Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 18;70(Pt 7):o791–o792. doi: 10.1107/S1600536814013294

Diethyl 4-(biphenyl-4-yl)-2,6-dimethyl-1,4-di­hydro­pyridine-3,5-di­carboxyl­ate

Scott A Steiger a, Anthony J Monacelli b, Chun Li b, Janet L Hunting b, Nicholas R Natale a,*
PMCID: PMC4120632  PMID: 25161575

Abstract

The title compound, C25H27NO4, has a flattened di­hydro­pyridine ring. The benzene and phenyl rings are synclinal to one another, forming a dihedral angle of 49.82 (8)°; the axis of the biphenyl rings makes an 81.05 (9)° angle to the plane of the di­hydro­pyridine ring. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chain motifs running along the a-axis direction. The chains are cross-linked by C—H⋯O inter­actions, forming sheet motifs running slightly off the (110) plane, together with an intermolecular interaction between head-to tail biphenyl groups, thus making the whole crystal packing a three-dimensional network. Intra­molecular C—H⋯O hydrogen bonds are also observed.

Related literature  

For general structure–activity relationship studies of 1,4-di­hydro­pyridines (DHPs) as calcium channel modulators, see: Bossert et al. (1981); Triggle (2003). For binding studies of DHPs to multiple drug resistant protein 1 (MDR1), see: Abe et al. (1995); Cole et al. (1989); Tasaki et al. (1995); Vanhoefer et al. (1999); Tolomero et al. (1994); Cindric et al. (2010).graphic file with name e-70-0o791-scheme1.jpg

Experimental  

Crystal data  

  • C25H27NO4

  • M r = 405.47

  • Triclinic, Inline graphic

  • a = 7.3431 (3) Å

  • b = 10.6075 (4) Å

  • c = 13.8449 (6) Å

  • α = 85.762 (3)°

  • β = 88.124 (3)°

  • γ = 73.530 (2)°

  • V = 1031.25 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.15 × 0.14 × 0.13 mm

Data collection  

  • Bruker SMART BREEZE CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012) T min = 0.919, T max = 1.000

  • 19956 measured reflections

  • 4752 independent reflections

  • 2983 reflections with I > 2σ(I)

  • R int = 0.072

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.062

  • wR(F 2) = 0.149

  • S = 1.02

  • 4752 reflections

  • 279 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814013294/zl2590sup1.cif

e-70-0o791-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013294/zl2590Isup2.hkl

e-70-0o791-Isup2.hkl (260.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013294/zl2590Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O2i 0.95 2.50 3.256 (3) 137
C6—H6A⋯O3ii 0.98 2.59 3.452 (3) 147
C19—H19⋯O1 0.95 2.51 3.227 (3) 132
C13—H13B⋯O2 0.98 2.11 2.857 (3) 131
C8—H8A⋯O2iii 0.99 2.55 3.344 (3) 137
N1—H1⋯O3ii 0.91 (3) 2.03 (3) 2.938 (3) 173 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

SS and NRN thank the National Institutes of Health for grants NINDS P20RR015583 Center for Structural and Functional Neuroscience (CSFN) and P20 RR017670 Center for Environmental Health Sciences (CEHS).

supplementary crystallographic information

S1. Comment

Hantzsch 1,4-di­hydro­pyridines (DHPs) are an extensively studied class of compounds that are known predominantly for their L-type voltage gated calcium channel modulation. (Bossert et al. 1981, Triggle 2003) There have been extensive structure-activity relationship (SAR) studies done on DHPs that have revealed the basic structural requirements for robust binding affinity to calcium channels. (Triggle 2003) Other studies in the field have shown that DHPs bind to multiple receptors, most notably the multiple drug resistant protein 1 (MDR1) (Abe et al. 1995, Cole et al. 1989, Tasaki et al. 1995, Vanhoefer et al. 1999, Tolomero et al. 1994, Cindric et al. 2010). Using established SAR more selective compounds can be designed for greater selectivity resulting in more clinically relevant compounds.

The title compound, C25H27NO4, has very similar structural features as other DHPs. Such features include a flattened boat conformation of the 1,4-DHP ring and two ester groups coplanar to the double bonds in the 1,4-DHP, with one carbonyl being cis and the other carbonyl being trans to the double bonds (Figure 1). Although the phenyl group attached at C(3) is still orthogonal to the bottom [C(1)—C(2)—C(4)—C(5)] of the 1,4-DHP ring [81.05 (9)°], it twists away from the N(1)—C(3) at an angle of 47.77 (8)°. The next phenyl ring twists again, with 49.82 (8)° from the center phenyl group, and becomes almost orthogonal to the N(1)—C(3) axis [12.97 (9)°]. Inter­molecular hydrogen bonds between N(1) – H(1) and O(3), together with the inter­molecular C(6) – H(6) ··· O(3) inter­actions, link the molecules into chain motifs running along the a axis (Figure 2). Two inter­molecular C – H ··· O inter­actions both from O(2) cross link the molecules into sheet motifs running slightly off the 110 plane (Figure 3). These inter­ations form a three-dimensional network in the cyrstal packing (Figure 4). There are two intra­molecular H-bonds observed in the molecule, C(19) – H(19) ··· O(1) and C(13) – H(13B) ··· O(2).

S2. Experimental

S2.1. Synthesis and crystallization

An oven-dried 100 mL round bottom flask was charged with 1.90g of bi­phenyl-4-carbaldehyde, 2.86 g of ethyl aceto­acetate, 2.49 mL of 14.8M ammonium hydroxide, and a magenetic stir bar. The mixture was taken up in 50 mL of absolute ethanol, and the round bottom flask was fitted with a dean stark trap and heated to reflux while stirring. Reaction progress was monitored via TLC. Once the reaction was complete, excess solvent was removed via rotary evaporation. The solution was then purified via a silica column chromatography. The product was re-crystallized into white to yellow crystalline clumps with hexane and di­chloro­methane (yield = 1.24g , 3.06 mmol, 29.31%).

S2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. The methyl H atoms were constrained to an ideal geometry, with C – H = 0.98 Å and Uiso(H) = 1.5Ueq(C), and were allowed to rotate freely about the C – C bonds. The rest of the H atoms were placed in calculated positions with C – H = 0.95 ~ 1.00 Å and refined as riding on their carrier atoms with Uiso(H) = 1.2Ueq(C). The positions of amine H atoms were determined from difference Fourier maps and refined freely along with their isotropic displacement parameters. One low-angle reflection was omitted from the refinement because its observed intensity was much lower than the calculated value as a result of being partially obscured by the beam stop.

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing diagram of the title compound, showing the intermolecular hydrogen bonds which form chain motifs running along the a axis. For the sake of clarity, H atoms not involved in H-bonds are removed.

Fig. 3.

Fig. 3.

Packing diagram of the title compound, showing intermolecular C – H ··· O interactions in dashed lines which cross link the molecules into a sheet motif running slightly off the 110 plane. For the sake of clarity, H atoms not involved in the interactions are removed.

Fig. 4.

Fig. 4.

Packing diagram of the title compound. The intermolecular interactions form a three-dimensional network in the crystal packing. For the sake of clarity, H atoms not involved in the interactions are removed.

Crystal data

C25H27NO4 Z = 2
Mr = 405.47 F(000) = 432
Triclinic, P1 Dx = 1.306 Mg m3
a = 7.3431 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.6075 (4) Å Cell parameters from 5122 reflections
c = 13.8449 (6) Å θ = 2.4–27.4°
α = 85.762 (3)° µ = 0.09 mm1
β = 88.124 (3)° T = 100 K
γ = 73.530 (2)° Prism, pale white
V = 1031.25 (7) Å3 0.15 × 0.14 × 0.13 mm

Data collection

Bruker SMART BREEZE CCD diffractometer 2983 reflections with I > 2σ(I)
Radiation source: 2 kW sealed X-ray tube Rint = 0.072
φ and ω scans θmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −9→9
Tmin = 0.919, Tmax = 1.000 k = −13→13
19956 measured reflections l = −17→18
4752 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.8331P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
4752 reflections Δρmax = 0.43 e Å3
279 parameters Δρmin = −0.37 e Å3
0 restraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.1263 (2) 0.73985 (17) 0.98682 (13) 0.0183 (4)
O1 0.4574 (2) 0.44644 (15) 0.75695 (12) 0.0149 (4)
O4 0.2751 (2) 0.84869 (17) 1.07429 (13) 0.0191 (4)
N1 0.7805 (3) 0.68215 (19) 0.92579 (15) 0.0127 (5)
O2 0.7739 (2) 0.38137 (18) 0.73785 (14) 0.0248 (5)
C3 0.4394 (3) 0.6641 (2) 0.85636 (17) 0.0111 (5)
H3 0.3408 0.6153 0.8619 0.013*
C4 0.4521 (3) 0.7191 (2) 0.95378 (17) 0.0115 (5)
C20 0.1965 (3) 1.0952 (2) 0.55708 (17) 0.0118 (5)
C14 0.3787 (3) 0.7763 (2) 0.77713 (17) 0.0107 (5)
C25 0.2602 (3) 1.0854 (2) 0.46091 (18) 0.0156 (5)
H25 0.3384 1.0037 0.4406 0.019*
C1 0.7918 (3) 0.5861 (2) 0.86166 (17) 0.0122 (5)
C18 0.2529 (3) 0.8563 (2) 0.61659 (18) 0.0141 (5)
H18 0.2085 0.8383 0.5569 0.017*
C5 0.6197 (3) 0.7352 (2) 0.98050 (17) 0.0112 (5)
C2 0.6293 (3) 0.5673 (2) 0.83079 (17) 0.0118 (5)
C7 0.2713 (3) 0.7670 (2) 1.00548 (18) 0.0136 (5)
C21 0.0758 (3) 1.2152 (2) 0.58379 (18) 0.0138 (5)
H21 0.0290 1.2231 0.6485 0.017*
C22 0.0236 (3) 1.3226 (2) 0.51739 (19) 0.0167 (6)
H22 −0.0601 1.4031 0.5365 0.020*
C17 0.2607 (3) 0.9835 (2) 0.63075 (17) 0.0107 (5)
C16 0.3313 (3) 1.0043 (2) 0.71876 (18) 0.0144 (5)
H16 0.3398 1.0897 0.7301 0.017*
C6 0.6587 (3) 0.8067 (2) 1.06364 (18) 0.0163 (6)
H6A 0.7962 0.7883 1.0711 0.025*
H6B 0.6033 0.7768 1.1233 0.025*
H6C 0.6021 0.9017 1.0508 0.025*
C19 0.3093 (3) 0.7555 (2) 0.68872 (18) 0.0139 (5)
H19 0.3004 0.6701 0.6776 0.017*
C15 0.3893 (3) 0.9031 (2) 0.78989 (18) 0.0125 (5)
H15 0.4374 0.9204 0.8488 0.015*
C13 0.9930 (3) 0.5135 (3) 0.8374 (2) 0.0204 (6)
H13A 1.0506 0.5717 0.7965 0.031*
H13B 0.9946 0.4360 0.8025 0.031*
H13C 1.0654 0.4853 0.8972 0.031*
C8 0.0994 (3) 0.9041 (2) 1.12773 (18) 0.0152 (5)
H8A 0.0608 0.8337 1.1667 0.018*
H8B −0.0041 0.9496 1.0825 0.018*
C10 0.6336 (3) 0.4574 (2) 0.77147 (18) 0.0146 (5)
C9 0.1404 (4) 1.0005 (2) 1.19262 (19) 0.0195 (6)
H9A 0.1838 1.0672 1.1532 0.029*
H9B 0.2395 0.9535 1.2386 0.029*
H9C 0.0246 1.0433 1.2283 0.029*
C23 0.0929 (4) 1.3132 (2) 0.42313 (19) 0.0177 (6)
H23 0.0603 1.3878 0.3781 0.021*
C24 0.2102 (3) 1.1940 (2) 0.39484 (19) 0.0168 (6)
H24 0.2564 1.1868 0.3300 0.020*
C11 0.4471 (4) 0.3420 (2) 0.69640 (18) 0.0176 (6)
H11A 0.3249 0.3213 0.7091 0.021*
H11B 0.5507 0.2616 0.7141 0.021*
C12 0.4631 (4) 0.3793 (3) 0.59046 (19) 0.0245 (6)
H12A 0.4454 0.3093 0.5526 0.037*
H12B 0.5891 0.3912 0.5763 0.037*
H12C 0.3654 0.4618 0.5733 0.037*
H1 0.893 (4) 0.696 (3) 0.9411 (19) 0.023 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0103 (9) 0.0255 (10) 0.0221 (11) −0.0085 (8) 0.0015 (7) −0.0084 (8)
O1 0.0152 (9) 0.0113 (9) 0.0194 (10) −0.0046 (7) 0.0007 (7) −0.0057 (7)
O4 0.0115 (9) 0.0269 (10) 0.0210 (10) −0.0064 (8) 0.0055 (7) −0.0145 (8)
N1 0.0078 (10) 0.0152 (11) 0.0168 (12) −0.0054 (9) 0.0013 (8) −0.0049 (9)
O2 0.0154 (9) 0.0238 (10) 0.0328 (12) 0.0018 (8) −0.0007 (8) −0.0158 (9)
C3 0.0091 (11) 0.0108 (12) 0.0145 (13) −0.0040 (9) −0.0004 (10) −0.0026 (10)
C4 0.0122 (12) 0.0108 (12) 0.0110 (13) −0.0026 (9) 0.0003 (9) 0.0000 (9)
C20 0.0106 (12) 0.0127 (12) 0.0127 (13) −0.0044 (10) −0.0018 (10) −0.0002 (10)
C14 0.0068 (11) 0.0106 (12) 0.0130 (13) 0.0005 (9) 0.0019 (9) −0.0018 (10)
C25 0.0126 (12) 0.0170 (13) 0.0181 (14) −0.0047 (10) −0.0010 (10) −0.0039 (11)
C1 0.0108 (12) 0.0119 (12) 0.0126 (13) −0.0016 (10) −0.0005 (10) 0.0021 (10)
C18 0.0143 (12) 0.0145 (13) 0.0128 (14) −0.0018 (10) −0.0022 (10) −0.0052 (10)
C5 0.0126 (12) 0.0093 (11) 0.0118 (13) −0.0038 (9) −0.0001 (10) 0.0011 (10)
C2 0.0131 (12) 0.0111 (12) 0.0120 (13) −0.0050 (10) 0.0003 (10) 0.0006 (10)
C7 0.0142 (12) 0.0131 (12) 0.0136 (14) −0.0044 (10) −0.0007 (10) 0.0012 (10)
C21 0.0149 (12) 0.0138 (12) 0.0126 (13) −0.0033 (10) −0.0010 (10) −0.0028 (10)
C22 0.0154 (13) 0.0113 (12) 0.0229 (15) −0.0020 (10) −0.0035 (11) −0.0040 (11)
C17 0.0076 (11) 0.0116 (12) 0.0119 (13) −0.0013 (9) 0.0018 (9) −0.0011 (10)
C16 0.0161 (13) 0.0114 (12) 0.0168 (14) −0.0051 (10) 0.0004 (10) −0.0032 (10)
C6 0.0125 (12) 0.0205 (13) 0.0167 (14) −0.0050 (10) −0.0001 (10) −0.0040 (11)
C19 0.0129 (12) 0.0091 (12) 0.0191 (14) −0.0017 (10) 0.0003 (10) −0.0020 (10)
C15 0.0131 (12) 0.0147 (12) 0.0109 (13) −0.0050 (10) −0.0022 (10) −0.0033 (10)
C13 0.0133 (13) 0.0238 (14) 0.0220 (15) −0.0003 (11) 0.0000 (11) −0.0078 (12)
C8 0.0102 (12) 0.0200 (13) 0.0145 (14) −0.0024 (10) 0.0040 (10) −0.0048 (11)
C10 0.0147 (13) 0.0121 (12) 0.0156 (14) −0.0016 (10) −0.0009 (10) 0.0002 (10)
C9 0.0163 (13) 0.0194 (14) 0.0230 (16) −0.0041 (11) 0.0036 (11) −0.0089 (11)
C23 0.0221 (14) 0.0155 (13) 0.0163 (14) −0.0075 (11) −0.0065 (11) 0.0048 (11)
C24 0.0172 (13) 0.0244 (14) 0.0108 (13) −0.0091 (11) −0.0004 (10) −0.0011 (11)
C11 0.0228 (14) 0.0110 (12) 0.0203 (15) −0.0052 (11) 0.0002 (11) −0.0081 (11)
C12 0.0253 (15) 0.0329 (16) 0.0195 (15) −0.0135 (13) −0.0007 (12) −0.0067 (12)

Geometric parameters (Å, º)

O3—C7 1.219 (3) C21—C22 1.382 (3)
O1—C10 1.354 (3) C22—H22 0.9500
O1—C11 1.458 (3) C22—C23 1.385 (4)
O4—C7 1.340 (3) C17—C16 1.396 (3)
O4—C8 1.459 (3) C16—H16 0.9500
N1—C1 1.383 (3) C16—C15 1.385 (3)
N1—C5 1.383 (3) C6—H6A 0.9800
N1—H1 0.91 (3) C6—H6B 0.9800
O2—C10 1.217 (3) C6—H6C 0.9800
C3—H3 1.0000 C19—H19 0.9500
C3—C4 1.525 (3) C15—H15 0.9500
C3—C14 1.536 (3) C13—H13A 0.9800
C3—C2 1.527 (3) C13—H13B 0.9800
C4—C5 1.356 (3) C13—H13C 0.9800
C4—C7 1.464 (3) C8—H8A 0.9900
C20—C25 1.398 (3) C8—H8B 0.9900
C20—C21 1.396 (3) C8—C9 1.506 (3)
C20—C17 1.484 (3) C9—H9A 0.9800
C14—C19 1.397 (3) C9—H9B 0.9800
C14—C15 1.392 (3) C9—H9C 0.9800
C25—H25 0.9500 C23—H23 0.9500
C25—C24 1.388 (4) C23—C24 1.388 (3)
C1—C2 1.352 (3) C24—H24 0.9500
C1—C13 1.500 (3) C11—H11A 0.9900
C18—H18 0.9500 C11—H11B 0.9900
C18—C17 1.395 (3) C11—C12 1.500 (4)
C18—C19 1.389 (3) C12—H12A 0.9800
C5—C6 1.502 (3) C12—H12B 0.9800
C2—C10 1.468 (3) C12—H12C 0.9800
C21—H21 0.9500
C10—O1—C11 115.95 (18) C5—C6—H6B 109.5
C7—O4—C8 117.92 (18) C5—C6—H6C 109.5
C1—N1—H1 115.9 (17) H6A—C6—H6B 109.5
C5—N1—C1 123.2 (2) H6A—C6—H6C 109.5
C5—N1—H1 119.4 (17) H6B—C6—H6C 109.5
C4—C3—H3 108.3 C14—C19—H19 119.1
C4—C3—C14 110.48 (18) C18—C19—C14 121.8 (2)
C4—C3—C2 110.09 (19) C18—C19—H19 119.1
C14—C3—H3 108.3 C14—C15—H15 119.2
C2—C3—H3 108.3 C16—C15—C14 121.6 (2)
C2—C3—C14 111.20 (19) C16—C15—H15 119.2
C5—C4—C3 119.3 (2) C1—C13—H13A 109.5
C5—C4—C7 124.8 (2) C1—C13—H13B 109.5
C7—C4—C3 115.4 (2) C1—C13—H13C 109.5
C25—C20—C17 121.4 (2) H13A—C13—H13B 109.5
C21—C20—C25 118.4 (2) H13A—C13—H13C 109.5
C21—C20—C17 120.2 (2) H13B—C13—H13C 109.5
C19—C14—C3 121.1 (2) O4—C8—H8A 110.5
C15—C14—C3 121.9 (2) O4—C8—H8B 110.5
C15—C14—C19 117.0 (2) O4—C8—C9 106.34 (19)
C20—C25—H25 119.7 H8A—C8—H8B 108.7
C24—C25—C20 120.5 (2) C9—C8—H8A 110.5
C24—C25—H25 119.7 C9—C8—H8B 110.5
N1—C1—C13 112.5 (2) O1—C10—C2 112.0 (2)
C2—C1—N1 118.8 (2) O2—C10—O1 121.3 (2)
C2—C1—C13 128.7 (2) O2—C10—C2 126.7 (2)
C17—C18—H18 119.6 C8—C9—H9A 109.5
C19—C18—H18 119.6 C8—C9—H9B 109.5
C19—C18—C17 120.8 (2) C8—C9—H9C 109.5
N1—C5—C6 112.8 (2) H9A—C9—H9B 109.5
C4—C5—N1 118.6 (2) H9A—C9—H9C 109.5
C4—C5—C6 128.6 (2) H9B—C9—H9C 109.5
C1—C2—C3 119.2 (2) C22—C23—H23 120.2
C1—C2—C10 120.9 (2) C22—C23—C24 119.6 (2)
C10—C2—C3 119.9 (2) C24—C23—H23 120.2
O3—C7—O4 121.7 (2) C25—C24—C23 120.3 (2)
O3—C7—C4 124.1 (2) C25—C24—H24 119.9
O4—C7—C4 114.2 (2) C23—C24—H24 119.9
C20—C21—H21 119.5 O1—C11—H11A 109.1
C22—C21—C20 120.9 (2) O1—C11—H11B 109.1
C22—C21—H21 119.5 O1—C11—C12 112.4 (2)
C21—C22—H22 119.9 H11A—C11—H11B 107.9
C21—C22—C23 120.2 (2) C12—C11—H11A 109.1
C23—C22—H22 119.9 C12—C11—H11B 109.1
C18—C17—C20 122.8 (2) C11—C12—H12A 109.5
C18—C17—C16 117.5 (2) C11—C12—H12B 109.5
C16—C17—C20 119.7 (2) C11—C12—H12C 109.5
C17—C16—H16 119.3 H12A—C12—H12B 109.5
C15—C16—C17 121.3 (2) H12A—C12—H12C 109.5
C15—C16—H16 119.3 H12B—C12—H12C 109.5
C5—C6—H6A 109.5
N1—C1—C2—C3 8.3 (3) C14—C3—C2—C10 −87.0 (3)
N1—C1—C2—C10 −173.2 (2) C25—C20—C21—C22 −1.3 (3)
C3—C4—C5—N1 −10.0 (3) C25—C20—C17—C18 −50.9 (3)
C3—C4—C5—C6 169.1 (2) C25—C20—C17—C16 129.5 (2)
C3—C4—C7—O3 16.6 (3) C1—N1—C5—C4 −17.3 (3)
C3—C4—C7—O4 −161.2 (2) C1—N1—C5—C6 163.4 (2)
C3—C14—C19—C18 179.7 (2) C1—C2—C10—O1 173.1 (2)
C3—C14—C15—C16 −178.9 (2) C1—C2—C10—O2 −6.4 (4)
C3—C2—C10—O1 −8.3 (3) C18—C17—C16—C15 −0.8 (3)
C3—C2—C10—O2 172.2 (2) C5—N1—C1—C2 18.3 (4)
C4—C3—C14—C19 −163.0 (2) C5—N1—C1—C13 −160.6 (2)
C4—C3—C14—C15 16.7 (3) C5—C4—C7—O3 −171.8 (2)
C4—C3—C2—C1 −31.2 (3) C5—C4—C7—O4 10.5 (3)
C4—C3—C2—C10 150.2 (2) C2—C3—C4—C5 32.1 (3)
C20—C25—C24—C23 −1.3 (4) C2—C3—C4—C7 −155.7 (2)
C20—C21—C22—C23 −0.9 (4) C2—C3—C14—C19 74.4 (3)
C20—C17—C16—C15 178.8 (2) C2—C3—C14—C15 −105.9 (2)
C14—C3—C4—C5 −91.1 (3) C7—O4—C8—C9 −174.9 (2)
C14—C3—C4—C7 81.1 (2) C7—C4—C5—N1 178.6 (2)
C14—C3—C2—C1 91.6 (3) C7—C4—C5—C6 −2.3 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C21—H21···O2i 0.95 2.50 3.256 (3) 137
C6—H6A···O3ii 0.98 2.59 3.452 (3) 147
C19—H19···O1 0.95 2.51 3.227 (3) 132
C13—H13B···O2 0.98 2.11 2.857 (3) 131
C8—H8A···O2iii 0.99 2.55 3.344 (3) 137
N1—H1···O3ii 0.91 (3) 2.03 (3) 2.938 (3) 173 (2)

Symmetry codes: (i) x−1, y+1, z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZL2590).

References

  1. Abe, T., Koike, K., Ohga, T., Kubo, T., Wada, M., Kohno, K., Mori, T., Hidaka, K. & Kuwano, M. (1995). Br. J. Cancer, 72, 418–423. [DOI] [PMC free article] [PubMed]
  2. Bossert, F., Meyer, H. & Wehinger, E. (1981). Angew. Chem. Int. Ed. Engl. 20, 762–769.
  3. Bruker (2012). APEX2, SAINT and SADABS Bruker AXS Ins., Madison, Wisconsin, USA.
  4. Cindric, M., Cipak, A., Serly, J., Plotniece, A., Jaganjac, M., Mrakovcic, L., Lovakovic, T., Dedic, A., Soldo, I., Duburs, G., Zarkovic, N. & Molnar, J. (2010). Anticancer Res. 30, 4063–4070. [PubMed]
  5. Cole, S., Downes, H. & Slovak, M. (1989). Br. J. Cancer, 59, 42–46. [DOI] [PMC free article] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tasaki, Y., Nakagawa, M., Ogata, J., Kiue, A., Tanimura, H., Kuwano, M. & Nomura, Y. (1995). J. Urol. 154, 1210–1216. [PubMed]
  9. Tolomero, M., Gancitano, R., Musso, M., Porretto, F., Perricone, R., Abbadessa, V. & Cajozzo, A. (1994). Haematologica, 79, 328–333. [PubMed]
  10. Triggle, D. (2003). Cell. Mol. Neurobiol. 23, 293–303. [DOI] [PMC free article] [PubMed]
  11. Vanhoefer, U., Muller, M., Hilger, R., Lindtner, B., Klaassen, U., Schleucher, N., Rustum, Y., Seeber, S. & Harstrick, A. (1999). Br. J. Cancer, 81, 1304–1310. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814013294/zl2590sup1.cif

e-70-0o791-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814013294/zl2590Isup2.hkl

e-70-0o791-Isup2.hkl (260.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814013294/zl2590Isup3.cml

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES