Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 23;70(Pt 7):14–17. doi: 10.1107/S1600536814009520

Crystal structure of Pb3(IO4(OH)2)2

Matthias Weil a,*
PMCID: PMC4120626  PMID: 25161496

The basic building units of the hydrous periodate Pb3(IO4(OH)2)2 are three Pb2+ cations and two IO4(OH)2 3− anions. The octa­hedral anions are arranged in a distorted hexa­gonal rod packing, with the cations (each with a coordination number of eight) located in between.

Keywords: crystal structure, lead, periodate, non-merohedral twinning

Abstract

The structure of the title compound, trilead(II) bis­[di­hydroxido­tetra­oxido­iodate(VII)], was determined from a crystal twinned by non-merohedry with two twin domains present [twin fraction 0.73 (1):0.27 (1)]. It contains three Pb2+ cations and two IO4(OH)2 3− anions in the asymmetric unit. Each of the Pb2+ cations is surrounded by eight O atoms (cut-off value = 3.1 Å) in the form of a distorted polyhedron. The octa­hedral IO4(OH)2 3− anions are arranged in rows extending parallel to [021], forming a distorted hexa­gonal rod packing. The cations and anions are linked into a framework structure. Although H-atom positions could not be located, O⋯O distances suggest medium-strength hydrogen-bonding inter­actions between the IO4(OH)2 octa­hedra, further consolidating the crystal packing.

Chemical context  

Lead and mercury can both exist in different oxidation states and each of the two elements exhibits a peculiar crystal chemistry. In the case of Pb2+-containing compounds, the crystal chemistry is mainly dominated by the stereoactive 6s 2 lone-pair of lead (Holloway & Melnik, 1997), whereas Hg2+-containing compounds show a strong preference for a linear coordination of mercury (Breitinger, 2004). In this respect, it appears surprising that for some Pb2+- and Hg2+-containing compounds an isotypic relationship exists, e.g. for PbAs2O6 (Losilla et al., 1995) and HgAs2O6 (Mormann & Jeitschko, 2000b ; Weil, 2000), or for the mineral descloizite PbZn(VO4)OH (Hawthorne & Faggiani, 1979) and the synthetic phase HgZn(AsO4)OH (Weil, 2004). With this in mind, it seemed inter­esting to study the relation between phases in the systems HgII–IVII–O–H and PbII–IVII–O–H. Whereas in the system HgII–IVII–O–H two compounds have been structurally characterized, viz. Hg3(IO4(OH)2)2 (Mormann & Jeitschko, 2000a ) and Hg(IO3(OH)3) (Mormann & Jeitschko, 2001), a phase in the system PbII–IVII–O–H has not yet been structurally determined, although several lead(II) periodate phases have been reported to exist. Willard & Thompson (1934) claimed to have obtained only one phase with composition Pb3H4(IO6)2 in the system PbII–IVII–O–H. However, Drátovský & Matějčková (1965a,b ) reported the existence of three phases with composition Pb3(IO5)2·H2O, Pb2I2O9·3H2O and Pb4I2O11·5H2O in this system. To shed some light on the conflicting composition of the Pb:I 3:2 phase [Pb3H4(IO6)2 versus Pb3(IO5)2·H2O with a lower water content], the synthetic procedure described by Willard & Thompson (1934) was repeated for crystal growth of this lead periodate. The current structure determination of the obtained crystals showed the composition Pb3H4(IO6)2 as reported by Willard & Thompson (1934) to be correct. In a more reasonable crystal–chemical sense, the formula of these crystals should be rewritten as Pb3(IO4(OH)2)2.

Structural commentary  

Three Pb2+ cations and two IO4(OH)2 3− octa­hedra are present in the asymmetric unit. The anions form a slightly distorted hexa­gonal rod packing with the rods extending parallel to [021]. Cations and anions are linked through common oxygen atoms into a framework structure (Fig. 1).

Figure 1.

Figure 1

The crystal structure of Pb3(IO4(OH)2)2 in a projection along [021]. Displacement ellipsoids are drawn at the 90% probability level. O atoms bearing the OH function are given in green, the other O atoms are white. Pb—O bonds are omitted for clarity; hydrogen-bonding inter­actions are shown as green dashed lines.

Each of the Pb2+ cations exhibits a coordination number of eight if Pb—O inter­actions less than 3.1 Å are considered to be relevant. The resulting [PbO8] polyhedra are considerably distorted [Pb—O distances range from 2.433 (7) to 3.099 (8) Å]. The stereochemical activity of the electron lone pairs in each of the polyhedra appears not to be very pronounced (Fig. 2).

Figure 2.

Figure 2

Coordination polyhedra of the three Pb2+ cations in the structure of Pb3(IO4(OH)2)2. Bonds shorter than 2.7 Å are given by solid black lines, longer bonds between 2.7 and 3.1 Å as open black lines. Displacement ellipsoids are drawn at the 90% probability level. [Symmetry codes: (i) −x, y − Inline graphic, −z + Inline graphic; (ii) x, −y + Inline graphic, z − Inline graphic; (iii) x, y − 1, z; (iv) −x + 1, −y + 1, −z; (v) −x, −y + 1, −z; (vi) x, −y + Inline graphic, z + Inline graphic; (vii) −x + 1, y + Inline graphic, −z + Inline graphic; (viii) −x, y + Inline graphic, −z + Inline graphic.]

Compounds and structures containing the periodate anion have been reviewed some time ago by Levason (1997). The compiled I—O bond lengths are in good agreement with the two IO6 octa­hedra of the title compound, having a mean I—O distance of 1.884 Å. Very similar mean values are found for comparable periodate compounds with large divalent cations, for example in BaI2O6(OH)4·2H2O (one IO6 octa­hedron, 1.895 Å; Häuseler, 2008), in Ba(IO3(OH)3) (one IO6 octa­hedron, 1.879 Å; Sasaki et al., 1995), in Hg3(IO4(OH)2)2 (two IO6 octa­hedra, 1.888 Å; Mormann & Jeitschko, 2000a ) or in Sr(IO2(OH)4)2·3H2O (two IO6 octa­hedra, 1.888 Å; Alexandrova & Häuseler, 2004).

Results of bond-valence calculations (Brown, 2002), using the parameters of Brese & O’Keeffe (1991) for I—O bonds and of Krivovichev & Brown (2001) for Pb—O bonds, are reasonably close to the expected values (in valence units): Pb1 1.89, Pb2 1.73, Pb3 1.89, I1 6.78, I2 6.90, O1 1.95, O2 1.49, O3 1.90, O4 1.15, O5 1.15, O6 1.92, O7 1.98, O8 1.95, O 9 1.97, O10 1.09, O11 1.34, O12 1.12. The O atoms involved in hydrogen bonding are readily identifiable. The donor O atoms O4, O5, O10 and O12 exhibit the longest I—O bonds and the lowest bond-valence sums. Atom O11 has also a low bond-valence sum, explainable by its role as a twofold acceptor atom of medium-strength hydrogen-bonding inter­actions (Table 2) that additionally stabilize the packing of the structure (Fig. 1).

Table 2. Hydrogen-bond geometry (Å).

D—H⋯A DA D—H⋯A DA
O4⋯O7 2.849 (11) O10⋯O11iv 2.675 (11)
O4⋯O2i 2.849 (11) O12⋯O2iv 2.852 (11)
O5⋯O11iii 2.634 (11)    

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Comparison of the structures of Pb3(IO4(OH)2)2 and of Hg3(IO4(OH)2)2 [P21/c; Z = 4, a = 8.5429 (7), b = 12.2051 (8) Å, c = 9.3549 (8) Å, β = 90.884 (7)°] reveals some close similarities. A ‘true’ isotypic relationship (Lima-de-Faria et al., 1990) is difficult to derive for the two structures. However, they are isopointal and show the same type of arrangement in terms of the crystal packing. In the mercury compound, the IO4(OH)2 3− octa­hedra are likewise hexa­gonally packed in rods (Fig. 3). The cations are situated in between this arrangement which is further consolidated by O—H⋯O hydrogen bonding.

Figure 3.

Figure 3

The crystal structure of Hg3(IO4(OH)2)2 (Mormann & Jeitschko, 2000a ) in a projection along [011]. Colour code as in Fig. 1. Hg—O and O—H⋯O inter­actions are omitted for clarity.

Synthesis and crystallization  

The preparation conditions described by Willard & Thompson (1934) were modified slightly. Instead of using NaIO4 as the periodate source, periodic acid was employed.

1.25 g Pb(NO3)2 was dissolved in 25 ml water, acidified with a few drops of concentrated nitric acid and heated until boiling. Then the periodic acid solution (0.85 g in 25 ml water) was slowly added to the lead solution. The addition of the first portion of the periodic acid solution (ca. 3–4 ml) resulted in an off-white precipitate near the drop point that redissolved under stirring. After further addition, the precipitate remained and changed the colour in the still boiling solution from off-white to yellow–orange within half an hour. After filtration of the precipitate, a few colourless crystals of the title compound formed in the mother liquor on cooling. X-ray powder diffraction data of the polycrystalline precipitate are in very good agreement with simulated data based on the refinement of Pb3(IO4(OH)2)2.

Refinement  

All investigated crystals were twinned by non-merohedry. Intensity data of the measured crystal could be indexed to belong to two domains, with a refined twin domain ratio of 0.73 (1):0.27 (1). Reflections originating from the minor component as well as overlapping reflections of the two domains (less than 10% of all measured reflections) were separated and excluded. The H atoms of the IO4(OH)2 octa­hedra could not be located from difference maps and were therefore not considered in the final model. The O atoms were refined with isotropic displacement parameters. The remaining maximum and minimum electron densities are found 0.73 and 0.68 Å, respectively, from atom Pb2. Structure data were finally standardized with STRUCTURE-TIDY (Gelato & Parthé, 1987). It should be noted that the intensity statistics point to a pronounced C-centred basis cell (space group C2/c with lattice parameters of a ≃ 14.16, b ≃ 9.21, c ≃ 8.97 Å, β ≃ 117.4°) with weak superstructure reflections violating the C-centering.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814009520/hb0004sup1.cif

e-70-00014-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009520/hb0004Isup2.hkl

e-70-00014-Isup2.hkl (156.8KB, hkl)

CCDC reference: 1004265

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

I1—O6 1.845 (8) I2—O11 1.820 (8)
I1—O3 1.860 (7) I2—O9 1.850 (8)
I1—O2i 1.861 (7) I2—O8 1.855 (7)
I1—O1ii 1.877 (7) I2—O7 1.874 (8)
I1—O5i 1.920 (8) I2—O12 1.932 (9)
I1—O4i 1.956 (8) I2—O10 1.954 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 3. Experimental details.

Crystal data
Chemical formula Pb3[IO4(OH)2]2
M r 1071.40
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 8.9653 (9), 9.2113 (9), 12.8052 (13)
β (°) 101.042 (2)
V3) 1037.90 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 54.55
Crystal size (mm) 0.06 × 0.06 × 0.05
 
Data collection
Diffractometer Siemens SMART CCD
Absorption correction Multi-scan (TWINABS; Bruker, 2008)
T min, T max 0.253, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 3196, 3196, 2587
(sin θ/λ)max−1) 0.716
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.087, 1.07
No. of reflections 3196
No. of parameters 94
H-atom treatment H-atom parameters not refined
   
Δρmax, Δρmin (e Å−3) 2.88, −1.95

Computer programs: SMART (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), ATOMS for Windows (Dowty, 2006) and publCIF (Westrip, 2010).

Acknowledgments

The X-ray centre of the Vienna University of Technology is acknowledged for providing access to the single-crystal diffractometer.

supplementary crystallographic information

Crystal data

Pb3[IO4(OH)2]2 F(000) = 1808
Mr = 1071.40 Dx = 6.857 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 3673 reflections
a = 8.9653 (9) Å θ = 3.2–30.5°
b = 9.2113 (9) Å µ = 54.55 mm1
c = 12.8052 (13) Å T = 296 K
β = 101.042 (2)° Block, colourless
V = 1037.90 (18) Å3 0.06 × 0.06 × 0.05 mm
Z = 4

Data collection

Siemens SMART CCD diffractometer 3196 independent reflections
Radiation source: fine-focus sealed tube 2587 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.000
ω scans θmax = 30.6°, θmin = 2.3°
Absorption correction: multi-scan (TWINABS; Bruker, 2008) h = −12→12
Tmin = 0.253, Tmax = 0.746 k = 0→13
3196 measured reflections l = 0→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 H-atom parameters not refined
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0319P)2 + 17.8096P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
3196 reflections Δρmax = 2.88 e Å3
94 parameters Δρmin = −1.95 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb1 0.12192 (5) 0.13042 (4) 0.11904 (3) 0.01318 (10)
Pb2 0.25685 (5) 0.51903 (5) 0.01540 (4) 0.01842 (11)
Pb3 0.37507 (5) 0.36874 (5) 0.38134 (3) 0.01409 (10)
I1 0.00670 (7) 0.23313 (7) 0.36046 (5) 0.00838 (13)
I2 0.50186 (7) 0.24738 (6) 0.14267 (5) 0.00735 (13)
O1 0.0343 (9) 0.3332 (8) 0.0015 (6) 0.0110 (14)*
O2 0.0389 (9) 0.7922 (8) 0.2811 (6) 0.0125 (15)*
O3 0.1058 (9) 0.4046 (8) 0.4090 (6) 0.0122 (15)*
O4 0.1088 (10) 0.5549 (9) 0.1797 (6) 0.0178 (17)*
O5 0.1831 (9) 0.8100 (8) 0.1159 (6) 0.0129 (15)*
O6 0.1842 (9) 0.1429 (8) 0.3433 (6) 0.0117 (15)*
O7 0.3161 (9) 0.3260 (8) 0.1618 (6) 0.0121 (15)*
O8 0.4052 (9) 0.0832 (8) 0.0785 (6) 0.0121 (15)*
O9 0.4802 (9) 0.3391 (8) 0.0121 (6) 0.0144 (16)*
O10 0.5247 (9) 0.1474 (8) 0.2794 (6) 0.0145 (16)*
O11 0.6146 (10) 0.3912 (8) 0.2170 (6) 0.0158 (16)*
O12 0.6856 (10) 0.1562 (9) 0.1172 (6) 0.0182 (17)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.0134 (2) 0.01402 (19) 0.01215 (19) −0.00236 (15) 0.00243 (15) 0.00042 (14)
Pb2 0.0168 (2) 0.01424 (19) 0.0236 (2) 0.00084 (17) 0.00251 (16) 0.00040 (16)
Pb3 0.0153 (2) 0.0173 (2) 0.01036 (18) −0.00366 (16) 0.00426 (15) −0.00050 (14)
I1 0.0075 (3) 0.0104 (3) 0.0072 (3) −0.0003 (2) 0.0014 (2) 0.0006 (2)
I2 0.0066 (3) 0.0078 (3) 0.0076 (3) −0.0002 (2) 0.0011 (2) −0.0005 (2)

Geometric parameters (Å, º)

Pb1—O1 2.433 (7) Pb3—O9vi 2.599 (8)
Pb1—O7 2.493 (8) Pb3—O6 2.678 (8)
Pb1—O2i 2.577 (8) Pb3—O12vii 2.704 (8)
Pb1—O3ii 2.685 (7) Pb3—O8vii 2.767 (8)
Pb1—O8 2.723 (8) Pb3—O7 2.787 (7)
Pb1—O6 2.821 (7) Pb3—O10 2.886 (8)
Pb1—O3i 2.888 (8) I1—O6 1.845 (8)
Pb1—O5iii 3.004 (7) I1—O3 1.860 (7)
Pb2—O7 2.564 (7) I1—O2i 1.861 (7)
Pb2—O9 2.606 (8) I1—O1vi 1.877 (7)
Pb2—O1 2.609 (7) I1—O5i 1.920 (8)
Pb2—O6ii 2.638 (7) I1—O4i 1.956 (8)
Pb2—O4 2.714 (8) I2—O11 1.820 (8)
Pb2—O9iv 2.777 (8) I2—O9 1.850 (8)
Pb2—O1v 2.915 (7) I2—O8 1.855 (7)
Pb2—O5 3.099 (8) I2—O7 1.874 (8)
Pb3—O8vi 2.527 (7) I2—O12 1.932 (9)
Pb3—O3 2.528 (8) I2—O10 1.954 (8)
O1—Pb1—O7 73.1 (2) O7—I2—O10 90.5 (3)
O1—Pb1—O2i 73.6 (2) O12—I2—O10 90.0 (3)
O7—Pb1—O2i 84.6 (2) I1ii—O1—Pb1 108.2 (3)
O1—Pb1—O3ii 61.5 (2) I1ii—O1—Pb2 103.7 (3)
O7—Pb1—O3ii 102.0 (2) Pb1—O1—Pb2 108.0 (3)
O2i—Pb1—O3ii 129.7 (2) I1ii—O1—Pb2v 97.4 (3)
O1—Pb1—O8 102.0 (2) Pb1—O1—Pb2v 125.6 (3)
O7—Pb1—O8 61.3 (2) Pb2—O1—Pb2v 111.1 (2)
O2i—Pb1—O8 144.9 (2) I1ii—O1—Pb3ii 57.6 (2)
O3ii—Pb1—O8 70.3 (2) Pb1—O1—Pb3ii 73.14 (18)
O1—Pb1—O6 125.2 (2) Pb2—O1—Pb3ii 73.13 (17)
O7—Pb1—O6 75.7 (2) Pb2v—O1—Pb3ii 154.3 (2)
O2i—Pb1—O6 59.4 (2) I1viii—O2—Pb1viii 106.0 (3)
O3ii—Pb1—O6 170.7 (2) I1viii—O2—Pb2ix 156.0 (4)
O8—Pb1—O6 101.0 (2) Pb1viii—O2—Pb2ix 97.4 (2)
O1—Pb1—O3i 109.8 (2) I1viii—O2—Pb1x 75.1 (2)
O7—Pb1—O3i 174.4 (2) Pb1viii—O2—Pb1x 155.4 (3)
O2i—Pb1—O3i 91.7 (2) Pb2ix—O2—Pb1x 86.03 (16)
O3ii—Pb1—O3i 83.5 (2) I1viii—O2—Pb3viii 62.0 (2)
O8—Pb1—O3i 121.6 (2) Pb1viii—O2—Pb3viii 78.83 (19)
O6—Pb1—O3i 98.8 (2) Pb2ix—O2—Pb3viii 129.9 (2)
O1—Pb1—O5iii 141.7 (2) Pb1x—O2—Pb3viii 80.39 (14)
O7—Pb1—O5iii 126.3 (2) I1—O3—Pb3 104.5 (3)
O2i—Pb1—O5iii 134.1 (2) I1—O3—Pb1vi 99.4 (3)
O3ii—Pb1—O5iii 81.0 (2) Pb3—O3—Pb1vi 104.8 (3)
O8—Pb1—O5iii 70.2 (2) I1—O3—Pb1viii 106.8 (3)
O6—Pb1—O5iii 93.0 (2) Pb3—O3—Pb1viii 138.4 (3)
O3i—Pb1—O5iii 54.4 (2) Pb1vi—O3—Pb1viii 96.5 (2)
O7—Pb2—O9 61.2 (2) I1viii—O4—Pb2 102.2 (3)
O7—Pb2—O1 69.1 (2) I1viii—O4—Pb3 146.5 (3)
O9—Pb2—O1 99.3 (2) Pb2—O4—Pb3 98.2 (2)
O7—Pb2—O6ii 101.7 (2) I1viii—O4—Pb1viii 71.6 (2)
O9—Pb2—O6ii 72.2 (2) Pb2—O4—Pb1viii 173.4 (3)
O1—Pb2—O6ii 60.6 (2) Pb3—O4—Pb1viii 88.39 (17)
O7—Pb2—O4 65.3 (2) I1viii—O4—Pb2v 68.3 (2)
O9—Pb2—O4 125.5 (2) Pb2—O4—Pb2v 87.5 (2)
O1—Pb2—O4 69.6 (2) Pb3—O4—Pb2v 139.5 (2)
O6ii—Pb2—O4 129.6 (2) Pb1viii—O4—Pb2v 87.94 (18)
O7—Pb2—O9iv 110.9 (2) I1viii—O4—Pb1 143.6 (3)
O9—Pb2—O9iv 67.9 (3) Pb2—O4—Pb1 72.12 (18)
O1—Pb2—O9iv 163.1 (2) Pb3—O4—Pb1 68.44 (14)
O6ii—Pb2—O9iv 103.9 (2) Pb1viii—O4—Pb1 111.3 (2)
O4—Pb2—O9iv 126.5 (2) Pb2v—O4—Pb1 75.48 (15)
O7—Pb2—O1v 115.8 (2) I1viii—O5—Pb1x 101.0 (3)
O9—Pb2—O1v 167.4 (2) I1viii—O5—Pb2 90.7 (3)
O1—Pb2—O1v 68.9 (2) Pb1x—O5—Pb2 155.4 (3)
O6ii—Pb2—O1v 97.3 (2) I1viii—O5—Pb1v 69.1 (2)
O4—Pb2—O1v 55.7 (2) Pb1x—O5—Pb1v 75.90 (16)
O9iv—Pb2—O1v 122.7 (2) Pb2—O5—Pb1v 88.49 (18)
O7—Pb2—O5 109.1 (2) I1viii—O5—Pb3vii 163.1 (3)
O9—Pb2—O5 141.5 (2) Pb1x—O5—Pb3vii 92.88 (19)
O1—Pb2—O5 112.0 (2) Pb2—O5—Pb3vii 80.25 (17)
O6ii—Pb2—O5 142.9 (2) Pb1v—O5—Pb3vii 124.4 (2)
O4—Pb2—O5 53.0 (2) I1—O6—Pb2vi 103.6 (3)
O9iv—Pb2—O5 84.2 (2) I1—O6—Pb3 99.4 (3)
O1v—Pb2—O5 50.8 (2) Pb2vi—O6—Pb3 103.9 (3)
O8vi—Pb3—O3 76.1 (3) I1—O6—Pb1 97.6 (3)
O8vi—Pb3—O9vi 61.9 (2) Pb2vi—O6—Pb1 142.8 (3)
O3—Pb3—O9vi 104.1 (2) Pb3—O6—Pb1 102.2 (2)
O8vi—Pb3—O6 105.1 (2) I2—O7—Pb1 107.0 (3)
O3—Pb3—O6 62.2 (2) I2—O7—Pb2 103.7 (3)
O9vi—Pb3—O6 71.7 (2) Pb1—O7—Pb2 107.6 (3)
O8vi—Pb3—O12vii 78.7 (2) I2—O7—Pb3 100.6 (3)
O3—Pb3—O12vii 70.9 (3) Pb1—O7—Pb3 108.2 (3)
O9vi—Pb3—O12vii 140.0 (2) Pb2—O7—Pb3 127.7 (3)
O6—Pb3—O12vii 129.8 (2) I2—O7—Pb3ii 56.96 (19)
O8vi—Pb3—O8vii 75.7 (3) Pb1—O7—Pb3ii 72.30 (17)
O3—Pb3—O8vii 123.1 (2) Pb2—O7—Pb3ii 73.10 (17)
O9vi—Pb3—O8vii 104.4 (2) Pb3—O7—Pb3ii 154.9 (3)
O6—Pb3—O8vii 174.5 (2) I2—O8—Pb3ii 104.5 (3)
O12vii—Pb3—O8vii 55.7 (2) I2—O8—Pb1 99.1 (3)
O8vi—Pb3—O7 174.9 (2) Pb3ii—O8—Pb1 103.7 (3)
O3—Pb3—O7 99.1 (2) I2—O8—Pb3xi 104.1 (3)
O9vi—Pb3—O7 121.4 (2) Pb3ii—O8—Pb3xi 104.3 (3)
O6—Pb3—O7 73.5 (2) Pb1—O8—Pb3xi 137.3 (3)
O12vii—Pb3—O7 98.4 (2) I2—O9—Pb3ii 102.0 (3)
O8vii—Pb3—O7 106.2 (2) I2—O9—Pb2 102.9 (3)
O8vi—Pb3—O10 127.3 (2) Pb3ii—O9—Pb2 107.1 (3)
O3—Pb3—O10 134.0 (2) I2—O9—Pb2iv 112.6 (4)
O9vi—Pb3—O10 68.2 (2) Pb3ii—O9—Pb2iv 118.5 (3)
O6—Pb3—O10 72.9 (2) Pb2—O9—Pb2iv 112.1 (3)
O12vii—Pb3—O10 143.8 (2) I2—O10—Pb3 95.4 (3)
O8vii—Pb3—O10 102.3 (2) I2—O10—Pb2xi 148.8 (4)
O7—Pb3—O10 57.2 (2) Pb3—O10—Pb2xi 98.9 (2)
O6—I1—O3 93.1 (3) I2—O10—Pb3xi 79.3 (2)
O6—I1—O2i 92.8 (3) Pb3—O10—Pb3xi 167.0 (3)
O3—I1—O2i 94.6 (3) Pb2xi—O10—Pb3xi 91.50 (19)
O6—I1—O1vi 90.6 (3) I2—O10—Pb1 67.0 (2)
O3—I1—O1vi 89.3 (3) Pb3—O10—Pb1 78.32 (18)
O2i—I1—O1vi 174.7 (3) Pb2xi—O10—Pb1 143.2 (2)
O6—I1—O5i 174.5 (3) Pb3xi—O10—Pb1 88.65 (17)
O3—I1—O5i 90.9 (3) I2—O11—Pb3 85.6 (3)
O2i—I1—O5i 90.5 (3) I2—O11—Pb2iv 88.1 (3)
O1vi—I1—O5i 85.8 (3) Pb3—O11—Pb2iv 157.4 (3)
O6—I1—O4i 90.9 (3) I2—O11—Pb1vii 171.0 (4)
O3—I1—O4i 174.5 (3) Pb3—O11—Pb1vii 95.8 (2)
O2i—I1—O4i 89.0 (3) Pb2iv—O11—Pb1vii 93.74 (19)
O1vi—I1—O4i 86.9 (3) I2—O11—Pb2 64.5 (2)
O5i—I1—O4i 84.8 (3) Pb3—O11—Pb2 83.53 (18)
O11—I2—O9 95.3 (3) Pb2iv—O11—Pb2 74.20 (15)
O11—I2—O8 172.0 (3) Pb1vii—O11—Pb2 124.5 (2)
O9—I2—O8 90.7 (3) I2—O12—Pb3xi 104.2 (4)
O11—I2—O7 93.9 (4) I2—O12—Pb2iv 85.5 (3)
O9—I2—O7 90.0 (3) Pb3xi—O12—Pb2iv 151.9 (3)
O8—I2—O7 91.2 (3) I2—O12—Pb3ii 68.4 (2)
O11—I2—O12 89.9 (4) Pb3xi—O12—Pb3ii 79.9 (2)
O9—I2—O12 89.5 (4) Pb2iv—O12—Pb3ii 79.42 (16)
O8—I2—O12 84.9 (3) I2—O12—Pb1xii 155.4 (4)
O7—I2—O12 176.1 (3) Pb3xi—O12—Pb1xii 98.2 (2)
O11—I2—O10 85.5 (3) Pb2iv—O12—Pb1xii 79.41 (17)
O9—I2—O10 179.1 (3) Pb3ii—O12—Pb1xii 126.6 (2)
O8—I2—O10 88.4 (3)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+1/2, z−1/2; (iii) x, y−1, z; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z; (vi) x, −y+1/2, z+1/2; (vii) −x+1, y+1/2, −z+1/2; (viii) −x, y+1/2, −z+1/2; (ix) x, −y+3/2, z+1/2; (x) x, y+1, z; (xi) −x+1, y−1/2, −z+1/2; (xii) x+1, y, z.

Hydrogen-bond geometry (Å)

D—H···A D···A
O4···O7 2.849 (11)
O4···O2i 2.849 (11)
O5···O11vii 2.634 (11)
O10···O11xi 2.675 (11)
O12···O2xi 2.852 (11)

Symmetry codes: (i) −x, y−1/2, −z+1/2; (vii) −x+1, y+1/2, −z+1/2; (xi) −x+1, y−1/2, −z+1/2.

References

  1. Alexandrova, M. & Häuseler, H. (2004). J. Mol. Struct. 706, 7–13.
  2. Breitinger, D. K. (2004). Cadmium and Mercury, in Comprehensive Coordination Chemistry II, edited by J. A. McCleverty & T. J. Meyer, ch. 6, pp. 1253–1292. Oxford: Elsevier.
  3. Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  4. Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model Oxford University Press.
  5. Bruker (2008). SMART, SAINT-Plus and TWINABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Dowty, E. (2006). ATOMS for Windows Shape Software, Kingsport, Tennessee, USA.
  7. Drátovský, M. & Matějčková, J. (1965a). Chem. Zvesti, 19, 604–610.
  8. Drátovský, M. & Matějčková, J. (1965b). Chem. Zvesti, 19, 447–455.
  9. Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.
  10. Häuseler, H. (2008). J. Mol. Struct. 892, 1–7.
  11. Hawthorne, F. C. & Faggiani, R. (1979). Acta Cryst. B35, 717–720.
  12. Holloway, C. E. & Melnik, M. (1997). Main Group Met. Chem. 20, 583–625.
  13. Krivovichev, S. V. & Brown, I. D. (2001). Z. Kristallogr. 216, 245–247.
  14. Levason, W. (1997). Coord. Chem. Rev. 161, 33–79.
  15. Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990). Acta Cryst. A46, 1–11.
  16. Losilla, E. R., Aranda, M. A. G., Ramirez, F. J. & Bruque, S. (1995). J. Phys. Chem. 99, 12975–12979.
  17. Mormann, T. J. & Jeitschko, W. (2000a). Z. Kristallogr. New Cryst. Struct., 215, 315–316.
  18. Mormann, T. J. & Jeitschko, W. (2000b). Z. Kristallogr. New Cryst. Struct., 215, 471–472.
  19. Mormann, T. J. & Jeitschko, W. (2001). Z. Kristallogr. New Cryst. Struct., 216, 1–2.
  20. Sasaki, M., Yarita, T. & Sato, S. (1995). Acta Cryst. C51, 1968–1970.
  21. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  22. Weil, M. (2000). Z. Naturforsch. Teil B, 55, 699–706.
  23. Weil, M. (2004). Acta Cryst. E60, i25–i27.
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Willard, H. H. & Thompson, J. J. (1934). J. Am. Chem. Soc. 56, 1828–1830.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814009520/hb0004sup1.cif

e-70-00014-sup1.cif (19.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009520/hb0004Isup2.hkl

e-70-00014-Isup2.hkl (156.8KB, hkl)

CCDC reference: 1004265

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES