Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 14;70(Pt 7):o782. doi: 10.1107/S1600536814013518

N-Methyl-N-nitroso-p-toluene­sulfon­amide

Kartik Rai a, Vincent Wu a, Priya Gupta a, David A Laviska a, Benny C Chan a,*
PMCID: PMC4120625  PMID: 25161568

Abstract

The crystal structure of the title compound, C8H10N2O3S, displays predominant C—H⋯O hydrogen-bonding and π–π stacking inter­actions. The hydrogen bonds are between the O atoms of the sulfonyl group and H atoms on methyl groups. The π–π stacking inter­actions occur between adjacent aromatic rings, with a centroid–centroid distance of 3.868 (11) Å. These inter­actions lead to the formation of chains parallel to (101).

Related literature  

For the use of the title compound as a nitro­sylating agent, see: Mayer et al. (2014). For related structures, see: Hakkinen et al. (1988); Lightfoot et al. (1993). For the use of the title compound as a potential cancer chemotherapeutic, see: Garcia-Rio et al. (2011); Skinner et al. (1960). For its use as an anti­microbial, see: Uri & Scola (1992) and as a precursor in methyl­ene production and production of heterocyclic rings, see: Hudlicky (1980). For literature hydrogen-bond lengths between sulfonyl O atoms and methyl H atoms in sulfonamide structures, see: Dodoff et al. (2004). For the potential use of sulfonamide compounds as ligands for metal coordination, see: Jacobs et al. (2013).graphic file with name e-70-0o782-scheme1.jpg

Experimental  

Crystal data  

  • C8H10N2O3S

  • M r = 214.24

  • Triclinic, Inline graphic

  • a = 6.8911 (8) Å

  • b = 8.4435 (10) Å

  • c = 8.6248 (10) Å

  • α = 81.458 (1)°

  • β = 85.883 (1)°

  • γ = 80.310 (1)°

  • V = 488.62 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 100 K

  • 0.84 × 0.29 × 0.10 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2011) T min = 0.687, T max = 0.746

  • 5753 measured reflections

  • 2275 independent reflections

  • 1892 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.096

  • S = 1.09

  • 2275 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013518/fj2674sup1.cif

e-70-0o782-sup1.cif (181.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013518/fj2674Isup2.hkl

e-70-0o782-Isup2.hkl (125.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013518/fj2674Isup3.cml

CCDC reference: 1007700

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8b⋯O1i 0.95 (2) 2.49 (2) 3.401 (2) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge The College of New Jersey’s School of Science for research funding and the National Science Foundation for major research instrumentation grant (NSF-0922931) for diffractometer acquisition.

supplementary crystallographic information

S1. Comment

Diazald (N-methyl-N-nitroso-p- toluenesulfonamide) has been known to be a versatile reagent used in the general synthesis of diazomethane, a useful compound that serves as a precursor for methylene production and is used in the production of heterocyclic rings. (Hudlicky, 1980) Recently, these N-nitroso compounds have gained attention due to their potential cancer chemotherapeutic abilities. (Skinner et al., 1960); (Garcia-Rio et al., 2011) Additionally, the title compound was also found to behave as an antimicrobial agent against yeasts, fungi, Gram-negative, and Gram-positive bacteria. (Uri & Scola, 1992) The title compound was also shown to behave as a nitrosylating reagent in the formation of a new diruthenium complex. (Mayer et al., 2014) Specifically, our group has investigated the potential of these sulfonamide structures as ligands for metal coordination. (Jacobs et al., 2013) Here we report on the crystal structure of this versatile compound. This compound forms hydrogen bonds of 2.49 (2) Å between the oxygen atom (O1) on the sulfonyl group of one molecule and the hydrogen atom (H10B) on the methyl group of another. These hydrogen bond lengths were confirmed to be in the normal range (2.31 (6) Å - 2.53 (12) Å) between sulfonyl O atoms and methyl H atoms on sulfonamide structures. (Dodoff et al., 2004) Additionally, pi-stacking interactions exist between adjacent aromatic rings and measure 3.868 (11) Å. These pi-stacking and hydrogen bonding interactions produce a stabilized dimerized crystal structure resulting in parallel chains.

