Skip to main content
Journal of Dental Research, Dental Clinics, Dental Prospects logoLink to Journal of Dental Research, Dental Clinics, Dental Prospects
. 2014 Jun 11;8(2):77–83. doi: 10.5681/joddd.2014.014

Sealing Efficacy of Single-cone Obturation Technique with MTA and CEM Cement: An in Vitro Bacterial Leakage Study

Mohammad Samiei 1, Mohammad Aghazade 2, Farrokh Farhadi 3, Naeimeh Shahveghar 4, Ali Torab 4, Seyyed Mahdi Vahid Pakdel 5,*
PMCID: PMC4120909  PMID: 25093050

Abstract

Background and aims. Various materials and methods have been introduced for obturating cleaned and shaped root canal systems. This in vitro study aimed to evaluate the sealing ability of single-cone obturation technique with mineral trioxide aggregate and calcium-enriched mixture based on bacterial leakage approach.

Materials and methods. Sixty-four single-canal teeth were prepared and randomly divided into 5 groups, consisting of three experimental groups (n = 16) and two control groups (n = 8).In group 1, root canal obturation was performed using gutta-percha with 0.02 taper and AH26 sealer by lateral compaction technique. In groups 2 and 3, single Protaper gutta-percha cone was used for obturation with MTA and CEM cement, respectively. A bacterial leakage apparatus was utilized for leakage assessment for 60 days. Leakage comparison between the experimental groups was performed by one-way ANOVA using SPSS 16 statistical software.

Results. The mean bacterial leakage intervals in groups 1, 2 and 3 were 33.68 ± 9.39, 40.68 ± 11.03 and 39.56 ± 9.03 days, respectively. One-way ANOVA indicated no significant differences in bacterial leakage between the three experimen-tal groups (P = 0.109).

Conclusion. Single-cone obturation with well-fitted gutta-percha and MTA and CEM cement is an appropriate alternative for traditional lateral compaction technique.

Keywords: CEM cement, mineral trioxide aggregate, root canal therapy, root canal filling materials, single-cone obturation

Introduction

Obturation of the cleaned and shaped root canal system is a critical step in root canal therapy to inhibit the penetration of bacteria and their by-products into the cleaned and disinfected root canal system, as well as preventing the recolonization of bacteria remaining after root canal therapy. Providing a filling in the root canal capable of sealing the coronal, apical, and lateral openings is one of the main treatment objectives. Sealing the root canal system relies on the adequate adaptation of a filling material to obliterate the canal space and its intricacies: fins, deltas, isthmuses and lateral canals.1-3 Obturation of the root canal system hermetically, both apically and coronally, prevents leakage and contamination of the root canal space.4,5

Lateral compaction of gutta-percha cones remains widely accepted as a benchmark compared to other root filling techniques, as it is a simple and reliable technique that can be applied to most cases.6 However, it may leave gaps between gutta-percha cones, sealer and canal walls and there is a risk of vertical root fractures during compaction.7

Filling of root canals optimally in three dimensions after cleaning and shaping is paramount in preventing re-infection of the root canal space.8 Single-cone techniques performed with conventional sealers have been perceived to be less effective in sealing root canals than the gutta-percha warm vertical compaction technique.9 However, non-compaction, single-cone filling of root canals has recently been revived with the introduction of master cones with greater taper that match the geometry of nickel–titanium instrumentation systems.10 The advent of contemporary root canal sealing systems, claimed to create bonds along the sealer–gutta-percha interface by modifications of the sealer or the root-filling material, may also support the use of a single-cone obturation technique. 11Limited information, however, is available on the sealing quality of these new single-cone root fillings as compared with that of warm vertical compaction of gutta-percha. Recently however, gutta-percha cones with increased taper have been developed because use of gutta-percha cones with the same taper as that of nickel-titanium instruments may reduce microleakage.

Mineral trioxide aggregate has superior sealing ability and biocompatibility in comparison to other root-end filling materials.12 The results of microleakage studies revealed that MTA assures the best apical seal.13,14 Asgary et al introduced a novel endodontic cement with clinical applications similar to those of MTA.15 It has been shown that this material provides acceptable seal, similar to MTA and superior than IRM.16 The cement is biocompatible, induces hard tissue formation, forms an effective seal against entrance of microorganisms, is able to set in an aqueous environment, has antibacterial effects is resistant to washout.16

This study aimed to evaluate the sealing ability of single-cone obturation method with MTA and CEM cement using a bacterial leakage apparatus.

Materials and Methods

Sixty-four human single-canal canine teeth were obtained from the Department of Oral and Maxillofacial Surgery, Tabriz Faculty of Dentistry; the teeth had been extracted for orthodontic or periodontal reasons. The teeth were examined under a stereomicroscope (Olympus SZ, 9-ILL B200-Choida KU, Japan) and by radiography. The roots with cracks, caries, external or internal resorption and canal calcification were excluded from this study. The teeth were cleaned of tissue remnants and calculus and then rinsed and stored in normal saline. To ensure that all the specimens were of the same length, they were resected at 12-14 mm from the apex using a water-cooled diamond bur (D&Z, Darmstadt, Germany) and then stored in normal saline. All the procedures were performed by a single operator. The canals were accessed and the working length (WL) was determined by inserting a #15 K-file (Mani, Nakanishi Inc., Tokyo, Japan) into the canal until it was just visible at the apical foramen; then 1 mm was subtracted from the measurement. The root canals were prepared using ProTaper rotary Ni–Ti instruments (Dentsply Maillefer, Ballaigues, Switzerland) on an electrical endodontic handpiece (TCM Endo III, Sybron Endo, USA) at 250 rpm. Preparation was carried out according to manufacturer’s recommendations using the crown-down technique. Briefly, the S1 file was used to clean and shape the coronal part of the canal. Subsequently, the SX file was used to increase the taper of the coronal region and S1, S2, F1, F2 and F3 were used sequentially to the full working length. A 15% EDTA gel preparation (Glyde; Dentsply Maillefer) was used as a chelating agent, being introduced into the canal on the tip of each successive instrument. A new set of instruments was used for each group of teeth. None of the instruments fractured during the preparation of the specimens. The canals were irrigated between instruments with 5 mL of freshly prepared solution of 2.5% sodium hypochlorite (NaOCl). Irrigation was performed using 5-mL disposable plastic syringes with 27-gauge needle tips placed passively into the canal, up to 3 mm from the apical foramen without binding. Following instrumentation, the smear layer was removed with 15% EDTA, followed by 2.5% NaOCl. The canal was then dried with sterile paper points. The teeth were randomly divided into 5 groups, consisting of three experimental groups (n=16) and two negative and positive control groups (n=8).

In group 1 (AH26/LC), root canal obturation was carried out by gutta-percha (#30, 0.02 taper) and AH26 (Dentsply, DE Trey, Konstanz, Germany) sealer and cold lateral condensation technique. The sealer was applied to canal walls using a lentulo spiral. The master cone was coated with sealer and placed within the canal up to the WL. Then the lateral #20 cones were condensed laterally until the finger spreader #B (Dentsply, Maillefer) could not penetrate further than the coronal third of the canals. In group 2 (MTA/SGP), single Protaper gutta-percha cone (Dentsply Mailleferd) (Figure 1A), matching the size of the F3 file used for final apical preparation, was adjusted in the root canal. Mineral trioxide aggregate (Angelus, Londrina, Brazil) was mixed in low viscosity, like root canal sealers, and applied to canal walls by a lentulo spiral. Gutta-percha was coated with MTA and placed in the canal space up to the WL. In group 3 (CEM/SGP), the same procedure was carried out as that in group 2, except that CEM cement was used as sealer instead of MTA. In group 2 and 3 specimens, no secondary gutta-percha cones or lateral condensation was applied. Excess gutta-percha was removed with a heat carrier and the remaining gutta-percha was vertically compacted at the canal orifice. The access cavities were sealed with Cavit G. In the positive control samples, the teeth were obturated with #30 master gutta-percha without any sealer in order to have maximum bacterial penetration. In the negative control group, the teeth were obturated similar to the group 1 protocol and then immersed in molten wax. The teeth were stored at 37±1°C and 100% relative humidity for 7 days. In all the specimens, except for the negative controls, external root surfaces were covered by two layers of nail varnish except for the apical and coronal portions. In the negative controls, all parts of the specimens were covered by two layers of nail varnish.

Figure 1.

Figure 1.

A. Gutta-percha points with greater taper. B. Tooth mounted into the microtube. C. Sterilized and packed samples using ethylene oxide method. D. The apparatus used for bacterial leakage test (the upper chamber for mi-crobial suspension and the lower one for BHI medium). E. Incubation of samples.

Bacterial Leakage

An apparatus, specially developed for the present study, was used. It was based on the straight fitting of 2 tubes: a 2-mL centrifugation microtube and a laboratory glass. The prepared and obturated teeth were fixed to the polyethylene (Figure 1B) microtubes and their interface was sealed by nail varnish and parafilm in order to make them impermeable, but the apical areas of the teeth were left free of varnish. In order to avoid contamination, the apparatus was sterilized using ethylene oxide gas (Figure 1C) before being attached to the glass; the mounting process was performed under a microbial hood using sterile gloves. Then the microtube was inserted into the glass, thus creating two separate chambers (Figure 1D). In the lower one, 2 mm of the root apex remained immersed in the culture medium. In the upper chamber the bacterial suspension was applied. The interface of the microtube and glass was sealed by previously sterilized parafilm, providing lateral impermeability. The apparatus was developed to have a single pathway between the upper chamber (microbial reservoir) and the lower chamber (culture medium), which allowed access to the root canal. This model would permit an assessment of any microbial microleakage that might occur through the root canal sealers.

Microbial Preparation

For the present study, Enterococcus faecalis (ATCC 29212) was grown on chocolate agar (Brain Heart Infusion Agar, Oxoid, Basingstoke, UK) for 24 hours at 37°C in CO2. Then, E.faecalis was inoculated into the tubes containing 5 mL of sterile BHI (Brain Heart Infusion Agar, Oxoid, Basingstoke, UK) suspension and adjusted to a turbidity of 1.5×108 colony-forming units (CFU/mL).

A total of 1 mL of microbial suspensions was placed in the upper chamber of the prepared apparatus. Before bacterial intubation into the upper chamber, the apparatus was incubated for 24 hours at 37°C in order to evaluate sample contamination during the mounting process. If turbidity was observed in the BHI medium, it was considered as contaminated and the previous procedure was repeated. Then, all the glasses were incubated (Figure 1E) at 37°C for 60 days. After 24 hours of incubation, positive and negative controls were checked to ensure the reliability of the test. Every 3 days, 1 mL of the suspension (BHI containing E.faecalis) was aspirated from the chamber and replaced by 1 mL of fresh BHI inoculated with E.faecalis. The specimens were observed every day for turbidity of the broth in the lower chamber, indicating bacterial growth resulting from penetration of the bacteria past the root canal. To confirm BHI turbidity due to E. faecalis growth, the turbid BHI medium was cultured on a chocolate agar medium with a sterile swab; after incubation for 24 hours the colonies were examined and stained with gram staining and studied under a microscope. Then based on hemolysis type, catalase, bile escullin, PYR, optochin disk and 6.5% NaOCl growth tests were performed.17 The day of turbidity was recorded. Leakage comparison was carried out between the experimental groups by chi-squared test using SPSS 16 statistical software at a significance level of 0.05.

Results

In all the positive control specimens, the lower chamber BHI medium exhibited turbidity 24 hours after incubation. During the examination period, none of the negative control specimens exhibited turbidity. E. faecalis was isolated from all the turbid specimens by means of enterococcal diagnostic tests (as the colonies were α-hemolytic, opthocin disk, bile escullin, and NaOCl growth tests were carried out). The colonies were resistant to optochin disk, were bile escullin-resistant, and exhibited growth on 6.5% NaOCl medium. Therefore, they were identified as enterococcus species. The mean bacterial leakage days in the experimental specimens are presented in Table 1. Kolmogorov-Smirnov analysis revealed that data was normally distributed (P = 0.200). Levene test indicated that the homogeneity of variances matched in the three experimental groups (P = 0.489). Therefore, one-way ANOVA analysis was carried out to compare means between the experimental groups. One-way ANOVA depicted no significant differences in bacterial leakage day between the three experimental groups (P = 0.109, df (2) = 2.328) (Figures 2and 3).

Table 1. Statistical data of bacterial leakage of the experimental groups .

Experimental groups N* Mean (Std. Deviation) 95% confidence of interval P-value
Lower Upper (One-way ANOVA) Kolmogorov-Smirnov Levene Statistic
MTA-SGP 16 40.68 (11.03) 34.80 46.56 0.200
CEM-SGP 16 39.56 (9.02) 34.75 44.37 P=0.109 0.200 0.489
AH26-LC 16 33.68 (9.39) 28.68 38.69 0.200

Figure 2.

 Figure 2.

Daily changes of bacterial leakage in the groups studied.

Figure 3.

Figure 3.

Boxplot of bacterial leakage day of the experimental groups.

Discussion

Sealing all the communication pathways between the coronal and apical portions of a root canal system is necessary for the long-term success of root canal therapy. Different materials and techniques have been employed to achieve this goal. Single-cone obturation technique is a less time-consuming technique with better or comparable treatment outcomes in comparison to conventional techniques.6,18,19

The thickness of the sealer has been shown to vary depending on the obturation technique. Two concepts are available in single-cone obturation techniques. Some researchers have used this technique with a conventional 0.02% taper master gutta-percha cone and have reported that the single-cone technique requires more sealer and a greater thickness compared to other obturation methods. This increase in sealer volume might lead to an increase in shrinkage, producing more voids and ultimately more leakage.20-22 However, others have used this technique by greater tapers of master gutta-percha cones, during which the bulk of the canal system is filled by gutta-percha.6Nevertheless, regardless of the technique used in single-cone obturation, it is obvious that leakage takes place through the gaps at sealer-gutta-percha and sealer-canal wall interfaces. Therefore, it seems that there is less microleakage in the second concept because if the bulk of the canal is filled with sealer, the sealer quality and potential to produce voids or gaps within it is important because they can lead to more microleakage; however, it is not true about the second concept as gutta-percha itself is impermeable. This study was performed in relation to the second concept in which rotary ProTaper nickel-titanium files were used to prepare the canals and Protaper single cones for obturation in order to achieve the best fitness of the canal and gutta-percha compared to other preparation techniques.

The most widely used methods in assessing microleakage are the dye penetration technique,23,24electrochemical leakage test,25,26 and the fluid filtration technique.27,28 In several studies limitations of the dye penetration technique have been discussed. Some authors have suggested that the air inside the root canal filling may prevent the penetration of dye.29,30 Camps and Pashley reported that dye penetration relies on randomly cutting the root into two pieces without knowing if the section goes through the deepest dye penetration.31 The disadvantage of the electrochemical test was pointed out by Amditis et al: corrosion forming on the anodes blocks the diffusion of ions.25Bacterial leakage evaluation is a three-dimensional investigation of leakage through the canal system and would better simulate clinical situations. That’s why bacterial leakage was performed to evaluate the sealing efficacy in this study. Different investigators have used various bacterial species for bacterial penetration analysis.32-35Enterococcus faecalis was used in this study because it is the most virulent bacterial species in the root canal system. Regardless of bacterial species, the important aspect of this test is to confirm that the positive result is attributed to the specific bacterial growth and not to contamination during sample preparation. In this study, the positive samples were confirmed by different isolating tests such as bile escullin, optochin disk, and growth on 6.5% NaOCl medium.

The results of this study showed no differences between single-cone obturation technique using Protaper single cones and MTA or CEM cement as sealer and cold lateral condensation technique by conventional 0.02 taper gutta-percha and AH26 sealer. The factor which is worth considering is that because of good adaptation of gutta-percha to canal walls, only little space remains between gutta-percha and the canal wall, which is filled by the sealer. Therefore, the sealer properties such as viscosity and soaking ability are of utmost importance since it should easily soak gutta-percha and also readily flow in this tiny space to prevent leakage.

In several studies, single-cone technique has been compared to other root canal filling techniques in relation to leakage. Some researchers have compared the sealing ability of single-cone technique and other commonly used ones and have reported no differences between the two techniques.36-38 The same findings were revealed in this study, with no significant differences between the techniques evaluated.

Conclusion

Single-cone obturation with well-fitted gutta-percha and MTA and CEM cement is an alternative for traditional lateral compaction technique.

References

  • 1.Sjogren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod. 1990;16:498–504. doi: 10.1016/S0099-2399(07)80180-4. [DOI] [PubMed] [Google Scholar]
  • 2.Cheng Y, Peng B, Shen Y, Bian Z, Fan MW. [Analysis on results of endodontic treatment and influencing factors] Zhonghua Kou Qiang Yi Xue Za Zhi. 2006;41:517–20. [PubMed] [Google Scholar]
  • 3.Basmadjian-Charles CL, Farge P, Bourgeois DM, Lebrun T. Factors influencing the long-term results of endodontic treatment: a review of the literature. Int Dent J. 2002;52:81–6. doi: 10.1111/j.1875-595x.2002.tb00605.x. [DOI] [PubMed] [Google Scholar]
  • 4.Gutmann JL. Clinical, radiographic, and histologic perspectives on success and failure in endodontics. Dent Clin North Am. 1992;36:379–92. [PubMed] [Google Scholar]
  • 5.Sagsen B, Er O, Kahraman Y, Orucoglu H. Evaluation of microleakage of roots filled with different techniques with a computerized fluid filtration technique. J Endod. 2006;32:1168–70. doi: 10.1016/j.joen.2006.07.016. [DOI] [PubMed] [Google Scholar]
  • 6.Pitout E, Oberholzer TG. Leakage of teeth root-filled with GuttaFlow and a single GP cone compared to lateral condensation and warm vertical condensation. SADJ. 2009;64:104, 6–8. [PubMed] [Google Scholar]
  • 7.Peters DD. Two-year in vitro solubility evaluation of four Gutta-percha sealer obturation techniques. J Endod. 1986;12:139–45. doi: 10.1016/S0099-2399(86)80051-6. [DOI] [PubMed] [Google Scholar]
  • 8.Schilder H. Filling root canals in three dimensions. Dent Clin North Am 1967: 723-44. [PubMed] [Google Scholar]
  • 9.Beatty RG. The effect of standard or serial preparation on single cone obturation. Int Endod J. 1987;20:276–81. doi: 10.1111/j.1365-2591.1987.tb00627.x. [DOI] [PubMed] [Google Scholar]
  • 10.Gordon MP, Love RM, Chandler NP. An evaluation of06 tapered gutta-percha cones for filling of06 taper prepared curved root canals. Int Endod J. 2005;38:87–96. doi: 10.1111/j.1365-2591.2004.00903.x. [DOI] [PubMed] [Google Scholar]
  • 11.Gillespie WT, Loushine RJ, Weller RN, Mazzoni A, Doyle MD, Waller JL. et al. Improving the performance of EndoREZ root canal sealer with a dual-cured two-step self-etch adhesiveIIApical and coronal seal. J Endod. 2006;32:771–5. doi: 10.1016/j.joen.2006.01.006. [DOI] [PubMed] [Google Scholar]
  • 12.Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod. 2005;31:665–8. doi: 10.1097/01.don.0000157993.89164.be. [DOI] [PubMed] [Google Scholar]
  • 13.Aqrabawi J. Sealing ability of amalgam, super EBA cement, and MTA when used as retrograde filling materials. Br Dent J. 2000;188:266–8. doi: 10.1038/sj.bdj.4800450. [DOI] [PubMed] [Google Scholar]
  • 14.Torabinejad M, Higa RK, McKendry DJ, Pitt Ford. Dye leakage of four root end filling materials: effects of blood contamination. J Endod. 1994;20:159–63. doi: 10.1016/S0099-2399(06)80326-2. [DOI] [PubMed] [Google Scholar]
  • 15.Asgary S, Shahabi S, Jafarzadeh T, Amini S, Kheirieh S. The properties of a new endodontic material. J Endod. 2008;34:990–3. doi: 10.1016/j.joen.2008.05.006. [DOI] [PubMed] [Google Scholar]
  • 16.Asgary S, Eghbal MJ, Parirokh M. Sealing ability of a novel endodontic cement as a root-end filling material. J Biomed Mater Res A. 2008;87:706–9. doi: 10.1002/jbm.a.31678. [DOI] [PubMed] [Google Scholar]
  • 17.Mahon CR, Manuselis G. Textbook of Diagnostic Microbiology. Philadelphia: Saunders; 2000. [Google Scholar]
  • 18.Wu MK, Bud MG, Wesselink PR. The quality of single cone and laterally compacted gutta-percha fillings in small and curved root canals as evidenced by bidirectional radiographs and fluid transport measurements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:946–51. doi: 10.1016/j.tripleo.2009.07.046. [DOI] [PubMed] [Google Scholar]
  • 19.Sahni PS, Brown CE, Legan JJ, Moore BK, Vail MM. Comparison of rotary instrumentation and continuous wave obturation to reciprocating instrumentation and single cone obturation with a hydrophilic sealer. J Endod. 2008;34:99–101. doi: 10.1016/j.joen.2007.10.011. [DOI] [PubMed] [Google Scholar]
  • 20.Pommel L, Camps J. In vitro apical leakage of system B compared with other filling techniques. J Endod. 2001;27:449–51. doi: 10.1097/00004770-200107000-00003. [DOI] [PubMed] [Google Scholar]
  • 21.Wu MK, Wesselink PR, Boersma J. A 1-year follow-up study on leakage of four root canal sealers at different thicknesses. Int Endod J. 1995;28:185–9. doi: 10.1111/j.1365-2591.1995.tb00297.x. [DOI] [PubMed] [Google Scholar]
  • 22.Eguchi DS, Peters DD, Hollinger JO, Lorton L. A comparison of the area of the canal space occupied by gutta-percha following four gutta-percha obturation techniques using Procosol sealer. J Endod. 1985;11:166–75. doi: 10.1016/S0099-2399(85)80141-2. [DOI] [PubMed] [Google Scholar]
  • 23.Zmener O, Pameijer CH, Serrano SA, Vidueira M, Macchi RL. Significance of moist root canal dentin with the use of methacrylate-based endodontic sealers: an in vitro coronal dye leakage study. J Endod. 2008;34:76–9. doi: 10.1016/j.joen.2007.10.012. [DOI] [PubMed] [Google Scholar]
  • 24.Hashem AA, Hassanien EE. ProRoot MTA, MTA-Angelus and IRM used to repair large furcation perforations: sealability study. J Endod. 2008;34:59–61. doi: 10.1016/j.joen.2007.09.007. [DOI] [PubMed] [Google Scholar]
  • 25.Amditis C, Bryant RW, Blackler SM. The assessment of apical leakage of root-filled teeth by the electrochemical technique. Aust Dent J. 1993;38:22–7. doi: 10.1111/j.1834-7819.1993.tb05447.x. [DOI] [PubMed] [Google Scholar]
  • 26.Martell B, Chandler NP. Electrical and dye leakage comparison of three root-end restorative materials. Quintessence Int. 2002;33:30–4. [PubMed] [Google Scholar]
  • 27.Yilmaz Z, Tuncel B, Ozdemir HO, Serper A. Microleakage evaluation of roots filled with different obturation techniques and sealers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:124–8. doi: 10.1016/j.tripleo.2009.03.010. [DOI] [PubMed] [Google Scholar]
  • 28.Yildirim T, Orucoglu H, Cobankara FK. Long-term evaluation of the influence of smear layer on the apical sealing ability of MTA. J Endod. 2008;34:1537–40. doi: 10.1016/j.joen.2008.08.022. [DOI] [PubMed] [Google Scholar]
  • 29.Spangberg LS, Acierno TG, Yongbum Cha. Influence of entrapped air on the accuracy of leakage studies using dye penetration methods. J Endod. 1989;15:548–51. doi: 10.1016/s0099-2399(89)80199-2. [DOI] [PubMed] [Google Scholar]
  • 30.Verissimo DM, do Vale. Methodologies for assessment of apical and coronal leakage of endodontic filling materials: a critical review. J Oral Sci. 2006;48:93–8. doi: 10.2334/josnusd.48.93. [DOI] [PubMed] [Google Scholar]
  • 31.Camps J, Pashley D. Reliability of the dye penetration studies. J Endod. 2003;29:592–4. doi: 10.1097/00004770-200309000-00012. [DOI] [PubMed] [Google Scholar]
  • 32.Williamson AE, Marker KL, Drake DR, Dawson DV, Walton RE. Resin-based versus gutta-percha-based root canal obturation: influence on bacterial leakage in an in vitro model system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:292–6. doi: 10.1016/j.tripleo.2009.01.043. [DOI] [PubMed] [Google Scholar]
  • 33.Tasdemir T, Er K, Yildirim T, Buruk K, Celik D, Cora S. et al. Comparison of the sealing ability of three filling techniques in canals shaped with two different rotary systems: a bacterial leakage study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:e129–34. doi: 10.1016/j.tripleo.2009.05.007. [DOI] [PubMed] [Google Scholar]
  • 34.Salz U, Poppe D, Sbicego S, Roulet JF. Sealing properties of a new root canal sealer. Int Endod J. 2009;42:1084–9. doi: 10.1111/j.1365-2591.2009.01635.x. [DOI] [PubMed] [Google Scholar]
  • 35.Pinheiro CR, Guinesi AS, de Camargo EJ, Pizzolitto AC, Filho IB. Bacterial leakage evaluation of root canals filled with different endodontic sealers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:e56–60. doi: 10.1016/j.tripleo.2009.08.008. [DOI] [PubMed] [Google Scholar]
  • 36.Antonopoulos KG, Attin T, Hellwig E. Evaluation of the apical seal of root canal fillings with different methods. J Endod. 1998;24:655–8. doi: 10.1016/S0099-2399(98)80149-0. [DOI] [PubMed] [Google Scholar]
  • 37.Kardon BP, Kuttler S, Hardigan P, Dorn SO. An in vitro evaluation of the sealing ability of a new root-canal-obturation system. J Endod. 2003;29:658–61. doi: 10.1097/00004770-200310000-00011. [DOI] [PubMed] [Google Scholar]
  • 38.De Almeida WA, Leonardo MR, Tanomaru Filho M, Silva LA. Evaluation of apical sealing of three endodontic sealers. Int Endod J. 2000;33:25–7. doi: 10.1046/j.1365-2591.2000.00247.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Dental Research, Dental Clinics, Dental Prospects are provided here courtesy of Tabriz University of Medical Sciences

RESOURCES