Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Oct;76(10):5244–5248. doi: 10.1073/pnas.76.10.5244

Nucleotide sequences of trpA of Salmonella typhimurium and Escherichia coli: an evolutionary comparison.

B P Nichols, C Yanofsky
PMCID: PMC413117  PMID: 388433

Abstract

The complete nucleotide sequences of trpA of Salmonella typhimurium and Escherichia coli were determined. The nucleotide sequences are 24.8% divergent, compared with amino acid sequence divergence of 14.9%. Over half of the codons of each gene contain synonymous nucleotide changes. The pattern of synonymous nucleotide changes is consistent with the interpretation that such changes result from random mutational events. We do not find any evidence indicating that codon selection or RNA structure is of major selective value. We conclude that polypeptide function is the primary basis of selection in trpA and that most synonymous codon changes are selectively neutral.

Full text

PDF
5244

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger E. M. Pattern and chance in the use of the genetic code. J Mol Evol. 1978 Feb 21;10(4):319–323. doi: 10.1007/BF01734221. [DOI] [PubMed] [Google Scholar]
  2. Chakraburtty K., Steinschneider A., Case R. V., Mehler A. H. Primary structure of tRNA-Lys of E. coli B. Nucleic Acids Res. 1975 Nov;2(11):2069–2075. doi: 10.1093/nar/2.11.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Creighton T. E., Helinski D. R., Somerville R. L., Yanofsky C. Comparison of the tryptophan synthetase alpha-subunits of several species of Enterobacteriaceae. J Bacteriol. 1966 May;91(5):1819–1826. doi: 10.1128/jb.91.5.1819-1826.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Creighton T. E. The functional significance of the evolutionary divergence between the tryptophan operons of Escherichia coli and Salmonella typhimurium. J Mol Evol. 1974 Nov 29;4(2):121–137. doi: 10.1007/BF01732018. [DOI] [PubMed] [Google Scholar]
  5. Di Natale P., Eilat D. Patterns of E. coli leucine tRNA isoacceptors following bacteriophage MS2 infection. Nucleic Acids Res. 1976 Apr;3(4):917–930. doi: 10.1093/nar/3.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Farabaugh P. J. Sequence of the lacI gene. Nature. 1978 Aug 24;274(5673):765–769. doi: 10.1038/274765a0. [DOI] [PubMed] [Google Scholar]
  7. Fiers W., Contreras R., Duerinck F., Haegeman G., Iserentant D., Merregaert J., Min Jou W., Molemans F., Raeymaekers A., Van den Berghe A. Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene. Nature. 1976 Apr 8;260(5551):500–507. doi: 10.1038/260500a0. [DOI] [PubMed] [Google Scholar]
  8. Fleck E. W., Carbon J. Multiple gene loci for a single species of glycine transfer ribonucleic acid. J Bacteriol. 1975 May;122(2):492–501. doi: 10.1128/jb.122.2.492-501.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Godson G. N., Barrell B. G., Staden R., Fiddes J. C. Nucleotide sequence of bacteriophage G4 DNA. Nature. 1978 Nov 16;276(5685):236–247. doi: 10.1038/276236a0. [DOI] [PubMed] [Google Scholar]
  10. Goldman E., Holmes W. M., Hatfield G. W. Specificity of codon recognition by Escherichia coli tRNALeu isoaccepting species determined by protein synthesis in vitro directed by phage RNA. J Mol Biol. 1979 Apr 25;129(4):567–585. doi: 10.1016/0022-2836(79)90469-8. [DOI] [PubMed] [Google Scholar]
  11. Grunstein M., Schedl P., Kedes L. Sequence analysis and evolution of sea urchin (Lytechinus pictus and Strongylocentrotus purpuratus) histone H4 messenger RNAs. J Mol Biol. 1976 Jun 25;104(2):351–369. doi: 10.1016/0022-2836(76)90276-x. [DOI] [PubMed] [Google Scholar]
  12. Guest J. R., Drapeau G. R., Carlton B. C., Yanofsky C. The amino acid sequence of the A protein (alpha subunit) of the tryptophan synthetase of Escherichia coli. J Biol Chem. 1967 Nov 25;242(22):5442–5446. [PubMed] [Google Scholar]
  13. Jukes T. H. Neutral changes during divergent evolution of hemoglobins. J Mol Evol. 1978 Aug 2;11(3):267–269. doi: 10.1007/BF01734488. [DOI] [PubMed] [Google Scholar]
  14. Kafatos F. C., Efstratiadis A., Forget B. G., Weissman S. M. Molecular evolution of human and rabbit beta-globin mRNAs. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5618–5622. doi: 10.1073/pnas.74.12.5618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kimura F., Harada F., Nishimura S. Primary sequence of tRNA-Val-1 from Escherichia coli B. II. Isolation of large fragments by limited digestion with RNases, and overlapping of fragments to reduce the total primary sequence. Biochemistry. 1971 Aug 17;10(17):3277–3283. doi: 10.1021/bi00793a018. [DOI] [PubMed] [Google Scholar]
  16. Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. doi: 10.1038/217624a0. [DOI] [PubMed] [Google Scholar]
  17. Kimura M. Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution. Nature. 1977 May 19;267(5608):275–276. doi: 10.1038/267275a0. [DOI] [PubMed] [Google Scholar]
  18. King J. L., Jukes T. H. Non-Darwinian evolution. Science. 1969 May 16;164(3881):788–798. doi: 10.1126/science.164.3881.788. [DOI] [PubMed] [Google Scholar]
  19. Korn L. J., Queen C. L., Wegman M. N. Computer analysis of nucleic acid regulatory sequences. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4401–4405. doi: 10.1073/pnas.74.10.4401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li S. L., Denney R. M., Yanofsky C. Nucleotide sequence divergence in the -chain-structural genes of tryptophan synthetase from Escherichia coli, Salmonella typhimurium, and Aerobacter aerogenes. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1112–1116. doi: 10.1073/pnas.70.4.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li S. L., Yanofsky C. Amino acid sequence studies with the tryptophan synthetase chain of Salmonella typhimurium. J Biol Chem. 1973 Mar 10;248(5):1830–1836. [PubMed] [Google Scholar]
  22. Lund E., Dahlberg J. E. Spacer transfer RNAs in ribosomal RNA transcripts of E. coli: processing of 30S ribosomal RNA in vitro. Cell. 1977 Jun;11(2):247–262. doi: 10.1016/0092-8674(77)90042-3. [DOI] [PubMed] [Google Scholar]
  23. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miozzari G. F., Yanofsky C. Gene fusion during the evolution of the tryptophan operon in enterobacteriaceae. Nature. 1979 Feb 8;277(5696):486–489. doi: 10.1038/277486a0. [DOI] [PubMed] [Google Scholar]
  25. Murphy T. M., Mills S. E. Immunochemical and enzymatic comparisons of the tryptophan synthase alpha subunits from five species of Enterobacteriaceae. J Bacteriol. 1969 Mar;97(3):1310–1320. doi: 10.1128/jb.97.3.1310-1320.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ohashi Ziro, Harada Fumio, Nishimura Susumu. Primary sequence of glutamic acid tRNA II from Escherichia coli. FEBS Lett. 1972 Feb 1;20(2):239–241. doi: 10.1016/0014-5793(72)80804-4. [DOI] [PubMed] [Google Scholar]
  27. Platt T., Yanofsky C. An intercistronic region and ribosome-binding site in bacterial messenger RNA. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2399–2403. doi: 10.1073/pnas.72.6.2399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Poon R., Paddock G. V., Heindell H., Whitcome P., Salser W., Kacian D., Bank A., Gambino R., Ramirez F. Nucleotide sequence analysis of RNA synthesized from rabbit globin complementary DNA. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3502–3506. doi: 10.1073/pnas.71.9.3502. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Post L. E., Strycharz G. D., Nomura M., Lewis H., Dennis P. P. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit beta in Escherichia coli. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1697–1701. doi: 10.1073/pnas.76.4.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robertson H. D., Jeppesen P. G. Extent of variation in three related bacteriophage RNA molecules. J Mol Biol. 1972 Jul 28;68(3):417–428. doi: 10.1016/0022-2836(72)90096-4. [DOI] [PubMed] [Google Scholar]
  31. Roy K. L., Söll D. Purification of five serine transfer ribonucleic acid species from Escherichia coli and their acylation by homologous and heterologous seryl transfer ribonucleic acid synthetases. J Biol Chem. 1970 Mar 25;245(6):1394–1400. [PubMed] [Google Scholar]
  32. Salser W., Bowen S., Browne D., el-Adli F., Fedoroff N., Fry K., Heindell H., Paddock G., Poon R., Wallace B. Investigation of the organization of mammalian chromosomes at the DNA sequence level. Fed Proc. 1976 Jan;35(1):23–35. [PubMed] [Google Scholar]
  33. Sanger F., Air G. M., Barrell B. G., Brown N. L., Coulson A. R., Fiddes C. A., Hutchison C. A., Slocombe P. M., Smith M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977 Feb 24;265(5596):687–695. doi: 10.1038/265687a0. [DOI] [PubMed] [Google Scholar]
  34. Sanger F., Coulson A. R. The use of thin acrylamide gels for DNA sequencing. FEBS Lett. 1978 Mar 1;87(1):107–110. doi: 10.1016/0014-5793(78)80145-8. [DOI] [PubMed] [Google Scholar]
  35. Selker E., Brown K., Yanofsky C. Mitomycin C-induced expression of trpA of Salmonella typhimurium inserted into the plasmid ColE1. J Bacteriol. 1977 Jan;129(1):388–394. doi: 10.1128/jb.129.1.388-394.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Söll D., Cherayil J. D., Bock R. M. Studies on polynucleotides. LXXV. Specificity of tRNA for codon recognition as studied by the ribosomal binding technique. J Mol Biol. 1967 Oct 14;29(1):97–112. doi: 10.1016/0022-2836(67)90183-0. [DOI] [PubMed] [Google Scholar]
  37. Williams R. J., Nagel W., Roe B., Dudock B. Primary structure of E. coli alanine transfer RNA: relation to the yeast phenylalanyl tRNA synthetase recognition site. Biochem Biophys Res Commun. 1974 Oct 23;60(4):1215–1221. doi: 10.1016/0006-291x(74)90328-3. [DOI] [PubMed] [Google Scholar]
  38. Wu A. M., Platt T. Transcription termination: nucleotide sequence at 3' end of tryptophan operon in Escherichia coli. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5442–5446. doi: 10.1073/pnas.75.11.5442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Yanofsky C., Li S. S., Horn V., Rowe J. Structure and properties of a hybrid tryptophan synthetase of alpha chain produced by genetic exchange between Escherichia coli and Salmonella typhimurium. Proc Natl Acad Sci U S A. 1977 Jan;74(1):286–290. doi: 10.1073/pnas.74.1.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Yarus M., Barrell B. G. The sequence of nucleotides in tRNA Ile from E. coli B. Biochem Biophys Res Commun. 1971 May 21;43(4):729–734. doi: 10.1016/0006-291x(71)90676-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES