Abstract
Sphingobium lucknowense F2T, isolated from the hexachlorocylcohexane (HCH) dumpsite located in Ummari village, Lucknow, India, rapidly degrades HCH isomers. Here we report the draft genome of strain F2 (4.4 Mbp), consisting of 4,910 protein coding genes with an average G+C content of 64.3%.
GENOME ANNOUNCEMENT
To continue our previous efforts to characterize the microbial diversity at a hexachlorocyclohexane (HCH) dumpsite by using culture-dependent (1–6) and culture-independent (7, 8) approaches, we have isolated from an HCH dumpsite yet another bacterial strain, characterized as Sphingobium lucknowense F2T (1). This strain was found to rapidly degrade all HCH isomers (α-, γ-, β-, and δ-HCH), as reported earlier for Sphingobium spp. (1, 9–12). This motivated our efforts to sequence the genome of F2T and compare its draft genome with the already-sequenced draft genomes of sphingomonads isolated from a similar HCH dumpsite (13–19).
The draft genome sequence of strain F2 was generated by using Illumina HiSeq 2000 (~5,744,444 paired-end reads) and 454 GS FLX titanium platforms (~77,766 single reads). The sequence data were assembled using Velvet_1.2.03 (20) at a k-mer length of 59 (expected coverage, 50; coverage cutoff, 10; and minimum contig length cutoff, 500 bp), ABySS 1.3.4 (21) at a k-mer length of 49, and SPAdes 3.0 (22). The sets of contigs generated from these assemblers were subjected to hybrid assembly integrated by Contig Integrator for Sequence Assembly (CISA) (23). We obtained 103 contigs having a total size of 4.4 Mbp, with average GC content of 64.3%. RNAmmer 1.2 (24) and ARAGORN (25) were used to predict rRNA genes, i.e., 2 5S rRNAs, 1e 16S rRNA, 1 23S rRNA, 49 tRNA, and 1 transfer-messenger RNA (tmRNA) gene. The Rapid Annotations using Subsystems Technology (RAST) pipeline (26), the KEGG Automatic Annotation Server (KAAS) (27), and the NCBI Prokaryotic Genomes Automatic Annotation Pipeline (http://www.ncbi.nlm.nih.gov/genomes/static/Pipeline.html) were used for annotation. RAST annotation revealed 4,910 coding sequences (CDSs), of which 41.85% have hypothetical proteins. Four insertion elements (IS) (IS1247, IS6100, ISShsp3, and ISSsp5) were identified on the basis of their sequence length and different layouts. The draft genome was binned using a Hidden Markov model (HMM) profile of 107 essential single-copy genes conserved in 95% of all bacteria, and it was found to contain 97 such genes, suggesting more than 90.7% completion (28).
Sphingobium lucknowense F2T contains one copy each of linA, linB, linC, linD, linE, linF, linI, linJ, linK, linL, linM, linN, and linR and four copies of linG and linH. These lin genes have already been implicated in the degradation of HCH isomers (10, 29, 30). Three putative gene clusters involved in degradation of chlorophenol, homogentisate, and toluene/phenol in other sphingomonads (14, 19) were also identified in the draft genome of Sphingobium lucknowense F2T.
Strikingly, strain F2T was found to contain higher abundances of membrane transport proteins (n = 228), stress response proteins (n = 117), putative aromatic hydrocarbon pathways (n = 30), and transposable elements and proteins (n = 12) of phages and prophages. The draft genome sequence of F2T, along with the genome sequences of seven HCH-degrading Sphingobium spp. (13–17, 30, 31) and metagenome data from the HCH dumpsite (7, 8) will now provide deeper insights into the evolution and acquisition of lin genes within this group of sphingomonads.
Nucleotide sequence accession numbers.
The genome sequence of Sphingobium lucknowense F2T has been assigned the GenBank accession number JANF00000000. The version described in this paper is version JANF02000000.
ACKNOWLEDGMENTS
The work was supported by grants from the Department of Biotechnology (DBT), Government of India, under project (BT/PR3301/BCE/8/875/11) and the All India Network Project on Soil Biodiversity-Biofertilizers (ICAR) XIth Plan (12-A/2007-lA ll).
V.N., P.L., N.S., S.K.G., and S.D. gratefully acknowledge the Council for Scientific and Industrial Research (CSIR), University Grant Commission (UGC), Department of Biotechnology (DBT), and Government of India and All India Network Project on Soil Biodiversity-Biofertilizer (ICAR) for providing research fellowships.
This paper was written during a visit under the DST-DAAD project to Helmholz Zentrum für Umweltzforschung-UFZ, (Leipzig, Germany) by R.L.
Footnotes
Citation Negi V, Lata P, Sangwan N, Kumar Gupta S, Das S, Rao DLN, Lal R. 2014. Draft genome sequence of hexachlorohexane (HCH)-degrading Sphingobium lucknowense strain F2T, isolated from an HCH dumpsite. Genome Announc. 2(4):e00788-14. doi:10.1128/genomeA.00788-14.
REFERENCES
- 1. Dadhwal M, Singh A, Prakash O, Gupta SK, Kumari K, Sharma P, Jit S, Verma M, Holliger C, Lal R. 2009. Proposal of biostimulation for hexachlorocyclohexane (HCH)-decontamination and characterization of culturable bacterial community from high-dose point HCH-contaminated soils. J. Appl. Microbiol. 106:381–392. 10.1111/j.1365-2672.2008.03982.x [DOI] [PubMed] [Google Scholar]
- 2. Singh A, Lal R. 2009. Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int. J. Syst. Evol. Microbiol. 59:162–166. 10.1099/ijs.0.65712-0 [DOI] [PubMed] [Google Scholar]
- 3. Dadhwal M, Jit S, Kumari H, Lal R. 2009. Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH) degrading bacterium isolated from an HCH dump site. Int. J. Syst. Evol. Microbiol. 59:3140–3144. 10.1099/ijs.0.005553-0 [DOI] [PubMed] [Google Scholar]
- 4. Bala K, Sharma P, Lal R. 2010. Sphingobium quisquiliarum sp. nov., P25T a hexachlorocyclohexane (HCH) degrading bacterium isolated from HCH-contaminated soil. Int. J. Syst. Evol. Microbiol. 60:429–433. 10.1099/ijs.0.010868-0 [DOI] [PubMed] [Google Scholar]
- 5. Sharma P, Verma M, Bala K, Nigam A, Lal R. 2010. Sphingopyxis ummariensis sp. nov., isolated from hexachlorocyclohexane dumpsite in north India. Int. J. Syst. Evol. Microbiol. 60:780–784. 10.1099/ijs.0.008805-0 [DOI] [PubMed] [Google Scholar]
- 6. Garg N, Bala K, Lal R. 2012. Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH contaminated soil. Int. J. Syst. Evol. Microbiol. 62:618–623. 10.1099/ijs.0.028886-0 [DOI] [PubMed] [Google Scholar]
- 7. Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N, Kaur J, Anand S, Malhotra J, Jindal S, Nigam A, Lal D, Dua A, Saxena A, Garg N, Verma M, Kaur J, Mukherjee U, Gilbert JA, Dowd SE, Raman R, Khurana P, Khurana JP, Lal R. 2012. Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 7:e46219. 10.1371/journal.pone.0046219 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Sangwan N, Verma H, Kumar R, Negi V, Lax S, Khurana P, Khurana JP, Gilbert JA, Lal R. 2014. Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. ISME J 8:398–408. 10.1038/ismej.2013.153 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Geueke B, Garg N, Ghosh S, Fleischmann T, Holliger C, Lal R, Kohler HP. 2013. Metabolomics of hexachlorocyclohexane (HCH) transformation: ratio of LinA to LinB determines metabolic fate of HCH isomers. Environ. Microbiol. 15:1040–1049. 10.1111/1462-2920.12009 [DOI] [PubMed] [Google Scholar]
- 10. Kumari R, Subudhi S, Suar M, Dhingra G, Raina V, Dogra C, Lal S, van der Meer JR, Holliger C, Lal R. 2002. Cloning and characterization of lin genes responsible for the degradation of hexachlorocyclohexane isomers by Sphingomonas paucimobilis strain B90. Appl. Environ. Microbiol. 68:6021–6028. 10.1128/AEM.68.12.6021-6028.2002 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11. Sharma P, Raina V, Kumari R, Malhotra S, Dogra D, Kumari H, Kohler H-PE, Buser HR, Holliger C, Lal R. 2006. Haloalkane dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane in Sphingobium indicum B90A. Appl. Environ. Microbiol. 72:5720–5727. 10.1128/AEM.00192-06 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12. Jit S, Dadhwal M, Kumari H, Jindal S, Kaur J, Lata P, Niharika N, Lal D, Garg N, Gupta SK, Sharma P, Bala K, Singh A, Vijgen J, Weber R, Lal R. 2011. Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India. Environ. Sci. Pollut. Res. Int. 18:586–597. 10.1007/s11356-010-0401-4 [DOI] [PubMed] [Google Scholar]
- 13. Anand S, Sangwan N, Lata P, Kaur J, Dua A, Singh AK, Verma M, Kaur J, Khurana JP, Khurana P, Mathur S, Lal R. 2012. Genome sequence of Sphingobium indicum B90A, a hexachlorocyclohexane-degrading bacterium. J. Bacteriol. 194:4471–4472. 10.1128/JB.00901-12 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14. Niharika N, Sangwan N, Ahmad S, Singh P, Khurana JP, Lal R. 2013. Draft genome sequence of Sphingobium chinhatense strain IP26T, isolated from a hexachlorocyclohexane dumpsite. Genome Announc. 1(4):e00680-13. 10.1128/genomeA.00680-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15. Kumar Singh A, Sangwan N, Sharma A, Gupta V, Khurana JP, Lal R. 2013. Draft genome sequence of Sphingobium quisquiliarum strain P25T, a novel hexachlorocylohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Genome Announc. 1(5):e00717-13. 10.1128/genomeA.00717-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16. Mukherjee U, Kumar R, Mahato NK, Khurana JP, Lal R. 2013. Draft genome sequence of Sphingobium sp. strain HDIPO4, an avid degrader of hexachlorocyclohexane. Genome Announc. 1(5):e00749-13. 10.1128/genomeA.00749-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17. Kohli P, Dua A, Sangwan N, Oldach P, Khurana JP, Lal R. 2013. Draft genome sequence of Sphingobium ummariense strain RL-3, a hexachlorocyclohexane-degrading bacterium. Genome Announc. 1(6):e00956-13. 10.1128/genomeA.00956-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18. Kumar R, Dwivedi V, Negi V, Khurana JP, Lal R. 2013. Draft genome sequence of Sphingobium lactosutens strain DS20T, isolated from a hexachlorocyclohexane dumpsite. Genome Announc. 1(5):e00753-13. 10.1128/genomeA.00753-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Saxena A, Nayyar N, Sangwan N, Kumari R, Khurana JP, Lal R. 2013. Genome sequence of Novosphingobium lindaniclasticum LE124T, isolated from a hexachlorocyclohexane dumpsite. Genome Announc. 1(5):e00715-13. 10.1128/genomeA.00715-13 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18(5):821–829. 10.1101/gr.074492.107 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. 2009. ABySS: a parallel assembler for short read sequence data. Genome Res. 19:1117–1123. 10.1101/gr.089532.108 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:455–477. 10.1089/cmb.2012.0021 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23. Lin SH, Liao YC. 2013. CISA: contig integrator for sequence assembly of bacterial genomes. PLoS One 8:e60843. 10.1371/journal.pone.0060843 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24. Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35:3100–3108. 10.1093/nar/gkm160 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25. Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32:11–16. 10.1093/nar/gkh152 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. 10.1186/1471-2164-9-75 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. 2007. KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 35:W182–W185. 10.1093/nar/gkm321 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28. Dupont CL, Rusch DB, Yooseph S, Lombardo MJ, Richter RA, Valas R, Novotny M, Yee-Greenbaum J, Selengut JD, Haft DH, Halpern AL, Lasken RS, Nealson K, Friedman R, Venter JC. 2012. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J 6:1186–1199. 10.1038/ismej.2011.189 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29. Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HP, Holliger C, Jackson C, Oakeshott JG. 2010. Biochemistry of microbial degradation of hexachlorocyclohexane prospects for bioremediation. Microbiol. Mol. Biol. Rev. 74:58–80. 10.1128/MMBR.00029-09 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30. Nagata Y, Natsui S, Endo R, Ohtsubo Y, Ichikawa N, Ankai A, Oguchi A, Fukui S, Fujita N, Tsuda M. 2011. Genomic organization and genomic structural rearrangements of Sphingobium japonicum UT26, an archetypal γ-hexachlorocyclohexane-degrading bacterium. Enzyme Microb. Technol. 49:499–508. 10.1016/j.enzmictec.2011.10.005 [DOI] [PubMed] [Google Scholar]
- 31. Kaur J, Verma H, Tripathi C, Khurana JP, Lal R. 2013. Draft genome sequence of a hexachlorocyclohexane-degrading bacterium, Sphingobium baderi strain LL03T. Genome Announc. 1(5):e00751-13. 10.1128/genomeA.00751-13 [DOI] [PMC free article] [PubMed] [Google Scholar]