S2. Experimental

Approximately 100 mg of the title compound were dissolved in 2 ml of 100% isopropyl alcohol solution after being heated to boiling conditions. The solution was allowed to evaporate slowly for three days at approximately 4 C until clear, colorless crystals were formed. A crystal was manually separated and analyzed for crystallographic data using a Bruker APEXII CCD single-crystal X-ray diffractometer.

S3. Refinement

The structure was solved using direct methods (Bruker, 2011). Hydrogen 8 A, 8B, 8 C were found by electron difference maps and then allowed to vary in 3 dimensions. The isotropic parameter was held to -1.2.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot at 50% probability.

Fig. 2.

Fig. 2.

The title structure is stabilized by a hydrogen bond between O2 and H8C, which measures 2.49 (2) Å and pi-stacking interactions between adjacent benzene rings, which measures 3.871 (11) Å. Oxygen atoms are shown in red, carbon atoms in black, hydrogen atoms in white, and nitrogen atoms in blue. Symmetry equivalent pi-stacking and hydrogen bonding are indicated by red and blue dashed lines, respectively.

Crystal data

C8H10N2O3S Z = 2
Mr = 214.24 F(000) = 224
Triclinic, P1 Dx = 1.456 Mg m3
a = 6.8911 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.4435 (10) Å Cell parameters from 3237 reflections
c = 8.6248 (10) Å θ = 2.5–28.1°
α = 81.458 (1)° µ = 0.31 mm1
β = 85.883 (1)° T = 100 K
γ = 80.310 (1)° Block, colorless
V = 488.62 (10) Å3 0.84 × 0.29 × 0.10 mm

Data collection

Bruker APEXII CCD diffractometer 2275 independent reflections
Radiation source: fine-focus sealed tube 1892 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
Detector resolution: 8.3333 pixels mm-1 θmax = 28.4°, θmin = 2.4°
ω and φ scans h = −9→9
Absorption correction: numerical (SADABS; Bruker, 2011) k = −10→11
Tmin = 0.687, Tmax = 0.746 l = −11→11
5753 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: mixed
wR(F2) = 0.096 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0425P)2 + 0.2042P] where P = (Fo2 + 2Fc2)/3
2275 reflections (Δ/σ)max < 0.001
137 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.20728 (6) 0.03322 (5) 0.28268 (5) 0.01794 (13)
O1 0.33666 (19) −0.07228 (14) 0.38895 (14) 0.0234 (3)
O2 0.05198 (18) −0.02289 (15) 0.21663 (15) 0.0239 (3)
O3 −0.1436 (2) 0.37946 (16) 0.40008 (15) 0.0301 (3)
N1 0.0960 (2) 0.18010 (17) 0.38888 (16) 0.0184 (3)
N2 −0.0760 (2) 0.26414 (19) 0.33146 (18) 0.0246 (3)
C1 0.3438 (2) 0.13715 (19) 0.13431 (19) 0.0167 (3)
C2 0.5359 (3) 0.1532 (2) 0.1589 (2) 0.0200 (4)
H2 0.5971 0.1025 0.2528 0.024*
C3 0.6369 (3) 0.2450 (2) 0.0434 (2) 0.0219 (4)
H3 0.7691 0.2557 0.0584 0.026*
C4 0.5484 (3) 0.3215 (2) −0.0938 (2) 0.0204 (4)
C5 0.3552 (3) 0.3032 (2) −0.1148 (2) 0.0220 (4)
H5 0.2932 0.3554 −0.2079 0.026*
C6 0.2519 (3) 0.2107 (2) −0.0028 (2) 0.0204 (4)
H6 0.1209 0.1976 −0.0190 0.024*
C7 0.6590 (3) 0.4220 (2) −0.2174 (2) 0.0282 (4)
H7A 0.7301 0.4901 −0.1669 0.042*
H7B 0.5657 0.4911 −0.2891 0.042*
H7C 0.7532 0.3502 −0.2764 0.042*
C8 0.1981 (3) 0.2380 (2) 0.5075 (2) 0.0219 (4)
H8A 0.194 (3) 0.352 (3) 0.480 (2) 0.033*
H8B 0.329 (3) 0.181 (3) 0.512 (2) 0.033*
H8C 0.137 (3) 0.215 (3) 0.609 (3) 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0207 (2) 0.0151 (2) 0.0183 (2) −0.00448 (16) 0.00224 (16) −0.00297 (15)
O1 0.0286 (7) 0.0165 (6) 0.0228 (6) −0.0012 (5) 0.0013 (5) 0.0012 (5)
O2 0.0252 (7) 0.0247 (7) 0.0254 (7) −0.0118 (5) 0.0032 (5) −0.0084 (5)
O3 0.0338 (8) 0.0250 (7) 0.0277 (7) 0.0064 (6) 0.0014 (6) −0.0053 (6)
N1 0.0195 (7) 0.0190 (7) 0.0165 (7) −0.0018 (6) 0.0003 (6) −0.0037 (6)
N2 0.0249 (8) 0.0241 (8) 0.0223 (8) 0.0016 (6) −0.0004 (6) −0.0019 (6)
C1 0.0203 (8) 0.0131 (8) 0.0170 (8) −0.0030 (6) 0.0025 (6) −0.0040 (6)
C2 0.0186 (8) 0.0207 (9) 0.0203 (8) −0.0015 (7) −0.0015 (7) −0.0026 (7)
C3 0.0177 (9) 0.0226 (9) 0.0259 (9) −0.0052 (7) 0.0016 (7) −0.0039 (7)
C4 0.0274 (9) 0.0148 (8) 0.0192 (8) −0.0039 (7) 0.0064 (7) −0.0062 (7)
C5 0.0298 (10) 0.0199 (9) 0.0158 (8) −0.0020 (7) −0.0025 (7) −0.0020 (7)
C6 0.0197 (9) 0.0226 (9) 0.0197 (9) −0.0038 (7) −0.0010 (7) −0.0056 (7)
C7 0.0372 (11) 0.0228 (10) 0.0251 (10) −0.0092 (8) 0.0092 (8) −0.0046 (8)
C8 0.0269 (10) 0.0215 (9) 0.0187 (9) −0.0063 (8) −0.0008 (7) −0.0046 (7)

Geometric parameters (Å, º)

S1—O2 1.4258 (13) C3—H3 0.9500
S1—O1 1.4268 (13) C4—C5 1.393 (3)
S1—N1 1.6975 (14) C4—C7 1.506 (2)
S1—C1 1.7504 (17) C5—C6 1.384 (2)
O3—N2 1.2224 (19) C5—H5 0.9500
N1—N2 1.360 (2) C6—H6 0.9500
N1—C8 1.466 (2) C7—H7A 0.9800
C1—C2 1.388 (2) C7—H7B 0.9800
C1—C6 1.394 (2) C7—H7C 0.9800
C2—C3 1.390 (2) C8—H8A 0.96 (2)
C2—H2 0.9500 C8—H8B 0.95 (2)
C3—C4 1.391 (2) C8—H8C 0.96 (2)
O2—S1—O1 121.43 (8) C3—C4—C7 120.73 (17)
O2—S1—N1 105.80 (7) C5—C4—C7 120.63 (16)
O1—S1—N1 104.15 (7) C6—C5—C4 121.35 (16)
O2—S1—C1 109.93 (8) C6—C5—H5 119.3
O1—S1—C1 110.06 (8) C4—C5—H5 119.3
N1—S1—C1 103.75 (7) C5—C6—C1 118.66 (16)
N2—N1—C8 121.69 (14) C5—C6—H6 120.7
N2—N1—S1 114.33 (11) C1—C6—H6 120.7
C8—N1—S1 122.36 (12) C4—C7—H7A 109.5
O3—N2—N1 113.28 (14) C4—C7—H7B 109.5
C2—C1—C6 121.41 (16) H7A—C7—H7B 109.5
C2—C1—S1 119.72 (13) C4—C7—H7C 109.5
C6—C1—S1 118.76 (13) H7A—C7—H7C 109.5
C1—C2—C3 118.62 (16) H7B—C7—H7C 109.5
C1—C2—H2 120.7 N1—C8—H8A 108.3 (13)
C3—C2—H2 120.7 N1—C8—H8B 108.9 (13)
C2—C3—C4 121.31 (16) H8A—C8—H8B 112.2 (19)
C2—C3—H3 119.3 N1—C8—H8C 110.6 (13)
C4—C3—H3 119.3 H8A—C8—H8C 110.3 (18)
C3—C4—C5 118.64 (16) H8B—C8—H8C 106.5 (18)
O2—S1—N1—N2 −30.84 (14) O1—S1—C1—C6 162.52 (13)
O1—S1—N1—N2 −159.92 (12) N1—S1—C1—C6 −86.55 (14)
C1—S1—N1—N2 84.88 (13) C6—C1—C2—C3 0.0 (2)
O2—S1—N1—C8 163.44 (13) S1—C1—C2—C3 −175.94 (13)
O1—S1—N1—C8 34.37 (15) C1—C2—C3—C4 0.8 (3)
C1—S1—N1—C8 −80.84 (15) C2—C3—C4—C5 −0.6 (3)
C8—N1—N2—O3 −7.3 (2) C2—C3—C4—C7 179.38 (16)
S1—N1—N2—O3 −173.13 (12) C3—C4—C5—C6 −0.3 (3)
O2—S1—C1—C2 −157.71 (13) C7—C4—C5—C6 179.71 (16)
O1—S1—C1—C2 −21.41 (16) C4—C5—C6—C1 1.0 (3)
N1—S1—C1—C2 89.53 (14) C2—C1—C6—C5 −0.9 (3)
O2—S1—C1—C6 26.22 (15) S1—C1—C6—C5 175.10 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8b···O1i 0.95 (2) 2.49 (2) 3.401 (2) 160

Symmetry code: (i) −x+1, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: FJ2674).

References

  1. Bruker (2011). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. CrystalMaker (2009). CrystalMaker for Windows CrystalMaker Software Ltd, Yarnton, England. www.CrystalMaker.com.
  3. Dodoff, N. I., Varga, R. A. & Kovala-Demrtzi, D. (2004). Z. Naturforsch. Teil B, 59, 1070–1076.
  4. Garcia-Rio, L., Raposa-Barreiro, M. L. & Rodriguez-Dafonte, P. (2011). Org. Chem. Argentina, 7, 272–282.
  5. Hakkinen, A., Ruostesuo, P. & Kivekas, R. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 815–820.
  6. Hudlicky, M. (1980). J. Org. Chem. 45, 5377–5378.
  7. Jacobs, D. L., Chan, B. C. & O’Connor, A. R. (2013). Acta Cryst. C69, 1397–1401. [DOI] [PubMed]
  8. Lightfoot, P., Tremayne, M., Glidewell, K. D. & Bruce, P. G. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 1625–1630.
  9. Mayer, T., Mayer, P. & Bottcher, H. (2014). J. Organomet. Chem. 751, 368–373.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Skinner, W. A., Gram, H. F., Greene, M. O., Greenberg, J. & Baker, B. R. (1960). J. Med. Pharm. Chem. 2, 299–333. [DOI] [PubMed]
  12. Uri, J. V. & Scola, F. (1992). Acta Microbiol. Hung. 39, 317–322. [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814013518/fj2674sup1.cif

e-70-0o782-sup1.cif (181.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013518/fj2674Isup2.hkl

e-70-0o782-Isup2.hkl (125.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013518/fj2674Isup3.cml

CCDC reference: 1007700

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES