Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Oct;76(10):5114–5118. doi: 10.1073/pnas.76.10.5114

Hydrophilic region of lecithin membranes studied by bromothymol blue and effects of an inhalation anesthetic, enflurane

Takashi Mashimo *,, Issaku Ueda *,, Donald D Shieh *, Hiroshi Kamaya , Henry Eyring §
PMCID: PMC413090  PMID: 41238

Abstract

A pH-indicator dye, bromothymol blue, was used to probe the hydrophilic surface of dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholine bilayer vesicles. The apparent pK of the surface-adsorbed dye was larger than the bulk pK value. The contribution of the choline positive charge on the dissociation constant of the dye adsorbed on the vesicle surface was estimated by screening the charge interaction with 2 M KCl. The effective surface potentials interacting with the dye were thus estimated to be 33.2, 45.6, and 46.8 mV, respectively, for the dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholine vesicles. From the differences between the obtained effective potentials and the calculated surface potentials of the charge-determining plane of the choline head, the distances between the prototropic part of the dye and the choline charge-determining plane were estimated to be 10.5, 8.0, and 7.8 Å, respectively. These values were obtained at 25°C; the dimyristoylphosphatidylcholine membrane was in the liquid-crystalline phase and the other two were in the solid gel phase. Addition of an inhalation anesthetic, enflurane, decreased the distance in the dimyristoylphosphatidylcholine vesicles and increased the distance in the dipalmitoyl- and distearoylphosphatidylcholine vesicles. The increase of precessional motion of choline head by the inhalation anesthetic is apparently responsible for the changes.

Keywords: phospholipid bilayer, head group conformation, surface potential, pH-indicator dye

Full text

PDF
5114

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akutsu H., Kyogoku Y. Conformational difference in the polar groups of phosphatidylcholine and phosphatidylethanolamine in aqueous phase. Chem Phys Lipids. 1977 Apr;18(3-4):285–303. doi: 10.1016/0009-3084(77)90016-0. [DOI] [PubMed] [Google Scholar]
  2. Gally H. U., Niederberger W., Seelig J. Conformation and motion of the choline head group in bilayers of dipalmitoyl-3-sn-phosphatidylcholine. Biochemistry. 1975 Aug 12;14(16):3647–3652. doi: 10.1021/bi00687a021. [DOI] [PubMed] [Google Scholar]
  3. Gupa S. P., Govil G. Molecular orbital studies on the conformation of phospholipids. II. Preferred conformations of hydrocarbon chains and molecular organization in biomembranes. J Theor Biol. 1975 May;51(1):13–34. doi: 10.1016/0022-5193(75)90136-8. [DOI] [PubMed] [Google Scholar]
  4. Hanai T., Haydon D. A., Taylor J. Polar group orientation and the electrical properties of lecithin bimolecular leaflets. J Theor Biol. 1965 Sep;9(2):278–296. doi: 10.1016/0022-5193(65)90113-x. [DOI] [PubMed] [Google Scholar]
  5. Hauser H., Phillips M. C. Conformation of the lecithin polar group in charged vesicles. Nature. 1976 Jun 3;261(5559):390–394. doi: 10.1038/261390a0. [DOI] [PubMed] [Google Scholar]
  6. Hubbell W. L., McConnell H. M. Spin-label studies of the excitable membranes of nerve and muscle. Proc Natl Acad Sci U S A. 1968 Sep;61(1):12–16. doi: 10.1073/pnas.61.1.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jendrasiak G. L., Mendible J. C. The phospholipid head-group orientation: effect on hydration and electrical conductivity. Biochim Biophys Acta. 1976 Feb 23;424(2):149–158. doi: 10.1016/0005-2760(76)90184-3. [DOI] [PubMed] [Google Scholar]
  8. Lee A. G. Lipid phase transitions and phase diagrams. I. Lipid phase transitions. Biochim Biophys Acta. 1977 Aug 9;472(2):237–281. doi: 10.1016/0304-4157(77)90018-1. [DOI] [PubMed] [Google Scholar]
  9. Metcalfe J. C., Burgen A. S. Relaxation of anaesthetics in the presence of cyto-membranes. Nature. 1968 Nov 9;220(5167):587–588. doi: 10.1038/220587a0. [DOI] [PubMed] [Google Scholar]
  10. Michaelson D. M., Horwitz A. F., Klein M. P. Head group modulation of membrane fluidity in sonicated phospholipid dispersions. Biochemistry. 1974 Jun 4;13(12):2605–2612. doi: 10.1021/bi00709a021. [DOI] [PubMed] [Google Scholar]
  11. Mitchell P., Moyle J., Smith L. Bromthymol blue as a pH indicator in mitochondrial suspensions. Eur J Biochem. 1968 Mar;4(1):9–19. doi: 10.1111/j.1432-1033.1968.tb00166.x. [DOI] [PubMed] [Google Scholar]
  12. Moller J. V., Kragh-Hansen U. Indicator dyes as probes of electrostatic potential changes on macromolecular surfaces. Biochemistry. 1975 Jun 3;14(11):2317–2323. doi: 10.1021/bi00682a007. [DOI] [PubMed] [Google Scholar]
  13. Phillips M. C., Finer E. G., Hauser H. Differences between conformations of lecithin and phosphatidylethanolamine polar groups and their effects on interactions of phospholipid bilayer membranes. Biochim Biophys Acta. 1972 Dec 1;290(1):397–402. doi: 10.1016/0005-2736(72)90084-3. [DOI] [PubMed] [Google Scholar]
  14. Ranck J. L., Mateu L., Sadler D. M., Tardieu A., Gulik-Krzywicki T., Luzzati V. Order-disorder conformational transitions of the hydrocarbon chains of lipids. J Mol Biol. 1974 May 15;85(2):249–277. doi: 10.1016/0022-2836(74)90363-5. [DOI] [PubMed] [Google Scholar]
  15. Salsbury N. J., Darke A., Chapman D. Deuteron magnetic resonance studies of water associated with phospholipids. Chem Phys Lipids. 1972 Mar;8(2):142–151. doi: 10.1016/0009-3084(72)90026-6. [DOI] [PubMed] [Google Scholar]
  16. Seeman P., Roth S. General anesthetics expand cell membranes at surgical concentrations. Biochim Biophys Acta. 1972 Jan 17;255(1):171–177. doi: 10.1016/0005-2736(72)90019-3. [DOI] [PubMed] [Google Scholar]
  17. Shepherd J. C., Büldt G. Zwitterionic dipoles as a dielectric probe for investigating head group mobility in phospholipid membranes. Biochim Biophys Acta. 1978 Dec 4;514(1):83–94. doi: 10.1016/0005-2736(78)90078-0. [DOI] [PubMed] [Google Scholar]
  18. Shieh D. D., Ueda I., Lin H., Eyring H. Nuclear magnetic resonance studies of the interaction of general anesthetics with 1,2-dihexadecyl-sn-glycero-3-phosphorylcholine bilayer. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3999–4002. doi: 10.1073/pnas.73.11.3999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trudell J. R., Hubbell W. L., Cohen E. N. The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles. Biochim Biophys Acta. 1973 Jan 26;291(2):321–327. doi: 10.1016/0005-2736(73)90485-9. [DOI] [PubMed] [Google Scholar]
  20. Ueda I., Shieh D. D., Eyring H. Anesthetic interaction with a model cell membrane: expansion, phase transition, and melting of the lecithin monolayer. Anesthesiology. 1974 Sep;41(3):217–225. doi: 10.1097/00000542-197409000-00002. [DOI] [PubMed] [Google Scholar]
  21. Yeagle P. L., Hutton W. C., Huang C. H., Martin R. B. Headgroup conformation and lipid--cholesterol association in phosphatidylcholine vesicles: a 31P(1H) nuclear Overhauser effect study. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3477–3481. doi: 10.1073/pnas.72.9.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES