Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 7;70(Pt 7):o756–o757. doi: 10.1107/S1600536814012860

4-Cyano-1-methyl­pyridinium perchlor­ate

Vu D Nguyen a, Cameron A McCormick b, Lynn V Koplitz a, Joel T Mague c,*
PMCID: PMC4120629  PMID: 25161550

Abstract

The title salt, C7H7N2 +·ClO4 , crystallizes with alternating cations and anions in wavy sheets, which are formed by a number of C—H⋯O and C—H⋯N hydrogen bonds, lying approximately parallel to (001).

Related literature  

For the crystal structures of other 4-cyano-1-methyl­pyridinium salts, see: McCormick et al. (2013); Kammer et al. (2012a ,b ); Hardacre et al. (2008, 2010); Glavcheva et al. (2004); Bockman & Kochi (1989, 1992). For the structure of 3-cyano-1-methyl­pyridinium perchlorate, see: McCormick et al. (2014) and for the structure of 4-cyano­anilinium perchlorate, see: Dai (2008). For a discussion of anion–π interactions, see: Frontera et al. (2011).graphic file with name e-70-0o756-scheme1.jpg

Experimental  

Crystal data  

  • C7H7N2 +·ClO4

  • M r = 218.60

  • Orthorhombic, Inline graphic

  • a = 10.232 (2) Å

  • b = 10.872 (3) Å

  • c = 16.769 (4) Å

  • V = 1865.3 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 100 K

  • 0.23 × 0.16 × 0.12 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010) T min = 0.86, T max = 0.95

  • 30647 measured reflections

  • 2475 independent reflections

  • 2235 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.097

  • S = 1.07

  • 2475 reflections

  • 129 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008)’).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814012860/su2740sup1.cif

e-70-0o756-sup1.cif (958.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012860/su2740Isup2.hkl

e-70-0o756-Isup2.hkl (136.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012860/su2740Isup3.cml

CCDC reference: 1006394

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4i 0.98 2.37 3.245 (2) 149
C1—H1C⋯O2ii 0.98 2.61 3.2540 (19) 123
C2—H2⋯O1ii 0.95 2.46 3.4001 (18) 173
C2—H2⋯O2ii 0.95 2.63 3.2549 (18) 123
C3—H3⋯N2iii 0.95 2.67 3.3098 (18) 125
C3—H3⋯O3iv 0.95 2.46 3.300 (2) 148
C6—H6⋯O4i 0.95 2.50 3.351 (2) 149

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We thank the Chemistry Department of Tulane University for support of the X-ray laboratory and the Louisiana Board of Regents through the Louisiana Educational Quality Support Fund [grant LEQSF (2003–2003)-ENH–TR-67] for the purchase of the APEX diffractometer.

supplementary crystallographic information

S1. Comment

The title compound, Fig. 1, crystallizes with alternating cations and anions in wavy sheets, which are formed by a number of C—H···O and C—H···N hydrogen bonds, which are approximately parallel to (001) [see Table 1 and Fig. 2].

As with 3-cyano-1-methylpyridinium perchlorate (McCormick et al., 2014), the perchlorate ions are located near the pyridinium nitrogen atoms as the result of electrostatic attraction but the remainder of the two structures differ considerably due to the different position of the cyano group and the effect this has on the weak interionic interactions.

S2. Experimental

4-Cyanopyridine (10.55 g) was dissolved in benzene (40 ml). Iodomethane (9.5 ml) was added to this solution slowly with stirring and the solution was refluxed for 75 minutes. Yellow solid 4-cyano-1-methylpyridinium iodide (m.p. 189–193° C) was collected by vacuum filtration. This solid (0.98 g) was then dissolved in a solution of silver perchlorate previously prepared by reacting Ag2O (0.47 g) with 0.5 M aqueous HClO4(8.0 ml). After stirring, precipitated AgI was removed by vacuum filtration and the filtrate containing 4-cyano-1-methylpyridinium perchlorate (m.p.114–119° C) was slowly evaporated to dryness to form crystals of the title compound.

S3. Refinement

H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

A view of the crystal packing along the b axis, with the C—H···O and C—H···N hydrogen bonds as red and blue dashed lines, respectively (see Table 1 for details).

Crystal data

C7H7N2+·ClO4 F(000) = 896
Mr = 218.60 Dx = 1.557 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 9543 reflections
a = 10.232 (2) Å θ = 3.0–29.1°
b = 10.872 (3) Å µ = 0.40 mm1
c = 16.769 (4) Å T = 100 K
V = 1865.3 (7) Å3 Block, colourless
Z = 8 0.23 × 0.16 × 0.12 mm

Data collection

Bruker SMART APEX CCD diffractometer 2475 independent reflections
Radiation source: fine-focus sealed tube 2235 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
φ and ω scans θmax = 29.1°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2010) h = −13→14
Tmin = 0.86, Tmax = 0.95 k = −14→14
30647 measured reflections l = −22→22

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0474P)2 + 1.204P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2475 reflections Δρmax = 0.38 e Å3
129 parameters Δρmin = −0.39 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0061 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms were placed in calculated positions (C—H = 0.95 - 0.98 Å) and included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached carbon atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.07438 (11) 0.87020 (10) 0.65230 (6) 0.0173 (2)
N2 −0.23590 (12) 0.56153 (11) 0.49548 (7) 0.0259 (3)
C1 0.15878 (14) 0.95747 (13) 0.69622 (9) 0.0238 (3)
H1A 0.2307 0.9125 0.7215 0.036*
H1B 0.1071 0.9994 0.7372 0.036*
H1C 0.1944 1.0183 0.6590 0.036*
C2 −0.04511 (13) 0.90672 (12) 0.62884 (8) 0.0201 (3)
H2 −0.0730 0.9884 0.6394 0.024*
C3 −0.12714 (13) 0.82710 (12) 0.58970 (8) 0.0198 (3)
H3 −0.2115 0.8530 0.5731 0.024*
C4 −0.08458 (13) 0.70782 (12) 0.57475 (7) 0.0175 (3)
C5 0.03964 (13) 0.67124 (12) 0.59898 (8) 0.0204 (3)
H5 0.0700 0.5902 0.5887 0.024*
C6 0.11766 (14) 0.75535 (13) 0.63820 (8) 0.0200 (3)
H6 0.2026 0.7320 0.6554 0.024*
C7 −0.16859 (13) 0.62451 (12) 0.53131 (8) 0.0201 (3)
Cl1 0.01260 (3) 0.73669 (3) 0.35515 (2) 0.01939 (12)
O1 0.12396 (10) 0.79937 (10) 0.32127 (6) 0.0253 (2)
O2 −0.05193 (12) 0.81513 (10) 0.41181 (6) 0.0285 (3)
O3 0.05528 (12) 0.62622 (10) 0.39448 (9) 0.0386 (3)
O4 −0.07787 (11) 0.70787 (15) 0.29216 (7) 0.0432 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0169 (5) 0.0170 (5) 0.0180 (5) −0.0015 (4) 0.0016 (4) 0.0016 (4)
N2 0.0280 (6) 0.0231 (6) 0.0265 (6) −0.0034 (5) −0.0028 (5) 0.0021 (5)
C1 0.0233 (6) 0.0201 (6) 0.0278 (7) −0.0042 (5) −0.0028 (5) −0.0017 (5)
C2 0.0206 (6) 0.0157 (6) 0.0241 (6) 0.0022 (5) 0.0010 (5) 0.0026 (5)
C3 0.0177 (6) 0.0184 (6) 0.0232 (6) 0.0023 (5) −0.0001 (5) 0.0039 (5)
C4 0.0187 (6) 0.0182 (6) 0.0155 (5) −0.0011 (5) 0.0017 (4) 0.0020 (4)
C5 0.0200 (6) 0.0183 (6) 0.0229 (6) 0.0040 (5) 0.0013 (5) −0.0013 (5)
C6 0.0160 (6) 0.0210 (6) 0.0229 (6) 0.0030 (5) 0.0007 (5) 0.0007 (5)
C7 0.0208 (6) 0.0184 (6) 0.0211 (6) 0.0010 (5) 0.0005 (5) 0.0041 (5)
Cl1 0.01679 (17) 0.01989 (18) 0.02150 (19) 0.00045 (11) 0.00104 (11) −0.00297 (11)
O1 0.0221 (5) 0.0261 (5) 0.0277 (5) −0.0036 (4) 0.0033 (4) 0.0018 (4)
O2 0.0401 (6) 0.0236 (5) 0.0217 (5) 0.0050 (4) 0.0099 (4) −0.0012 (4)
O3 0.0292 (6) 0.0213 (5) 0.0654 (9) 0.0055 (4) 0.0110 (6) 0.0133 (5)
O4 0.0193 (5) 0.0806 (10) 0.0297 (6) −0.0081 (6) −0.0003 (5) −0.0213 (6)

Geometric parameters (Å, º)

N1—C2 1.3443 (18) C3—H3 0.9500
N1—C6 1.3458 (17) C4—C5 1.3924 (19)
N1—C1 1.4793 (17) C4—C7 1.4456 (18)
N2—C7 1.1420 (18) C5—C6 1.3806 (19)
C1—H1A 0.9800 C5—H5 0.9500
C1—H1B 0.9800 C6—H6 0.9500
C1—H1C 0.9800 Cl1—O2 1.4373 (10)
C2—C3 1.3728 (19) Cl1—O3 1.4382 (12)
C2—H2 0.9500 Cl1—O4 1.4389 (12)
C3—C4 1.3907 (18) Cl1—O1 1.4441 (10)
C2—N1—C6 121.46 (12) C3—C4—C7 119.27 (12)
C2—N1—C1 119.16 (11) C5—C4—C7 120.72 (12)
C6—N1—C1 119.36 (11) C6—C5—C4 118.54 (12)
N1—C1—H1A 109.5 C6—C5—H5 120.7
N1—C1—H1B 109.5 C4—C5—H5 120.7
H1A—C1—H1B 109.5 N1—C6—C5 120.52 (12)
N1—C1—H1C 109.5 N1—C6—H6 119.7
H1A—C1—H1C 109.5 C5—C6—H6 119.7
H1B—C1—H1C 109.5 N2—C7—C4 177.94 (14)
N1—C2—C3 120.65 (12) O2—Cl1—O3 109.38 (7)
N1—C2—H2 119.7 O2—Cl1—O4 108.60 (7)
C3—C2—H2 119.7 O3—Cl1—O4 110.50 (9)
C2—C3—C4 118.86 (12) O2—Cl1—O1 110.03 (7)
C2—C3—H3 120.6 O3—Cl1—O1 109.56 (7)
C4—C3—H3 120.6 O4—Cl1—O1 108.76 (7)
C3—C4—C5 119.97 (12)
C6—N1—C2—C3 0.2 (2) C3—C4—C5—C6 0.48 (19)
C1—N1—C2—C3 −178.38 (12) C7—C4—C5—C6 178.09 (12)
N1—C2—C3—C4 0.0 (2) C2—N1—C6—C5 −0.1 (2)
C2—C3—C4—C5 −0.4 (2) C1—N1—C6—C5 178.49 (12)
C2—C3—C4—C7 −178.02 (12) C4—C5—C6—N1 −0.3 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O4i 0.98 2.37 3.245 (2) 149
C1—H1C···O2ii 0.98 2.61 3.2540 (19) 123
C2—H2···O1ii 0.95 2.46 3.4001 (18) 173
C2—H2···O2ii 0.95 2.63 3.2549 (18) 123
C3—H3···N2iii 0.95 2.67 3.3098 (18) 125
C3—H3···O3iv 0.95 2.46 3.300 (2) 148
C6—H6···O4i 0.95 2.50 3.351 (2) 149

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x, −y+2, −z+1; (iii) −x−1/2, y+1/2, z; (iv) x−1/2, −y+3/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2740).

References

  1. Bockman, T. M. & Kochi, J. K. (1989). J. Am. Chem. Soc. 111, 4669–4683.
  2. Bockman, T. M. & Kochi, J. K. (1992). New J. Chem. 16, 39–49.
  3. Brandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2010). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dai, J. (2008). Acta Cryst. E64, o2025. [DOI] [PMC free article] [PubMed]
  6. Frontera, A., Gamez, P., Mascal, M., Mooibroeck, T. J. & Reedijk, J. (2011). Angew. Chem. Int. Ed. 50, 9564–9583. [DOI] [PubMed]
  7. Glavcheva, Z., Nakanishi, H., Okdad, S. & Umezawa, H. (2004). Mater. Lett. 58, 2466–2471.
  8. Hardacre, C., Holbrey, J. D., Mullan, C. L., Nieuwenhuyzen, M., Reichert, W. M., Seddon, K. R. & Teat, S. J. (2008). New J. Chem. 32, 1953–1967.
  9. Hardacre, C., Holbrey, J. D., Mullan, C. L., Nieuwenhuyzen, M., Youngs, T. G. A., Bowron, D. T., Teat, S. J. (2010). Phys. Chem. Chem. Phys. 12, 1842–1853. [DOI] [PubMed]
  10. Kammer, M. N., Koplitz, L. V. & Mague, J. T. (2012a). Acta Cryst. E68, o2514. [DOI] [PMC free article] [PubMed]
  11. Kammer, M. N., Mague, J. T. & Koplitz, L. V. (2012b). Acta Cryst. E68, o2409. [DOI] [PMC free article] [PubMed]
  12. McCormick, C. A., Nguyen, V. D., Koplitz, L. V. & Mague, J. T. (2014). Acta Cryst. E70, o811. [DOI] [PMC free article] [PubMed]
  13. McCormick, C. A., Nguyen, V. D., Renfro, H. E., Koplitz, L. V. & Mague, J. T. (2013). Acta Cryst. E69, o981–o982. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814012860/su2740sup1.cif

e-70-0o756-sup1.cif (958.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012860/su2740Isup2.hkl

e-70-0o756-Isup2.hkl (136.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012860/su2740Isup3.cml

CCDC reference: 1006394

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES