Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Aug 15;92(17):8055–8058. doi: 10.1073/pnas.92.17.8055

Gene therapy for long-term expression of erythropoietin in rats.

W R Osborne 1, N Ramesh 1, S Lau 1, M M Clowes 1, D C Dale 1, A W Clowes 1
PMCID: PMC41285  PMID: 7644537

Abstract

The injection of recombinant erythropoietin (Epo) is now widely used for long-term treatment of anemia associated with chronic renal failure, cancer, and human immunodeficiency virus infections. The ability to deliver this hormone by gene therapy rather than by repeated injections could provide substantial clinical and economic benefits. As a preliminary approach, we investigated in rats the expression and biological effects of transplanting autologous vascular smooth muscle cells transduced with a retroviral vector encoding rat Epo cDNA. Vector-derived Epo secretion caused increases in reticulocytes, with peak levels of 7.8-9.6% around day 10 after implantation. The initial elevation in reticulocytes was followed by clinically significant increases in hematocrit and hemoglobin for up to 11 weeks. Ten control and treated animals showed mean hematocrits of 44.9 +/- 0.4% and 58.7 +/- 3.1%, respectively (P < 0.001), and hemoglobin values of 15.6 +/- 0.1 g/dl and 19.8 +/- 0.9 g/dl, respectively (P < 0.001). There were no significant differences between control and treated animals in the number of white blood cells and platelets. Kidney and to a lesser extent liver are specific organs that synthesize Epo in response to tissue oxygenation. In the treated animals, endogenous Epo mRNA was largely down regulated in kidney and absent from liver. These results indicate that vascular smooth muscle cells can be genetically modified to provide treatment of anemias due to Epo deficiency and suggest that this cell type may be targeted in the treatment of other diseases requiring systemic therapeutic protein delivery.

Full text

PDF
8055

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anagnostou A., Barone J., Kedo A., Fried W. Effect of erythropoietin therapy on the red cell volume of uraemic and non-uraemic rats. Br J Haematol. 1977 Sep;37(1):85–91. [PubMed] [Google Scholar]
  2. Beck I., Weinmann R., Caro J. Characterization of hypoxia-responsive enhancer in the human erythropoietin gene shows presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood. 1993 Aug 1;82(3):704–711. [PubMed] [Google Scholar]
  3. Berglund B., Ekblom B. Effect of recombinant human erythropoietin treatment on blood pressure and some haematological parameters in healthy men. J Intern Med. 1991 Feb;229(2):125–130. doi: 10.1111/j.1365-2796.1991.tb00319.x. [DOI] [PubMed] [Google Scholar]
  4. Blanchard K. L., Acquaviva A. M., Galson D. L., Bunn H. F. Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol Cell Biol. 1992 Dec;12(12):5373–5385. doi: 10.1128/mcb.12.12.5373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clowes A. W., Reidy M. A., Clowes M. M. Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium. Lab Invest. 1983 Sep;49(3):327–333. [PubMed] [Google Scholar]
  6. Clowes M. M., Lynch C. M., Miller A. D., Miller D. G., Osborne W. R., Clowes A. W. Long-term biological response of injured rat carotid artery seeded with smooth muscle cells expressing retrovirally introduced human genes. J Clin Invest. 1994 Feb;93(2):644–651. doi: 10.1172/JCI117016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Descamps V., Blumenfeld N., Villeval J. L., Vainchenker W., Perricaudet M., Beuzard Y. Erythropoietin gene transfer and expression in adult normal mice: use of an adenovirus vector. Hum Gene Ther. 1994 Aug;5(8):979–985. doi: 10.1089/hum.1994.5.8-979. [DOI] [PubMed] [Google Scholar]
  8. Eschbach J. W., Egrie J. C., Downing M. R., Browne J. K., Adamson J. W. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med. 1987 Jan 8;316(2):73–78. doi: 10.1056/NEJM198701083160203. [DOI] [PubMed] [Google Scholar]
  9. Eschbach J. W., Mladenovic J., Garcia J. F., Wahl P. W., Adamson J. W. The anemia of chronic renal failure in sheep. Response to erythropoietin-rich plasma in vivo. J Clin Invest. 1984 Aug;74(2):434–441. doi: 10.1172/JCI111439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Evans R. W. Recombinant human erythropoietin and the quality of life of end-stage renal disease patients: a comparative analysis. Am J Kidney Dis. 1991 Oct;18(4 Suppl 1):62–70. [PubMed] [Google Scholar]
  11. Firth J. D., Ebert B. L., Pugh C. W., Ratcliffe P. J. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and lactate dehydrogenase A genes: similarities with the erythropoietin 3' enhancer. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6496–6500. doi: 10.1073/pnas.91.14.6496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamamori Y., Samal B., Tian J., Kedes L. Persistent erythropoiesis by myoblast transfer of erythropoietin cDNA. Hum Gene Ther. 1994 Nov;5(11):1349–1356. doi: 10.1089/hum.1994.5.11-1349. [DOI] [PubMed] [Google Scholar]
  13. Hock R. A., Miller A. D., Osborne W. R. Expression of human adenosine deaminase from various strong promoters after gene transfer into human hematopoietic cell lines. Blood. 1989 Aug 1;74(2):876–881. [PubMed] [Google Scholar]
  14. Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev. 1992 Apr;72(2):449–489. doi: 10.1152/physrev.1992.72.2.449. [DOI] [PubMed] [Google Scholar]
  15. Koury M. J., Bondurant M. C. The molecular mechanism of erythropoietin action. Eur J Biochem. 1992 Dec 15;210(3):649–663. doi: 10.1111/j.1432-1033.1992.tb17466.x. [DOI] [PubMed] [Google Scholar]
  16. Lynch C. M., Clowes M. M., Osborne W. R., Clowes A. W., Miller A. D. Long-term expression of human adenosine deaminase in vascular smooth muscle cells of rats: a model for gene therapy. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1138–1142. doi: 10.1073/pnas.89.3.1138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Madan A., Curtin P. T. A 24-base-pair sequence 3' to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3928–3932. doi: 10.1073/pnas.90.9.3928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Madan A., Lin C., Hatch S. L., 2nd, Curtin P. T. Regulated basal, inducible, and tissue-specific human erythropoietin gene expression in transgenic mice requires multiple cis DNA sequences. Blood. 1995 May 15;85(10):2735–2741. [PubMed] [Google Scholar]
  19. Maxwell P. H., Pugh C. W., Ratcliffe P. J. Inducible operation of the erythropoietin 3' enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2423–2427. doi: 10.1073/pnas.90.6.2423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McDonald T. P., Clift R. E., Cottrell M. B. Large, chronic doses of erythropoietin cause thrombocytopenia in mice. Blood. 1992 Jul 15;80(2):352–358. [PubMed] [Google Scholar]
  21. Miller A. D., Buttimore C. Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol. 1986 Aug;6(8):2895–2902. doi: 10.1128/mcb.6.8.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
  23. Nabel E. G., Plautz G., Nabel G. J. Site-specific gene expression in vivo by direct gene transfer into the arterial wall. Science. 1990 Sep 14;249(4974):1285–1288. doi: 10.1126/science.2119055. [DOI] [PubMed] [Google Scholar]
  24. Ohno T., Gordon D., San H., Pompili V. J., Imperiale M. J., Nabel G. J., Nabel E. G. Gene therapy for vascular smooth muscle cell proliferation after arterial injury. Science. 1994 Aug 5;265(5173):781–784. doi: 10.1126/science.8047883. [DOI] [PubMed] [Google Scholar]
  25. Plautz G., Nabel E. G., Nabel G. J. Introduction of vascular smooth muscle cells expressing recombinant genes in vivo. Circulation. 1991 Feb;83(2):578–583. doi: 10.1161/01.cir.83.2.578. [DOI] [PubMed] [Google Scholar]
  26. Powe N. R., Griffiths R. I., Bass E. B. Cost implications to Medicare of recombinant erythropoietin therapy for the anemia of end-stage renal disease. J Am Soc Nephrol. 1993 Apr;3(10):1660–1671. doi: 10.1681/ASN.V3101660. [DOI] [PubMed] [Google Scholar]
  27. Schuster S. J., Koury S. T., Bohrer M., Salceda S., Caro J. Cellular sites of extrarenal and renal erythropoietin production in anaemic rats. Br J Haematol. 1992 Jun;81(2):153–159. doi: 10.1111/j.1365-2141.1992.tb08200.x. [DOI] [PubMed] [Google Scholar]
  28. Semenza G. L., Nejfelt M. K., Chi S. M., Antonarakis S. E. Hypoxia-inducible nuclear factors bind to an enhancer element located 3' to the human erythropoietin gene. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5680–5684. doi: 10.1073/pnas.88.13.5680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Semenza G. L., Roth P. H., Fang H. M., Wang G. L. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem. 1994 Sep 23;269(38):23757–23763. [PubMed] [Google Scholar]
  30. Setoguchi Y., Danel C., Crystal R. G. Stimulation of erythropoiesis by in vivo gene therapy: physiologic consequences of transfer of the human erythropoietin gene to experimental animals using an adenovirus vector. Blood. 1994 Nov 1;84(9):2946–2953. [PubMed] [Google Scholar]
  31. Spivak J. L., Pham T., Isaacs M., Hankins W. D. Erythropoietin is both a mitogen and a survival factor. Blood. 1991 Mar 15;77(6):1228–1233. [PubMed] [Google Scholar]
  32. Wang G. L., Semenza G. L. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4304–4308. doi: 10.1073/pnas.90.9.4304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wen D., Boissel J. P., Tracy T. E., Gruninger R. H., Mulcahy L. S., Czelusniak J., Goodman M., Bunn H. F. Erythropoietin structure-function relationships: high degree of sequence homology among mammals. Blood. 1993 Sep 1;82(5):1507–1516. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES