Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Oct;76(10):4832–4836. doi: 10.1073/pnas.76.10.4832

Escherichia coli heat-labile enterotoxin: DNA-directed in vitro synthesis and structure.

F Dorner, C Hughes, G Nahler, G Högenauer
PMCID: PMC413031  PMID: 228267

Abstract

Escherichia coli heat-labile enterotoxin was synthesized in a cell-free system directed by DNA of the plasmid P307. Synthesis of the toxin, assayed by the elongation induced in Chinese hamster ovary cells, was strongly stimulated by cyclic AMP and occurred at physiological levels of Mg2+ only when the polyamine spermidine was present. Activity was abolished by heat and antisera prepared against the enterotoxins of both E. coli P263 and Vibrio cholera. Tritium-labeled enterotoxin was purified by immunoprecipitation and examined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. When gel slices were assayed for the ability to stimulate adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] activity in erythrocyte ghosts, two peaks were found, one at Mr 26,000 and frequently, but not always, another at Mr 23,000. Detection of radiolabeled protein by fluorography and scintillation counting of gel slices revealed three prominent polypeptides, two corresponding to the peaks having adenylate cyclase-stimulating activity and a further one of Mr 11,500, identical to that of the cholera subunit B. The data suggest that the E. coli heat-labile enterotoxin synthesized in the cell-free system has a subunit structure.

Full text

PDF
4832

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham K. A. Studies on DNA-dependent RNA polymerase from Escherichia coli. 1. The mechanism of polyamine induced stimulation of enzyme activity. Eur J Biochem. 1968 Jun;5(1):143–146. doi: 10.1111/j.1432-1033.1968.tb00348.x. [DOI] [PubMed] [Google Scholar]
  2. Clewell D. B., Helinski D. R. Supercoiled circular DNA-protein complex in Escherichia coli: purification and induced conversion to an opern circular DNA form. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1159–1166. doi: 10.1073/pnas.62.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cuatrecasas P., Parikh I. Adsorbents for affinity chromatography. Use of N-hydroxysuccinimide esters of agarose. Biochemistry. 1972 Jun 6;11(12):2291–2299. doi: 10.1021/bi00762a013. [DOI] [PubMed] [Google Scholar]
  4. Dallas W. S., Falkow S. The molecular nature of heat-labile enterotoxin (LT) of escherichia coli. Nature. 1979 Feb 1;277(5695):406–407. doi: 10.1038/277406a0. [DOI] [PubMed] [Google Scholar]
  5. Evans D. J., Evans D. G., Gorbach S. L. Polymyxin B-Induced Release of Low-Molecular-Weight, Heat-Labile Enterotoxin from Escherichia coli. Infect Immun. 1974 Nov;10(5):1010–1017. doi: 10.1128/iai.10.5.1010-1017.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gill D. M., King C. A. The mechanism of action of cholera toxin in pigeon erythrocyte lysates. J Biol Chem. 1975 Aug 25;250(16):6424–6432. [PubMed] [Google Scholar]
  7. Gilman A. G. A protein binding assay for adenosine 3':5'-cyclic monophosphate. Proc Natl Acad Sci U S A. 1970 Sep;67(1):305–312. doi: 10.1073/pnas.67.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Grindley J. N., Blumberg R., Nakada D. Synthesis of R-plasmid-coded beta-lactamase in minicells and in an in vitro system. J Bacteriol. 1977 May;130(2):852–859. doi: 10.1128/jb.130.2.852-859.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Guerrant R. L., Brunton L. L., Schnaitman T. C., Rebhun L. I., Gilman A. G. Cyclic adenosine monophosphate and alteration of Chinese hamster ovary cell morphology: a rapid, sensitive in vitro assay for the enterotoxins of Vibrio cholerae and Escherichia coli. Infect Immun. 1974 Aug;10(2):320–327. doi: 10.1128/iai.10.2.320-327.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harwood J., Smith D. H. Catabolite repression of chloramphenicol acetyl transferase synthesis in E. coli K12. Biochem Biophys Res Commun. 1971 Jan 8;42(1):57–62. doi: 10.1016/0006-291x(71)90361-5. [DOI] [PubMed] [Google Scholar]
  11. Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
  12. Konings R. N., Andreoli P. M., Veltkamp E., Nijkamp H. J. Clo DF13 plasmid deoxyribonucleic acid-directed in vitro synthesis of biologically active cloacin DF13 and clo DF13 immunity protein. J Bacteriol. 1976 May;126(2):861–868. doi: 10.1128/jb.126.2.861-868.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. NATHANS D., LIPMANN F. Amino acid transfer from aminoacyl-ribonucleic acids to protein on ribosomes of Escherichia coli. Proc Natl Acad Sci U S A. 1961 Apr 15;47:497–504. doi: 10.1073/pnas.47.4.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nuss D. L., Herbst E. J. Stimulation of in vitro transcription of T4 DNA by the polyamine spermidine. Arch Biochem Biophys. 1975 Aug;169(2):513–521. doi: 10.1016/0003-9861(75)90194-0. [DOI] [PubMed] [Google Scholar]
  15. Pastan I., Perlman R. Cyclic adenosine monophosphate in bacteria. Science. 1970 Jul 24;169(3943):339–344. doi: 10.1126/science.169.3943.339. [DOI] [PubMed] [Google Scholar]
  16. Salden M., Bloemendal H. Polyamines can replace the dialyzable component from crude reticulocyte initiation factors. Biochem Biophys Res Commun. 1976 Jan 12;68(1):157–161. doi: 10.1016/0006-291x(76)90023-1. [DOI] [PubMed] [Google Scholar]
  17. Schenkein I., Green R. F., Santos D. S., Maas W. K. Partial purification and characterization of a heat-labile enterotoxin of Escherichia coli. Infect Immun. 1976 Jun;13(6):1710–1720. doi: 10.1128/iai.13.6.1710-1720.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sidikaro J., Masayasu N. In vitro synthesis of the E3 immunity protein directed by Col E3 plasmid deoxyribonucleic acid. J Biol Chem. 1975 Feb 10;250(3):1123–1131. [PubMed] [Google Scholar]
  19. Smith N. W., Sack R. B. Immunologic cross-reactions of enterotoxins from Escherichia coli and Vibrio cholerae. J Infect Dis. 1973 Feb;127(2):164–170. doi: 10.1093/infdis/127.2.164. [DOI] [PubMed] [Google Scholar]
  20. Söderlind O., Möllby R., Wadström T. Purification and some properties of a heat-labile enterotoxin from escherichia coli. Zentralbl Bakteriol Orig A. 1974;229(2):190–204. [PubMed] [Google Scholar]
  21. Takeda Y. Polyamines and protein synthesis. II. The shift in optimal concentration of Mg2+ by polyamines in the MS2 phage RNA-directed polypeptide synthesis. Biochim Biophys Acta. 1969 Mar 18;179(1):232–234. doi: 10.1016/0005-2787(69)90140-3. [DOI] [PubMed] [Google Scholar]
  22. Tsukada I., Yagisawa M., Umezawa M., Hori M., Umezawa H. Stimulation of kanamycin phosphotransferase synthesis in Escherichia coli by 3',5'-cyclic AMP. J Antibiot (Tokyo) 1972 Feb;25(2):144–146. doi: 10.7164/antibiotics.25.144. [DOI] [PubMed] [Google Scholar]
  23. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES