H12A—C12—H12B 108.0 C3—Ru1—Cl2 119.52 (5)
C18—C13—C14 112.01 (14) C1—Ru1—Cl2 151.36 (5)
C18—C13—P1 110.18 (11) C2—Ru1—Cl2 157.35 (5)
C14—C13—P1 113.20 (11) C5—Ru1—Cl2 90.37 (5)
C18—C13—H13 107.0 C6—Ru1—Cl2 114.49 (5)
C14—C13—H13 107.0 P1—Ru1—Cl2 86.505 (14)
P1—C13—H13 107.0 Cl1—Ru1—Cl2 85.306 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14B···Cl1 0.99 2.56 3.4080 (17) 144
C18—H18A···Cl1 0.99 2.74 3.5366 (17) 138
C19—H19···Cl1i 1.00 2.69 3.5539 (17) 144
C19—H19···Cl2i 1.00 2.77 3.6119 (18) 142

Symmetry code: (i) x, y, z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5363).

References

  1. Bruker (2008). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2009). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2011). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Jantscher, F., Kirchner, K. & Mereiter, K. (2009). Acta Cryst. E65, m941. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Torres-Lubián, R., Rosales-Hoz, M. J., Arif, A. M., Ernst, R. D. & Paz-Sandoval, M. A. (1999). J. Organomet. Chem. 585, 68–82.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814012975/is5363sup1.cif

e-70-0m255-sup1.cif (28.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012975/is5363Isup2.hkl

e-70-0m255-Isup2.hkl (275.1KB, hkl)

CCDC reference: 1006720

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES