Abstract
The phosphorylation-dependent mechanisms regulating activation of the human neutrophil respiratory-burst enzyme, NADPH oxidase, have not been elucidated. We have shown that phosphatidic acid (PA) and diacylglycerol (DG), products of phospholipase activation, synergize to activate NADPH oxidase in a cell-free system. We now report that activation by PA plus DG involves protein kinase activity, unlike other cell-free system activators. NADPH oxidase activation by PA plus DG is reduced approximately 70% by several protein kinase inhibitors [1-(5-isoquinolinesulfonyl)piperazine, staurosporine, GF-109203X]. Similarly, depletion of ATP by dialysis reduces PA plus DG-mediated NADPH oxidase activation by approximately 70%. Addition of ATP, but not a nonhydrolyzable ATP analog, to the dialyzed system restores activation levels to normal. In contrast, these treatments have little effect on NADPH oxidase activation by arachidonic acid or SDS plus DG. PA plus DG induces the phosphorylation of a number of endogenous proteins. Phosphorylation is largely mediated by PA, not DG. A predominant substrate is p47-phox, a phosphoprotein component of NADPH oxidase. Phosphorylation of p47-phox precedes activation of NADPH oxidase and is markedly reduced by the protein kinase inhibitors. In contrast, arachidonic acid alone or SDS plus DG is a poor activator of protein phosphorylation in the cell-free system. Thus, PA induces activation of one or more protein kinases that regulate NADPH oxidase activation in a cell-free system. This cell-free system will be useful for identifying a functionally important PA-activated protein kinase(s) and for dissecting the phosphorylation-dependent mechanisms responsible for NADPH oxidase activation.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abo A., Boyhan A., West I., Thrasher A. J., Segal A. W. Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p67-phox, p47-phox, p21rac1, and cytochrome b-245. J Biol Chem. 1992 Aug 25;267(24):16767–16770. [PubMed] [Google Scholar]
- Baggiolini M., Boulay F., Badwey J. A., Curnutte J. T. Activation of neutrophil leukocytes: chemoattractant receptors and respiratory burst. FASEB J. 1993 Aug;7(11):1004–1010. doi: 10.1096/fasebj.7.11.8396540. [DOI] [PubMed] [Google Scholar]
- Berkow R. L., Dodson R. W. Regulation of neutrophil respiratory burst by protein phosphatases. Life Sci. 1993;52(21):1727–1732. doi: 10.1016/0024-3205(93)90481-h. [DOI] [PubMed] [Google Scholar]
- Bocckino S. B., Wilson P. B., Exton J. H. Phosphatidate-dependent protein phosphorylation. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6210–6213. doi: 10.1073/pnas.88.14.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bokoch G. M. Regulation of the human neutrophil NADPH oxidase by the Rac GTP-binding proteins. Curr Opin Cell Biol. 1994 Apr;6(2):212–218. doi: 10.1016/0955-0674(94)90138-4. [DOI] [PubMed] [Google Scholar]
- Bowman E. P., Uhlinger D. J., Lambeth J. D. Neutrophil phospholipase D is activated by a membrane-associated Rho family small molecular weight GTP-binding protein. J Biol Chem. 1993 Oct 15;268(29):21509–21512. [PubMed] [Google Scholar]
- Burnham D. N., Uhlinger D. J., Lambeth J. D. Diradylglycerol synergizes with an anionic amphiphile to activate superoxide generation and phosphorylation of p47phox in a cell-free system from human neutrophils. J Biol Chem. 1990 Oct 15;265(29):17550–17559. [PubMed] [Google Scholar]
- Caldwell S. E., McCall C. E., Hendricks C. L., Leone P. A., Bass D. A., McPhail L. C. Coregulation of NADPH oxidase activation and phosphorylation of a 48-kD protein(s) by a cytosolic factor defective in autosomal recessive chronic granulomatous disease. J Clin Invest. 1988 May;81(5):1485–1496. doi: 10.1172/JCI113480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chanock S. J., el Benna J., Smith R. M., Babior B. M. The respiratory burst oxidase. J Biol Chem. 1994 Oct 7;269(40):24519–24522. [PubMed] [Google Scholar]
- Cockcroft S. G-protein-regulated phospholipases C, D and A2-mediated signalling in neutrophils. Biochim Biophys Acta. 1992 Aug 14;1113(2):135–160. [PubMed] [Google Scholar]
- Cockcroft S., Thomas G. M., Fensome A., Geny B., Cunningham E., Gout I., Hiles I., Totty N. F., Truong O., Hsuan J. J. Phospholipase D: a downstream effector of ARF in granulocytes. Science. 1994 Jan 28;263(5146):523–526. doi: 10.1126/science.8290961. [DOI] [PubMed] [Google Scholar]
- Curnutte J. T. Chronic granulomatous disease: the solving of a clinical riddle at the molecular level. Clin Immunol Immunopathol. 1993 Jun;67(3 Pt 2):S2–15. doi: 10.1006/clin.1993.1078. [DOI] [PubMed] [Google Scholar]
- Curnutte J. T., Erickson R. W., Ding J., Badwey J. A. Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester. J Biol Chem. 1994 Apr 8;269(14):10813–10819. [PubMed] [Google Scholar]
- Ding J., Badwey J. A. Effects of antagonists of protein phosphatases on superoxide release by neutrophils. J Biol Chem. 1992 Mar 25;267(9):6442–6448. [PubMed] [Google Scholar]
- Ding J., Badwey J. A. Wortmannin and 1-butanol block activation of a novel family of protein kinases in neutrophils. FEBS Lett. 1994 Jul 11;348(2):149–152. doi: 10.1016/0014-5793(94)00593-1. [DOI] [PubMed] [Google Scholar]
- Fuchs A., Dagher M. C., Vignais P. V. Mapping the domains of interaction of p40phox with both p47phox and p67phox of the neutrophil oxidase complex using the two-hybrid system. J Biol Chem. 1995 Mar 17;270(11):5695–5697. doi: 10.1074/jbc.270.11.5695. [DOI] [PubMed] [Google Scholar]
- Gabig T. G., Crean C. D., Mantel P. L., Rosli R. Function of wild-type or mutant Rac2 and Rap1a GTPases in differentiated HL60 cell NADPH oxidase activation. Blood. 1995 Feb 1;85(3):804–811. [PubMed] [Google Scholar]
- Gerard C., McPhail L. C., Marfat A., Stimler-Gerard N. P., Bass D. A., McCall C. E. Role of protein kinases in stimulation of human polymorphonuclear leukocyte oxidative metabolism by various agonists. Differential effects of a novel protein kinase inhibitor. J Clin Invest. 1986 Jan;77(1):61–65. doi: 10.1172/JCI112302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoek J. B. Tyrosine kinase activation and signal transduction mediated by phospholipase D. Lab Invest. 1993 Jul;69(1):1–4. [PubMed] [Google Scholar]
- Huang C. K., Coleman H., Stevens T., Liang L. Rapid modification of ribosomal S6 kinase II (S6KII) in rabbit peritoneal neutrophils stimulated with chemotactic factor fMet-Leu-Phe. J Leukoc Biol. 1994 Apr;55(4):430–436. doi: 10.1002/jlb.55.4.430. [DOI] [PubMed] [Google Scholar]
- Khan W. A., Blobe G. C., Richards A. L., Hannun Y. A. Identification, partial purification, and characterization of a novel phospholipid-dependent and fatty acid-activated protein kinase from human platelets. J Biol Chem. 1994 Apr 1;269(13):9729–9735. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lehrer R. I., Ganz T., Selsted M. E., Babior B. M., Curnutte J. T. Neutrophils and host defense. Ann Intern Med. 1988 Jul 15;109(2):127–142. doi: 10.7326/0003-4819-109-2-127. [DOI] [PubMed] [Google Scholar]
- Leto T. L., Garrett M. C., Fujii H., Nunoi H. Characterization of neutrophil NADPH oxidase factors p47-phox and p67-phox from recombinant baculoviruses. J Biol Chem. 1991 Oct 15;266(29):19812–19818. [PubMed] [Google Scholar]
- Limatola C., Schaap D., Moolenaar W. H., van Blitterswijk W. J. Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: comparison with other protein kinase C isotypes and other acidic lipids. Biochem J. 1994 Dec 15;304(Pt 3):1001–1008. doi: 10.1042/bj3041001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lu D. J., Takai A., Leto T. L., Grinstein S. Modulation of neutrophil activation by okadaic acid, a protein phosphatase inhibitor. Am J Physiol. 1992 Jan;262(1 Pt 1):C39–C49. doi: 10.1152/ajpcell.1992.262.1.C39. [DOI] [PubMed] [Google Scholar]
- MASSEY V. The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim Biophys Acta. 1959 Jul;34:255–256. doi: 10.1016/0006-3002(59)90259-8. [DOI] [PubMed] [Google Scholar]
- McPhail L. C., Qualliotine-Mann D., Agwu D. E., McCall C. E. Phospholipases and activation of the NADPH oxidase. Eur J Haematol. 1993 Nov;51(5):294–300. doi: 10.1111/j.1600-0609.1993.tb01611.x. [DOI] [PubMed] [Google Scholar]
- McPhail L. C. SH3-dependent assembly of the phagocyte NADPH oxidase. J Exp Med. 1994 Dec 1;180(6):2011–2015. doi: 10.1084/jem.180.6.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McPhail L. C., Snyderman R. Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemoattractants and other soluble stimuli. Evidence that the same oxidase is activated by different transductional mechanisms. J Clin Invest. 1983 Jul;72(1):192–200. doi: 10.1172/JCI110957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyer T., Regenass U., Fabbro D., Alteri E., Rösel J., Müller M., Caravatti G., Matter A. A derivative of staurosporine (CGP 41 251) shows selectivity for protein kinase C inhibition and in vitro anti-proliferative as well as in vivo anti-tumor activity. Int J Cancer. 1989 May 15;43(5):851–856. doi: 10.1002/ijc.2910430519. [DOI] [PubMed] [Google Scholar]
- Morrice N. A., Fecondo J., Wettenhall R. E. Differential effects of fatty acid and phospholipid activators on the catalytic activities of a structurally novel protein kinase from rat liver. FEBS Lett. 1994 Sep 5;351(2):171–175. doi: 10.1016/0014-5793(94)00854-x. [DOI] [PubMed] [Google Scholar]
- Morrice N. A., Gabrielli B., Kemp B. E., Wettenhall R. E. A cardiolipin-activated protein kinase from rat liver structurally distinct from the protein kinases C. J Biol Chem. 1994 Aug 5;269(31):20040–20046. [PubMed] [Google Scholar]
- Nakanishi H., Exton J. H. Purification and characterization of the zeta isoform of protein kinase C from bovine kidney. J Biol Chem. 1992 Aug 15;267(23):16347–16354. [PubMed] [Google Scholar]
- Nauseef W. M., McCormick S., Renee J., Leidal K. G., Clark R. A. Functional domain in an arginine-rich carboxyl-terminal region of p47phox. J Biol Chem. 1993 Nov 5;268(31):23646–23651. [PubMed] [Google Scholar]
- Park J. W., Babior B. M. Effects of diacylglycerol on the activation and kinetics of the respiratory burst oxidase in a cell-free system from human neutrophils: evidence that diacylglycerol may regulate nucleotide uptake by a GTP-binding protein. Arch Biochem Biophys. 1993 Oct;306(1):119–124. doi: 10.1006/abbi.1993.1488. [DOI] [PubMed] [Google Scholar]
- Park J. W., Babior B. M. The translocation of respiratory burst oxidase components from cytosol to plasma membrane is regulated by guanine nucleotides and diacylglycerol. J Biol Chem. 1992 Oct 5;267(28):19901–19906. [PubMed] [Google Scholar]
- Peveri P., Heyworth P. G., Curnutte J. T. Absolute requirement for GTP in activation of human neutrophil NADPH oxidase in a cell-free system: role of ATP in regenerating GTP. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2494–2498. doi: 10.1073/pnas.89.6.2494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Qualliotine-Mann D., Agwu D. E., Ellenburg M. D., McCall C. E., McPhail L. C. Phosphatidic acid and diacylglycerol synergize in a cell-free system for activation of NADPH oxidase from human neutrophils. J Biol Chem. 1993 Nov 15;268(32):23843–23849. [PubMed] [Google Scholar]
- Rotrosen D., Yeung C. L., Katkin J. P. Production of recombinant cytochrome b558 allows reconstitution of the phagocyte NADPH oxidase solely from recombinant proteins. J Biol Chem. 1993 Jul 5;268(19):14256–14260. [PubMed] [Google Scholar]
- Rüegg U. T., Burgess G. M. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci. 1989 Jun;10(6):218–220. doi: 10.1016/0165-6147(89)90263-0. [DOI] [PubMed] [Google Scholar]
- Senisterra G. A., van Gorkom L. C., Epand R. M. Calcium-independent activation of protein kinase C by the dianionic form of phosphatidic acid. Biochem Biophys Res Commun. 1993 Jan 15;190(1):33–36. doi: 10.1006/bbrc.1993.1006. [DOI] [PubMed] [Google Scholar]
- Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
- Sozzani S., Agwu D. E., McCall C. E., O'Flaherty J. T., Schmitt J. D., Kent J. D., McPhail L. C. Propranolol, a phosphatidate phosphohydrolase inhibitor, also inhibits protein kinase C. J Biol Chem. 1992 Oct 5;267(28):20481–20488. [PubMed] [Google Scholar]
- Steinbeck M. J., Hegg G. G., Karnovsky M. J. Arachidonate activation of the neutrophil NADPH-oxidase. Synergistic effects of protein phosphatase inhibitors compared with protein kinase activators. J Biol Chem. 1991 Sep 5;266(25):16336–16342. [PubMed] [Google Scholar]
- Toullec D., Pianetti P., Coste H., Bellevergue P., Grand-Perret T., Ajakane M., Baudet V., Boissin P., Boursier E., Loriolle F. The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J Biol Chem. 1991 Aug 25;266(24):15771–15781. [PubMed] [Google Scholar]
- Tsunawaki S., Mizunari H., Nagata M., Tatsuzawa O., Kuratsuji T. A novel cytosolic component, p40phox, of respiratory burst oxidase associates with p67phox and is absent in patients with chronic granulomatous disease who lack p67phox. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1378–1387. doi: 10.1006/bbrc.1994.1383. [DOI] [PubMed] [Google Scholar]
- Uhlinger D. J., Burnham D. N., Lambeth J. D. Nucleoside triphosphate requirements for superoxide generation and phosphorylation in a cell-free system from human neutrophils. Sodium dodecyl sulfate and diacylglycerol activate independently of protein kinase C. J Biol Chem. 1991 Nov 5;266(31):20990–20997. [PubMed] [Google Scholar]
- Verhoeven A. J., Leusen J. H., Kessels G. C., Hilarius P. M., de Bont D. B., Liskamp R. M. Inhibition of neutrophil NADPH oxidase assembly by a myristoylated pseudosubstrate of protein kinase C. J Biol Chem. 1993 Sep 5;268(25):18593–18598. [PubMed] [Google Scholar]
- Wientjes F. B., Hsuan J. J., Totty N. F., Segal A. W. p40phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J. 1993 Dec 15;296(Pt 3):557–561. doi: 10.1042/bj2960557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamaguchi M., Sasaki J., Kuwana M., Sakai M., Okamura N., Ishibashi S. Cytosolic protein phosphatase may turn off activated NADPH oxidase in guinea pig neutrophils. Arch Biochem Biophys. 1993 Oct;306(1):209–214. doi: 10.1006/abbi.1993.1502. [DOI] [PubMed] [Google Scholar]
- el Benna J., Faust L. P., Babior B. M. The phosphorylation of the respiratory burst oxidase component p47phox during neutrophil activation. Phosphorylation of sites recognized by protein kinase C and by proline-directed kinases. J Biol Chem. 1994 Sep 23;269(38):23431–23436. [PubMed] [Google Scholar]