Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Jun 7;70(Pt 7):i32. doi: 10.1107/S1600536814012355

Tetra­amminepalladium(II) dichloride ammonia tetra­solvate

Tobias Grassl a, Nikolaus Korber a,*
PMCID: PMC4120636  PMID: 25161505

Abstract

The title compound, [Pd(NH3)4]Cl2·4NH3, was crystallized in liquid ammonia from the salt Pd(en)Cl2 (en is ethylenediamine) and is isotypic with [Pt(NH3)4]Cl2·4NH3 [Grassl & Korber (2014). Acta Cryst. E70, i31]. The Pd2+ cation is coordinated by four ammonia mol­ecules, exhibiting a square-planar geometry. The chloride anions are surrounded by nine ammonia mol­ecules. These are either bound in the palladium complex or solvent mol­ecules. The packing of the ammonia solvent mol­ecules enables the formation of an extended network of N—H⋯N and N—H⋯Cl inter­actions with nearly ideal hydrogen-bonding geometry.

Related literature  

For weak inter­molecular inter­actions such as hydrogen bonds and their application in crystal engeneering, see: Desiraju (2002); Desiraju (2007); Steiner (2002). For the structure of tetra­amminepalladium(II) chloride monoydrate and complexation of palladium by carbohydrates, see: Bell et al. (1976); Ahlrichs et al. (1998). The structure of the platinum analogue is given by Grassl & Korber (2014)

Experimental  

Crystal data  

  • [Pd(NH3)4]Cl2·4NH3

  • M r = 313.58

  • Monoclinic, Inline graphic

  • a = 7.6856 (5) Å

  • b = 10.1505 (7) Å

  • c = 8.7170 (6) Å

  • β = 100.384 (7)°

  • V = 668.90 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 123 K

  • 0.32 × 0.29 × 0.23 mm

Data collection  

  • Agilent Xcalibur (Ruby, Gemini ultra) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] T min = 0.649, T max = 0.741

  • 2418 measured reflections

  • 1266 independent reflections

  • 1076 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.058

  • S = 1.06

  • 1266 reflections

  • 100 parameters

  • All H-atom parameters refined

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.55 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: OLEX2.solve (Bourhis et al., 2014); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012355/pk2523sup1.cif

e-70-00i32-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012355/pk2523Isup2.hkl

e-70-00i32-Isup2.hkl (62.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012355/pk2523Isup3.mol

CCDC reference: 1005539

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1 0.86 (4) 2.49 (4) 3.351 (3) 175 (3)
N1—H1B⋯Cl1i 0.85 (3) 2.49 (4) 3.328 (3) 171 (3)
N2—H2A⋯N3ii 1.03 (4) 2.02 (4) 3.025 (5) 163 (3)
N1—H1C⋯N4 0.96 (4) 2.02 (5) 2.975 (5) 170 (3)
N2—H2B⋯Cl1i 0.73 (3) 2.66 (3) 3.384 (4) 172 (3)
N2—H2C⋯Cl1iii 0.88 (5) 2.62 (5) 3.463 (3) 162 (4)
N3—H3A⋯Cl1 0.83 (3) 2.83 (3) 3.563 (4) 148 (3)
N4—H4A⋯Cl1iv 0.91 (4) 2.65 (4) 3.563 (4) 173 (3)
N4—H4B⋯Cl1v 1.00 (5) 2.61 (5) 3.606 (4) 174 (4)
N3—H3B⋯Cl1vi 0.89 (5) 2.71 (5) 3.578 (4) 163 (3)
N3—H3C⋯Cl1vii 1.09 (5) 2.48 (5) 3.535 (4) 162 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

supplementary crystallographic information

S1. Comment

The crystal structure of the title compound was determined in the course of investigations into the reactivity of carbohydrates towards metal cations in liquid ammonia.

As in the platinum compound, the palladium cation forms a homoleptic ammine complex with a square-planar coordination geometry. Pd—N bond lengths are 2.032 (3) Å and 2.048 (3) Å, respectively, while the angles N—Pd—N are 88.59 (13)° and 91.41 (13)°. Ammonia ligands opposite to each other within the complex cation have staggered hydrogen atom positions (Fig. 1).

The chloride anion exhibits nine contacts to hydrogen atoms of ammonia molecules which are either bound in the complex or solvate molecules, forming a network of hydrogen bonds (Fig. 2 and Fig. 3). Bond angles (N—H···Cl) are between 148 (3)° and 175 (3)° whereas N—H···Cl bond lengths are observed with values between 2.48 (5) Å and 2.83 (3) Å. The two N—H···N bridges are close to 180°, with bond angles of 163 (3)° and 170 (3)° and bond lengths significantly less than the sum of the van der Waals radii of nitrogen and hydrogen (2.02 (4) Å and 2.02 (5) Å). These observations give strong evidence that a significant energy contribution from the hydrogen bond network drives the arrangement of the overall structure.

S2. Experimental

0.25 g (1.05 mmol) Pd(en)Cl2 and 0.188 g (1.05 mmol) D-(+)-glucono-1,5-lactone were placed under argon atmosphere in a reaction flask and 50 ml of dry liquid ammonia were condensed. This mixture was stored in a refrigerator at 237 K for one week to ensure that all substances were completely dissolved. The flask was then stored at 161 K for five months. After that period of time, clear colorless crystals of the title compound were found on the wall of the reaction vessel.

S3. Refinement

The crystal structure does not show any features where special refinement procedures had to be applied. All hydrogen atoms were located in difference maps and both bond angle/bond length and isotropic displacement parameters were refined.

Figures

Fig. 1.

Fig. 1.

: Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry code: (i) 1 - x, 1 - y, - z.

Fig. 2.

Fig. 2.

: The chloride anion is shown with its surrounding molecules. The predominant bond type is hydrogen bonding. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 3.

Fig. 3.

: Extended network of hydrogen bonds in the crystal structure. The solvent ammonia molecules are oriented to optimize the hydrogen bond geometry. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[Pd(NH3)4]Cl2·4NH3 F(000) = 320
Mr = 313.58 Dx = 1.557 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.6856 (5) Å Cell parameters from 1429 reflections
b = 10.1505 (7) Å θ = 3.1–29.3°
c = 8.7170 (6) Å µ = 1.76 mm1
β = 100.384 (7)° T = 123 K
V = 668.90 (8) Å3 Block, clear colourless
Z = 2 0.32 × 0.29 × 0.23 mm

Data collection

Agilent Xcalibur (Ruby, Gemini ultra) diffractometer 1266 independent reflections
Radiation source: fine-focus sealed tube 1076 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
phi and ω scans θmax = 25.7°, θmin = 3.1°
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), using a multi-faceted crystal model based on expressions derived by Clark & Reid (1995)] h = −7→9
Tmin = 0.649, Tmax = 0.741 k = −12→12
2418 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: iterative
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058 All H-atom parameters refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0075P)2] where P = (Fo2 + 2Fc2)/3
1266 reflections (Δ/σ)max < 0.001
100 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.55 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.21 Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pd1 0.5000 0.5000 0.0000 0.01592 (13)
Cl1 0.09460 (10) 0.66086 (7) 0.23005 (10) 0.0236 (2)
N1 0.4602 (4) 0.4827 (3) 0.2233 (3) 0.0200 (6)
N2 0.3507 (4) 0.3356 (3) −0.0659 (4) 0.0219 (6)
N3 0.5125 (5) 0.8226 (3) 0.3132 (4) 0.0358 (8)
N4 0.7709 (4) 0.5695 (4) 0.4561 (4) 0.0353 (8)
H1A 0.364 (5) 0.525 (3) 0.229 (5) 0.038 (12)*
H1B 0.449 (4) 0.402 (3) 0.246 (4) 0.024 (10)*
H2A 0.382 (4) 0.294 (3) −0.166 (5) 0.036 (10)*
H1C 0.556 (6) 0.521 (3) 0.296 (5) 0.046 (12)*
H2B 0.358 (4) 0.292 (3) 0.001 (4) 0.018 (11)*
H2C 0.238 (6) 0.355 (4) −0.097 (5) 0.064 (14)*
H3A 0.403 (5) 0.818 (3) 0.287 (4) 0.017 (9)*
H4A 0.861 (5) 0.594 (3) 0.406 (4) 0.028 (10)*
H4B 0.817 (6) 0.507 (4) 0.541 (6) 0.066 (15)*
H3B 0.554 (6) 0.815 (4) 0.415 (6) 0.055 (14)*
H4C 0.751 (5) 0.646 (4) 0.517 (5) 0.062 (14)*
H3C 0.493 (6) 0.925 (5) 0.277 (6) 0.086 (16)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.01442 (19) 0.0156 (2) 0.0177 (2) −0.00015 (13) 0.00265 (14) 0.00067 (14)
Cl1 0.0235 (4) 0.0204 (4) 0.0260 (4) 0.0014 (4) 0.0024 (3) −0.0023 (4)
N1 0.0242 (16) 0.0182 (16) 0.0186 (16) −0.0026 (14) 0.0069 (13) 0.0011 (13)
N2 0.0226 (16) 0.0219 (16) 0.0210 (17) −0.0041 (14) 0.0031 (14) 0.0023 (15)
N3 0.041 (2) 0.035 (2) 0.031 (2) 0.0050 (17) 0.0056 (17) 0.0004 (17)
N4 0.0296 (17) 0.042 (2) 0.0320 (19) −0.0026 (17) −0.0002 (15) 0.0059 (18)

Geometric parameters (Å, º)

Pd1—N1i 2.032 (3) N2—H2B 0.73 (3)
Pd1—N1 2.032 (3) N2—H2C 0.88 (5)
Pd1—N2i 2.048 (3) N3—H3A 0.83 (3)
Pd1—N2 2.048 (3) N3—H3B 0.89 (5)
N1—H1A 0.86 (4) N3—H3C 1.09 (5)
N1—H1B 0.85 (3) N4—H4A 0.91 (4)
N1—H1C 0.96 (4) N4—H4B 1.00 (5)
N2—H2A 1.03 (4) N4—H4C 0.97 (4)
N1—Pd1—N1i 179.999 (1) Pd1—N2—H2A 111.2 (18)
N1—Pd1—N2i 88.59 (13) Pd1—N2—H2B 109 (3)
N1i—Pd1—N2i 91.41 (13) Pd1—N2—H2C 112 (3)
N1i—Pd1—N2 88.59 (13) H2A—N2—H2B 115 (3)
N1—Pd1—N2 91.41 (13) H2A—N2—H2C 102 (3)
N2—Pd1—N2i 180.00 (10) H2B—N2—H2C 108 (4)
Pd1—N1—H1A 107 (3) H3A—N3—H3B 115 (4)
Pd1—N1—H1B 110 (2) H3A—N3—H3C 84 (3)
Pd1—N1—H1C 112 (3) H3B—N3—H3C 112 (4)
H1A—N1—H1B 110 (3) H4A—N4—H4B 109 (3)
H1A—N1—H1C 108 (3) H4A—N4—H4C 105 (3)
H1B—N1—H1C 109 (3) H4B—N4—H4C 100 (4)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl1 0.86 (4) 2.49 (4) 3.351 (3) 175 (3)
N1—H1B···Cl1ii 0.85 (3) 2.49 (4) 3.328 (3) 171 (3)
N2—H2A···N3i 1.03 (4) 2.02 (4) 3.025 (5) 163 (3)
N1—H1C···N4 0.96 (4) 2.02 (5) 2.975 (5) 170 (3)
N2—H2B···Cl1ii 0.73 (3) 2.66 (3) 3.384 (4) 172 (3)
N2—H2C···Cl1iii 0.88 (5) 2.62 (5) 3.463 (3) 162 (4)
N3—H3A···Cl1 0.83 (3) 2.83 (3) 3.563 (4) 148 (3)
N4—H4A···Cl1iv 0.91 (4) 2.65 (4) 3.563 (4) 173 (3)
N4—H4B···Cl1v 1.00 (5) 2.61 (5) 3.606 (4) 174 (4)
N3—H3B···Cl1vi 0.89 (5) 2.71 (5) 3.578 (4) 163 (3)
N3—H3C···Cl1vii 1.09 (5) 2.48 (5) 3.535 (4) 162 (4)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x, −y+1, −z; (iv) x+1, y, z; (v) −x+1, −y+1, −z+1; (vi) x+1/2, −y+3/2, z+1/2; (vii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: PK2523).

References

  1. Agilent (2012). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Ahlrichs, R., Ballauff, M., Eichkorn, K., Hanemann, O., Kettenbach, G. & Klüfers, P. (1998). Chem. Eur. J. 4, 835–844.
  3. Bell, J. D., Bowles, J. C., Cumming, H. J., Hall, D. & Holland, R. V. (1976). Acta Cryst. B32, 634–636.
  4. Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2014). In preparation.
  5. Brandenburg, K. & Putz, H. (2012). DIAMOND Crystal Impact GbR, Bonn, Germany.
  6. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  7. Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. [DOI] [PubMed]
  8. Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356. [DOI] [PubMed]
  9. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  10. Grassl, T. & Korber, N. (2014). Acta Cryst. E70, i31. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Steiner, T. (2002). Angew. Chem., 114, 50–80.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814012355/pk2523sup1.cif

e-70-00i32-sup1.cif (16.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814012355/pk2523Isup2.hkl

e-70-00i32-Isup2.hkl (62.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814012355/pk2523Isup3.mol

CCDC reference: 1005539

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES