Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Aug 1;92(16):7182–7186. doi: 10.1073/pnas.92.16.7182

Serotonin regulates mouse cranial neural crest migration.

J R Moiseiwitsch 1, J M Lauder 1
PMCID: PMC41303  PMID: 7638165

Abstract

Serotonergic agents (uptake inhibitors, receptor ligands) cause significant craniofacial malformations in cultured mouse embryos suggesting that 5-hydroxytryptamine (serotonin) (5-HT) may be an important regulator of craniofacial development. To determine whether serotonergic regulation of cell migration might underly some of these effects, cranial neural crest (NC) explants from embryonic day 9 (E9) (plug day = E1) mouse embryos or dissociated mandibular mesenchyme cells (derived from NC) from E12 embryos were placed in a modified Boyden chamber to measure effects of serotonergic agents on cell migration. A dose-dependent effect of 5-HT on the migration of highly motile cranial NC cells was demonstrated, such that low concentrations of 5-HT stimulated migration, whereas this effect was progressively lost as the dose of 5-HT was increased. In contrast, most concentrations of 5-HT inhibited migration of less motile, mandibular mesenchyme cells. To investigate the possible involvement of specific 5-HT receptors in the stimulation of NC migration, several 5-HT subtype-selective antagonists were used to block the effects of the most stimulatory dose of 5-HT (0.01 microM). Only NAN-190 (a 5-HT1A antagonist) inhibited the effect of 5-HT, suggesting involvement of this receptor. Further evidence was obtained by using immunohistochemistry with 5-HT receptor antibodies, which revealed expression of the 5-HT1A receptor but not other subtypes by migrating NC cells in both embryos and cranial NC explants. These results suggest that by activating appropriate receptors 5-HT may regulate migration of cranial NC cells and their mesenchymal derivatives in the mouse embryo.

Full text

PDF
7182

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUZNIKOV G. A., CHUDAKOVA I. V., ZVEZDINA N. D. THE R OLE OF NEUROHUMOURS IN EARLY EMBRYOGENESIS. I. SEROTONIN CONTENT OF DEVELOPING EMBRYOS OF SEA URCHIN AND LOACH. J Embryol Exp Morphol. 1964 Dec;12:563–573. [PubMed] [Google Scholar]
  2. Bottaro D., Shepro D., Peterson S., Hechtman H. B. Serotonin, histamine, and norepinephrine mediation of endothelial and vascular smooth muscle cell movement. Am J Physiol. 1985 Mar;248(3 Pt 1):C252–C257. doi: 10.1152/ajpcell.1985.248.3.C252. [DOI] [PubMed] [Google Scholar]
  3. Bronner-Fraser M. Mechanisms of neural crest cell migration. Bioessays. 1993 Apr;15(4):221–230. doi: 10.1002/bies.950150402. [DOI] [PubMed] [Google Scholar]
  4. Buznikov G. A. The biogenic monoamines as regulators of early (pre-nervous) embryogenesis: new data. Adv Exp Med Biol. 1991;296:33–48. doi: 10.1007/978-1-4684-8047-4_5. [DOI] [PubMed] [Google Scholar]
  5. EHRMANN R. L., GEY G. O. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J Natl Cancer Inst. 1956 Jun;16(6):1375–1403. [PubMed] [Google Scholar]
  6. Emanuelsson H., Carlberg M., Löwkvist B. Presence of serotonin in early chick embryos. Cell Differ. 1988 Aug;24(3):191–199. doi: 10.1016/0045-6039(88)90050-4. [DOI] [PubMed] [Google Scholar]
  7. Fukiishi Y., Morriss-Kay G. M. Migration of cranial neural crest cells to the pharyngeal arches and heart in rat embryos. Cell Tissue Res. 1992 Apr;268(1):1–8. doi: 10.1007/BF00338048. [DOI] [PubMed] [Google Scholar]
  8. Gustafson T., Lundgren B., Treufeldt R. Serotonin and contractile activity in the echinopluteus. A study of the cellular basis of larval behaviour. Exp Cell Res. 1972 May;72(1):115–139. doi: 10.1016/0014-4827(72)90573-3. [DOI] [PubMed] [Google Scholar]
  9. Gustafson T., Toneby M. On the role of serotonin and acetylcholine in sea urchin morphogenesis. Exp Cell Res. 1970 Sep;62(1):102–117. doi: 10.1016/0014-4827(79)90512-3. [DOI] [PubMed] [Google Scholar]
  10. Hoyer D., Clarke D. E., Fozard J. R., Hartig P. R., Martin G. R., Mylecharane E. J., Saxena P. R., Humphrey P. P. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994 Jun;46(2):157–203. [PubMed] [Google Scholar]
  11. Kirby M. L., Waldo K. L. Role of neural crest in congenital heart disease. Circulation. 1990 Aug;82(2):332–340. doi: 10.1161/01.cir.82.2.332. [DOI] [PubMed] [Google Scholar]
  12. Lauder J. M. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 1993 Jun;16(6):233–240. doi: 10.1016/0166-2236(93)90162-f. [DOI] [PubMed] [Google Scholar]
  13. Lauder J. M., Tamir H., Sadler T. W. Serotonin and morphogenesis. I. Sites of serotonin uptake and -binding protein immunoreactivity in the midgestation mouse embryo. Development. 1988 Apr;102(4):709–720. doi: 10.1242/dev.102.4.709. [DOI] [PubMed] [Google Scholar]
  14. Lauder J. M., Zimmerman E. F. Sites of serotonin uptake in epithelia of the developing mouse palate, oral cavity, and face: possible role in morphogenesis. J Craniofac Genet Dev Biol. 1988;8(3):265–276. [PubMed] [Google Scholar]
  15. Lee S. L., Wang W. W., Moore B. J., Fanburg B. L. Dual effect of serotonin on growth of bovine pulmonary artery smooth muscle cells in culture. Circ Res. 1991 May;68(5):1362–1368. doi: 10.1161/01.res.68.5.1362. [DOI] [PubMed] [Google Scholar]
  16. Lumsden A. G. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development. 1988;103 (Suppl):155–169. doi: 10.1242/dev.103.Supplement.155. [DOI] [PubMed] [Google Scholar]
  17. Mangel A. W., Raymond J. R., Fitz J. G. Regulation of high-conductance anion channels by G proteins and 5-HT1A receptors in CHO cells. Am J Physiol. 1993 Mar;264(3 Pt 2):F490–F495. doi: 10.1152/ajprenal.1993.264.3.F490. [DOI] [PubMed] [Google Scholar]
  18. Nichols D. H. Neural crest formation in the head of the mouse embryo as observed using a new histological technique. J Embryol Exp Morphol. 1981 Aug;64:105–120. [PubMed] [Google Scholar]
  19. Noden D. M. Origins and patterning of craniofacial mesenchymal tissues. J Craniofac Genet Dev Biol Suppl. 1986;2:15–31. [PubMed] [Google Scholar]
  20. Sadler T. W. Culture of early somite mouse embryos during organogenesis. J Embryol Exp Morphol. 1979 Jan;49:17–25. [PubMed] [Google Scholar]
  21. Selleck M. A., Bronner-Fraser M. Origins of the avian neural crest: the role of neural plate-epidermal interactions. Development. 1995 Feb;121(2):525–538. doi: 10.1242/dev.121.2.525. [DOI] [PubMed] [Google Scholar]
  22. Serbedzija G. N., Bronner-Fraser M., Fraser S. E. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development. 1992 Oct;116(2):297–307. doi: 10.1242/dev.116.2.297. [DOI] [PubMed] [Google Scholar]
  23. Shuey D. L., Sadler T. W., Lauder J. M. Serotonin as a regulator of craniofacial morphogenesis: site specific malformations following exposure to serotonin uptake inhibitors. Teratology. 1992 Oct;46(4):367–378. doi: 10.1002/tera.1420460407. [DOI] [PubMed] [Google Scholar]
  24. Shuey D. L., Sadler T. W., Tamir H., Lauder J. M. Serotonin and morphogenesis. Transient expression of serotonin uptake and binding protein during craniofacial morphogenesis in the mouse. Anat Embryol (Berl) 1993 Jan;187(1):75–85. doi: 10.1007/BF00208198. [DOI] [PubMed] [Google Scholar]
  25. Tamir H., Liu K. P., Hsiung S. C., Yu P. Y., Kirchgessner A. L., Gershon M. D. Identification of serotonin receptors recognized by anti-idiotypic antibodies. J Neurochem. 1991 Sep;57(3):930–942. doi: 10.1111/j.1471-4159.1991.tb08240.x. [DOI] [PubMed] [Google Scholar]
  26. Tan S. S., Morriss-Kay G. The development and distribution of the cranial neural crest in the rat embryo. Cell Tissue Res. 1985;240(2):403–416. doi: 10.1007/BF00222353. [DOI] [PubMed] [Google Scholar]
  27. Wallace J. A. Monoamines in the early chick embryo: demonstration of serotonin synthesis and the regional distribution of serotonin-concentrating cells during morphogenesis. Am J Anat. 1982 Nov;165(3):261–276. doi: 10.1002/aja.1001650304. [DOI] [PubMed] [Google Scholar]
  28. Wallace J. A., Petrusz P., Lauder J. M. Serotonin immunocytochemistry in the adult and developing rat brain: methodological and pharmacological considerations. Brain Res Bull. 1982 Jul-Dec;9(1-6):117–129. doi: 10.1016/0361-9230(82)90127-7. [DOI] [PubMed] [Google Scholar]
  29. Wee E. L., Babiarz B. S., Zimmerman S., Zimmerman E. F. Palate morphogenesis. IV. Effects of serotonin and its antagonists on rotation in embryo culture. J Embryol Exp Morphol. 1979 Oct;53:75–90. [PubMed] [Google Scholar]
  30. Welles S. L., Shepro D., Hechtman H. B. Vasoactive amines modulate actin cables (stress fibers) and surface area in cultured bovine endothelium. J Cell Physiol. 1985 Jun;123(3):337–342. doi: 10.1002/jcp.1041230307. [DOI] [PubMed] [Google Scholar]
  31. Yavarone M. S., Shuey D. L., Sadler T. W., Lauder J. M. Serotonin uptake in the ectoplacental cone and placenta of the mouse. Placenta. 1993 Mar-Apr;14(2):149–161. doi: 10.1016/s0143-4004(05)80257-7. [DOI] [PubMed] [Google Scholar]
  32. Yavarone M. S., Shuey D. L., Tamir H., Sadler T. W., Lauder J. M. Serotonin and cardiac morphogenesis in the mouse embryo. Teratology. 1993 Jun;47(6):573–584. doi: 10.1002/tera.1420470609. [DOI] [PubMed] [Google Scholar]
  33. Zimmerman E. F., Clark R. L., Ganguli S., Venkatasubramanian K. Serotonin regulation of palatal cell motility and metabolism. J Craniofac Genet Dev Biol. 1983;3(4):371–385. [PubMed] [Google Scholar]
  34. Zimmerman E. F., Wee E. L., Phillips N., Roberts N. Presence of serotonin in the palate just prior to shelf elevation. J Embryol Exp Morphol. 1981 Aug;64:233–250. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES