Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Oct;76(10):4936–4940. doi: 10.1073/pnas.76.10.4936

13C NMR quantitation of polymer in deoxyhemoglobin S gels.

C T Noguchi, D A Torchia, A N Schechter
PMCID: PMC413053  PMID: 291911

Abstract

13C/1H magnetic double-resonance spectroscopy has been used to quantitate the amount of polymerized hemoglobin S in deoxygenated gels at 30 degrees C, for samples whose hemoglobin concentration range from 21 to 32 g/dl. Scalar- and dipolar-decoupled spectra and a 13C proton-enhanced dipolar-decoupled spectrum were recorded for each sample as was a scalar-decoupled spectrum for a matching oxyhemoglobin S control. The difference between the oxyhemoglobin S and deoxyhemoglobin S scalar-decoupled spectra was used to determine the polymer fraction, and this value was compared with the polymer fraction determined by using ultracentrifugation sedimentation on the same sample (assuming a two-phase model). The polymer fraction value determined by uncorrected sedimentation averaged 0.15 more than the value obtained from NMR. The discrepancy between the two techniques was largely removed when the analysis of the sedimentation data included a correction for depletion of hemoglobin in the supernatant or sol phase due to sedimentation of free molecules. The best fit to both the sedimentation and NMR data was obtained by using a solubility of deoxyhemoglobin S at 30 degrees C of 17.3 +/- 1 g/dl. These results indicate that the NMR techniques, which do not require separation of the sample into a sol phase and a pellet phase, provide quantitative information about the deoxyhemoglobin S polymer and will be useful for studies of sickle erythrocytes.

Full text

PDF
4936

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behe M. J., Englander S. W. Sickle hemoglobin gelation. Reaction order and critical nucleus size. Biophys J. 1978 Jul;23(1):129–145. doi: 10.1016/S0006-3495(78)85438-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bertles J. F., Rabinowitz R., Döbler J. Hemoglobin interaction: modification of solid phase composition in the sickling phenomenon. Science. 1970 Jul 24;169(3943):375–377. doi: 10.1126/science.169.3943.375. [DOI] [PubMed] [Google Scholar]
  3. Chung L. L., Magdoff-Fairchild B. Extent of polymerization in partially liganded sickle hemoglobin. Arch Biochem Biophys. 1978 Aug;189(2):535–539. doi: 10.1016/0003-9861(78)90244-8. [DOI] [PubMed] [Google Scholar]
  4. Dean J., Schechter A. N. Sickle-cell anemia: molecular and cellular bases of therapeutic approaches (first of three parts). N Engl J Med. 1978 Oct 5;299(14):752–763. doi: 10.1056/NEJM197810052991405. [DOI] [PubMed] [Google Scholar]
  5. Eaton W. A., Hofrichter J., Ross P. D., Tschudin R. G., Becker E. D. Comparison of sickle cell hemoglobin gelation kinetics measured by NMR and optical methods. Biochem Biophys Res Commun. 1976 Mar 22;69(2):538–547. doi: 10.1016/0006-291x(76)90554-4. [DOI] [PubMed] [Google Scholar]
  6. Hofrichter J. Ligand binding and the gelation of sickle cell hemoglobin. J Mol Biol. 1979 Mar 5;128(3):335–369. doi: 10.1016/0022-2836(79)90092-5. [DOI] [PubMed] [Google Scholar]
  7. Hofrichter J., Ross P. D., Eaton W. A. Supersaturation in sickle cell hemoglobin solutions. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3035–3039. doi: 10.1073/pnas.73.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Huisman T. H., Dozy A. M. Studies on the heterogeneity of hemoglobin. IX. The use of Tris(hydroxymethyl)aminomethanehcl buffers in the anion-exchange chromatography of hemoglobins. J Chromatogr. 1965 Jul;19(1):160–169. doi: 10.1016/s0021-9673(01)99434-8. [DOI] [PubMed] [Google Scholar]
  9. Lindstrom T. R., Koenig S. H., Boussios T., Bertles J. F. Intermolecular interactions of oxygenated sickle hemoglobin molecules in cells and cell-free solutions. Biophys J. 1976 Jun;16(6):679–689. doi: 10.1016/S0006-3495(76)85721-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Magdoff-Fairchild B., Poillon W. N., Li T., Bertles J. F. Thermodynamic studies of polymerization of deoxygenated sickle cell hemoglobin. Proc Natl Acad Sci U S A. 1976 Apr;73(4):990–994. doi: 10.1073/pnas.73.4.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Minton A. P. A thermodynamic model for gelation of sickle-cell hemoglobin. J Mol Biol. 1974 Feb 5;82(4):483–498. doi: 10.1016/0022-2836(74)90243-5. [DOI] [PubMed] [Google Scholar]
  12. Noguchi C. T., Schechter A. N. Effects of amino acids on gelation kinetics and solubility of sickle hemoglobin. Biochem Biophys Res Commun. 1977 Jan 24;74(2):637–642. doi: 10.1016/0006-291x(77)90350-3. [DOI] [PubMed] [Google Scholar]
  13. Noguchi C. T., Schechter A. N. Inhibition of sickle hemoglobin gelation by amino acids and related compounds. Biochemistry. 1978 Dec 12;17(25):5455–5459. doi: 10.1021/bi00618a020. [DOI] [PubMed] [Google Scholar]
  14. Pumphrey J. G., Steinhardt J. Crystallization of sickle hemoglobin from gently agitated solutions--an alternative to gelation. J Mol Biol. 1977 May 25;112(3):359–375. doi: 10.1016/s0022-2836(77)80187-3. [DOI] [PubMed] [Google Scholar]
  15. Ross P. D., Briehl R. W., Minton A. P. Temperature dependence of nonideality in concentrated solutions of hemoglobin. Biopolymers. 1978 Sep;17(9):2285–2288. doi: 10.1002/bip.1978.360170920. [DOI] [PubMed] [Google Scholar]
  16. Ross P. D., Hofrichter J., Eaton W. A. Thermodynamics of gelation of sickle cell deoxyhemoglobin. J Mol Biol. 1977 Sep 15;115(2):111–134. doi: 10.1016/0022-2836(77)90093-6. [DOI] [PubMed] [Google Scholar]
  17. Sutherland J. W., Egan W., Schechter A. N., Torchia D. A. Carbon-13-proton nuclear magnetic double-resonance study of deoxyhemoglobin S gelation. Biochemistry. 1979 May 1;18(9):1797–1803. doi: 10.1021/bi00576a025. [DOI] [PubMed] [Google Scholar]
  18. Ward K. B., Wishner B. C., Lattman E. E., Love W. E. Structure of deoxyhemoglobin A crystals grown from polyethylene glycol solutions. J Mol Biol. 1975 Oct 15;98(1):161–177. doi: 10.1016/s0022-2836(75)80107-0. [DOI] [PubMed] [Google Scholar]
  19. Zipp A., James T. L., Kuntz I. D., Shohet S. B. Water proton magnetic resonance studies of normal and sickle erythrocytes. Temperature and volume dependence. Biochim Biophys Acta. 1976 Apr 23;428(2):291–303. doi: 10.1016/0304-4165(76)90037-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES