Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Oct;76(10):5124–5128. doi: 10.1073/pnas.76.10.5124

Triplet states in photosystem I of spinach chloroplasts and subchloroplast particles.

H A Frank, M B McLean, K Sauer
PMCID: PMC413092  PMID: 228280

Abstract

We report light-induced electron paramagnetic resonance triplet spectra from samples of chloroplasts or digitonin photosystem I particles that depend upon the dark redox state of the bound acceptors of photosystem I. If the reaction centers are prepared in the redox state P-700 A X- FdB-FdA-, then upon illumination at 11K we observe a polarized chlorophyll triplet species which we interpret as arising from radical pair recombination between P-700+ and A-. This chlorophyll triplet is apparently the analog of the PR state of photosynthetic bacteria [Parson, W.W. & Cogdell, R.J. (1975) Biochim. Biophys. Acta 416, 105-149]. If the reaction centers are prepared in the dark redox state P-700 A X FdB-FdA-, then upon illumination at 11K we observe a different triplet species of uncertain origin, possibly pheophytin or carotenoid. This species is closely associated with the photosystem I reaction center and it traps excitation when P-700 is oxidized.

Full text

PDF
5124

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blankenship R., McGuire A., Sauer K. Chemically induced dynamic electron polarization in chloroplasts at room temperature: evidence for triplet state participation in photosynthesis. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4943–4947. doi: 10.1073/pnas.72.12.4943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clarke R. H., Connors R. E., Frank H. A. Investigation of the structure of the reaction center in photosynthetic bacteria by optical detection of triplet state magnetic resonance. Biochem Biophys Res Commun. 1976 Jul 26;71(2):671–675. doi: 10.1016/0006-291x(76)90840-8. [DOI] [PubMed] [Google Scholar]
  3. Cogdell R. J., Monger T. G., Parson W. W. Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Biochim Biophys Acta. 1975 Dec 11;408(3):189–199. doi: 10.1016/0005-2728(75)90122-x. [DOI] [PubMed] [Google Scholar]
  4. Dismukes G. C., McGuire A., Blankenship R., Sauer K. Electron spin polarization in photosynthesis and the mechanism of electron transfer in photosystem I. Experimental observations. Biophys J. 1978 Mar;21(3):239–256. doi: 10.1016/S0006-3495(78)85522-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dutton P. L., Leight J. S., Seibert M. Primary processes in photosynthesis: in situ ESR studies on the light induced oxidized and triplet state of reaction center bacteriochlorophyll. Biochem Biophys Res Commun. 1972 Jan 31;46(2):406–413. doi: 10.1016/s0006-291x(72)80153-0. [DOI] [PubMed] [Google Scholar]
  6. Friesner R., Dismukes G. C., Sauer K. Development of electron spin polarization in photosynthetic electron transfer by the radical pair mechanism. Biophys J. 1979 Feb;25(2 Pt 1):277–294. doi: 10.1016/s0006-3495(79)85291-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Golbeck J. H., Velthuys B. R., Kok B. Evidence that the intermediate electron acceptor, A2, in photosystem I is a bound iron-sulfur protein. Biochim Biophys Acta. 1978 Oct 11;504(1):226–230. doi: 10.1016/0005-2728(78)90020-8. [DOI] [PubMed] [Google Scholar]
  8. Hoff A. J., Govindjee, Romijn J. C. Electron spin resonance in zero magnetic field of triplet states of chloroplasts and subchloroplast particles. FEBS Lett. 1977 Feb 1;73(2):191–196. doi: 10.1016/0014-5793(77)80978-2. [DOI] [PubMed] [Google Scholar]
  9. Hoff A. J., van der Waals J. H. Zero field resonance and spin alignment of the triplet state of chloroplasts at 2 degrees K. Biochim Biophys Acta. 1976 Mar 12;423(3):615–620. doi: 10.1016/0005-2728(76)90215-2. [DOI] [PubMed] [Google Scholar]
  10. Ke B., Hansen R. E., Beinert H. Oxidation-reduction potentials of bound iron-sulfur proteins of photosystem I. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2941–2945. doi: 10.1073/pnas.70.10.2941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ke B. The primary electron acceptor of photosystem. I. Biochim Biophys Acta. 1973 Feb 12;301(1):1–33. doi: 10.1016/0304-4173(73)90010-4. [DOI] [PubMed] [Google Scholar]
  12. Leigh J. S., Jr, Dutton P. L. Reaction center bacteriochlorophyll triplet states: redox potential dependence and kinetics. Biochim Biophys Acta. 1974 Jul 25;357(1):67–77. doi: 10.1016/0005-2728(74)90113-3. [DOI] [PubMed] [Google Scholar]
  13. Malkin R., Bearden A. J. Primary reactions of photosynthesis: photoreduction of a bound chloroplast ferredoxin at low temperature as detected by EPR spectroscopy. Proc Natl Acad Sci U S A. 1971 Jan;68(1):16–19. doi: 10.1073/pnas.68.1.16. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mcintosh A. R., Bolton J. R. Electron spin resonance spectrum of species "X" which may function as the primary electron acceptor in photosystem I of green plant photosynthesis. Biochim Biophys Acta. 1976 Jun 8;430(3):555–559. [PubMed] [Google Scholar]
  15. Monger T. G., Cogdell R. J., Parson W. W. Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim Biophys Acta. 1976 Oct 13;449(1):136–153. doi: 10.1016/0005-2728(76)90013-x. [DOI] [PubMed] [Google Scholar]
  16. Nelson N., Drechsler Z., Neumann J. Photophosphorylation in digitonin subchloroplast particles. Absence of a light-induced pH shift. J Biol Chem. 1970 Jan 10;245(1):143–151. [PubMed] [Google Scholar]
  17. Norris J. R., Uphaus R. A., Crespi H. L., Katz J. J. Electron spin resonance of chlorophyll and the origin of signal I in photosynthesis. Proc Natl Acad Sci U S A. 1971 Mar;68(3):625–628. doi: 10.1073/pnas.68.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Philipson K. D., Sato V. L., Sauer K. Exciton interaction in the photosystem I reaction center from spinach chloroplasts. Absorption and circular dichroism difference spectra. Biochemistry. 1972 Nov 21;11(24):4591–4595. doi: 10.1021/bi00774a027. [DOI] [PubMed] [Google Scholar]
  19. Sauer K., Mathis P., Acker S., van Best J. A. Electron acceptors associated with P-700 in Triton solubilized photosystem I particles from spinach chloroplasts. Biochim Biophys Acta. 1978 Jul 6;503(1):120–134. doi: 10.1016/0005-2728(78)90166-4. [DOI] [PubMed] [Google Scholar]
  20. Shuvalov V. A., Dolan E., Ke B. Spectral and kinetic evidence for two early electron acceptors in photosystem I. Proc Natl Acad Sci U S A. 1979 Feb;76(2):770–773. doi: 10.1073/pnas.76.2.770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shuvalov V. A. The study of the primary photoprocesses in photosystem I of chloroplasts. Recombination luminescence, chlorophyll triplet state and triplet-triplet annihilation. Biochim Biophys Acta. 1976 Apr 9;430(1):113–121. doi: 10.1016/0005-2728(76)90227-9. [DOI] [PubMed] [Google Scholar]
  22. Staehelin L. A., Armond P. A., Miller K. R. Chloroplast membrane organization at the supramolecular level and its functional implications. Brookhaven Symp Biol. 1976 Jun 7;(28):278–315. [PubMed] [Google Scholar]
  23. Thurnauer M. C., Katz J. J., Norris J. R. The triplet state in bacterial photosynthesis: Possible mechanisms of the primary photo-act. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3270–3274. doi: 10.1073/pnas.72.9.3270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Uphaus R. A., Norris J. R., Katz J. J. Triplet states in photosynthesis. Biochem Biophys Res Commun. 1974 Dec 11;61(3):1057–1063. doi: 10.1016/0006-291x(74)90262-9. [DOI] [PubMed] [Google Scholar]
  25. van der Bent S. J., Schaafsma T. J., Goedheer J. C. Detection of triplet states in algae by zero-field resonance. Biochem Biophys Res Commun. 1976 Aug 23;71(4):1147–1152. doi: 10.1016/0006-291x(76)90773-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES