Abstract
The binding sites of CTP, CDP, 5-BrCTP, and ATP to the allosteric site of aspartate carbamoyltransferase (carbamoylphosphate:L-aspartate carbamoyltransferase, EC 2.1.3.2) have been found in electron-density maps obtained at about 3 A resolution from x-ray diffraction studies of single crystals. The activator ATP binds in the anti conformation, whereas the inhibitor 5-BrCTP binds in the syn conformation. Both activator and inhibitor bind to the same local region of the enzyme. All of the cytidine nucleotides show important interactions of the base with the protein. The triphosphate conformations are similar, whereas the terminal phosphate of CDP occupies the site of the gamma-phosphate of CTP, thus implying a protein-nucleotide interaction at this site. These results are then related to biochemical studies.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barrantes F. J. Agonist-mediated changes of the acetylcholine receptor in its membrane environment. J Mol Biol. 1978 Sep 5;124(1):1–26. doi: 10.1016/0022-2836(78)90144-4. [DOI] [PubMed] [Google Scholar]
- Bessman M. J., Lehman I. R., Adler J., Zimmerman S. B., Simms E. S., Kornberg A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. III. THE INCORPORATION OF PYRIMIDINE AND PURINE ANALOGUES INTO DEOXYRIBONUCLEIC ACID. Proc Natl Acad Sci U S A. 1958 Jul 15;44(7):633–640. doi: 10.1073/pnas.44.7.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHN M., HUGHES T. R., Jr Nuclear magnetic resonance spectra of adenosine di- and triphosphate. II. Effect of complexing with divalent metal ions. J Biol Chem. 1962 Jan;237:176–181. [PubMed] [Google Scholar]
- Christopherson R. I., Finch L. R. Regulation of aspartate carbamoyltransferase of Escherichia coli by the interrelationship of magnesium and nucleotides. Biochim Biophys Acta. 1977 Mar 15;481(1):80–85. doi: 10.1016/0005-2744(77)90139-5. [DOI] [PubMed] [Google Scholar]
- Cook R. A., Milne J. A. An effect of enzyme and ligand concentration on the state of aggregation of aspartate transcarbamylase of E. coli: I. The binding of CTP and ATP to the enzyme. Can J Biochem. 1977 Apr;55(4):346–358. doi: 10.1139/o77-048. [DOI] [PubMed] [Google Scholar]
- Edwards B. F., Evans D. R., Warren S. G., Monaco H. L., Landfear S. M., Eisele G., Crawford J. L., Wiley D. C., Lipscomb W. N. Complex of aspartate carbamoyltransferase from Escherichia coli with its allosteric inhibitor, cytidine triphosphate: electron density at 5.9-angstroms resolution. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4437–4441. doi: 10.1073/pnas.71.11.4437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GERHART J. C., PARDEE A. B. The enzymology of control by feedback inhibition. J Biol Chem. 1962 Mar;237:891–896. [PubMed] [Google Scholar]
- Gerhart J. C., Holoubek H. The purification of aspartate transcarbamylase of Escherichia coli and separation of its protein subunits. J Biol Chem. 1967 Jun 25;242(12):2886–2892. [PubMed] [Google Scholar]
- Gerhart J. C., Schachman H. K. Distinct subunits for the regulation and catalytic activity of aspartate transcarbamylase. Biochemistry. 1965 Jun;4(6):1054–1062. doi: 10.1021/bi00882a012. [DOI] [PubMed] [Google Scholar]
- Glassman T. A., Cooper C., Harrison L. W., Swift T. J. A proton magnetic resonance study of metal ion-adenine ring interactions in metal ion complexes with adenosine triphosphate. Biochemistry. 1971 Mar 2;10(5):843–851. doi: 10.1021/bi00781a018. [DOI] [PubMed] [Google Scholar]
- Gray C. W., Chamberlin M. J., Gray D. M. Interaction of aspartate transcarbamylase with regulatory nucleotides. J Biol Chem. 1973 Sep 10;248(17):6071–6079. [PubMed] [Google Scholar]
- Haschemeyer A. E., Rich A. Nucleoside conformations: an analysis of steric barriers to rotation about the glycosidic bond. J Mol Biol. 1967 Jul 28;27(2):369–384. doi: 10.1016/0022-2836(67)90026-5. [DOI] [PubMed] [Google Scholar]
- Kuntz G. P., Glassman T. A., Cooper C., Swift T. J. The role of coordinated water in metal ion--adenine ring binding in complexes of adenosine triphosphate. Biochemistry. 1972 Feb 15;11(4):538–541. doi: 10.1021/bi00754a009. [DOI] [PubMed] [Google Scholar]
- London R. E., Schmidt P. G. A model for nucleotide regulation of aspartate transcarbamylase. Biochemistry. 1972 Aug 1;11(16):3136–3142. doi: 10.1021/bi00766a029. [DOI] [PubMed] [Google Scholar]
- London R. E., Schmidt P. G. A nuclear magnetic resonance study of the interaction of inhibitory nucleosides with Escherichia coli aspartate transcarbamylase and its regulatory subunit. Biochemistry. 1974 Mar 12;13(6):1170–1179. doi: 10.1021/bi00703a018. [DOI] [PubMed] [Google Scholar]
- Matsumoto S., Hammes G. G. An equilibrium binding study of the interaction of aspartate transcarbamylase with cytidine 5'-triphosphate and adenosine 5'-triphosphate. Biochemistry. 1973 Mar 27;12(7):1388–1394. doi: 10.1021/bi00731a019. [DOI] [PubMed] [Google Scholar]
- Steitz T. A., Wiley D. C., Lipscomb W. N. The structure of aspartate transcarbamylase, I. A molecular twofold axis in the complex with cytidine triphosphate. Proc Natl Acad Sci U S A. 1967 Nov;58(5):1859–1861. doi: 10.1073/pnas.58.5.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sternlicht H., Shulman R. G., Anderson E. W. Nuclear magnetic resonance study of metal-ion binding to adenosine triphosphate. II. Proton studies. J Chem Phys. 1965 Nov 1;43(9):3133–3143. doi: 10.1063/1.1697287. [DOI] [PubMed] [Google Scholar]
- Suter P., Rosenbusch J. P. Asymmetry of binding and physical assignments of CTP and ATP sites in aspartate transcarbamoylase. J Biol Chem. 1977 Nov 25;252(22):8136–8141. [PubMed] [Google Scholar]
- Tanswell P., Thornton J. M., Korda A. V., Williams R. J. Quantitative determination of the conformation of ATP in aqueous solution using the lanthanide cations as nuclear-magnetic-resonance probes. Eur J Biochem. 1975 Sep 1;57(1):135–145. doi: 10.1111/j.1432-1033.1975.tb02284.x. [DOI] [PubMed] [Google Scholar]
- Tondre C., Hammes G. G. Interaction of aspartate transcarbamylase with 5-bromocytidine 5'-tri-, di-, and monophosphates. Biochemistry. 1974 Jul 16;13(15):3131–3136. doi: 10.1021/bi00712a020. [DOI] [PubMed] [Google Scholar]
- VanDerLijn P., Barrio J. R., Leonard N. J. Allosteric activation of aspartate transcarbamylase with a fluorescent nucleotide analogue: linear-benzo-ATP. J Biol Chem. 1978 Dec 25;253(24):8694–8696. [PubMed] [Google Scholar]
- Weber K. New structural model of E. coli aspartate transcarbamylase and the amino-acid sequence of the regulatory polypeptide chain. Nature. 1968 Jun 22;218(5147):1116–1119. doi: 10.1038/2181116a0. [DOI] [PubMed] [Google Scholar]
- Wiley D. C., Evans D. R., Warren S. G., McMurray C. H., Edwards B. F., Franks W. A., Lipscomb W. N. The 5.5 Angstrom resolution structure of the regulatory enzyme, asparate transcarbamylase. Cold Spring Harb Symp Quant Biol. 1972;36:285–290. doi: 10.1101/sqb.1972.036.01.038. [DOI] [PubMed] [Google Scholar]
- Winlund C. C., Chamberlin M. J. Binding of cytidine triphosphate to aspartate transcarbamylase. Biochem Biophys Res Commun. 1970 Jul 13;40(1):43–49. doi: 10.1016/0006-291x(70)91043-0. [DOI] [PubMed] [Google Scholar]
