Skip to main content
Natural Products and Bioprospecting logoLink to Natural Products and Bioprospecting
. 2013 Mar 8;3(1):1–7. doi: 10.1007/s13659-013-0004-0

Animal plant warfare and secondary metabolite evolution

Steffen Wöll 14, Sun Hee Kim 14, Henry Johannes Greten 24,34, Thomas Efferth 14,
PMCID: PMC4131614

Abstract

Abstract

The long-lasting discussion, why plants produce secondary metabolites, which are pharmacologically and toxicologically active towards mammals traces back to the eminent role of medicinal plants in the millennia-old history of manhood. In recent years, the concept of an animal plant warfare emerged, which focused on the co-evolution between plants and herbivores. As a reaction to herbivory, plants developed mechanical defenses such as thorns and hard shells, which paved the way for adapted animal physiques. Plants evolved further defense systems by producing chemicals that exert toxic effects on the animals that ingest them. As a result of this selective pressure, animals developed special enzymes, e.g. cytochrome P450 monooxigenases (CYP450) that metabolize xenobiotic phytochemicals. As a next step in the evolutionary competition between plants and animals, plants evolved to produce non-toxic pro-drugs, which become toxic only after ingestion by animals through metabolization by enzymes such as CYP450. Because these sequestered evolutionary developments call to mind an arms race, the term animal plant warfare has been coined. The evolutionary competition between plants and animals may help to better understand the modes of action of medicinal plants and to foster the efficient and safe use of phytotherapy nowadays.

Graphical abstract

graphic file with name 13659_2013_4_Article_Fig1_HTML.jpg

Keywords: natural products, phytochemicals, liver metabolism, cytochrome P450 monooxigenase, ABC-transporter, herbivore

Footnotes

This article is published with open access at Springerlink.com

References

  • [1].Berenbaum M R. Proc. Natl. Acad. Sci. USA. 1995;92:2–8. doi: 10.1073/pnas.92.1.2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [2].Gould S J, Lewontin R C. Proc. R. Soc. Lond. B. 1979;205:581–598. doi: 10.1098/rspb.1979.0086. [DOI] [PubMed] [Google Scholar]
  • [3].Valladares G R, Zapata A, Zygadlo J, Banchio E. J. Agric. Food Chem. 2002;50:4059–4061. doi: 10.1021/jf011608+. [DOI] [PubMed] [Google Scholar]
  • [4].Iason G R, Villalba J J. J. Chem. Ecol. 2006;32:1115–1132. doi: 10.1007/s10886-006-9075-2. [DOI] [PubMed] [Google Scholar]
  • [5].Vokou D, Kokkinit S, Bessiere J M. Biochem. Syst. Ecol. 1993;21:287–295. doi: 10.1016/0305-1978(93)90047-U. [DOI] [Google Scholar]
  • [6].Maffei M, Mucciarelli M, Scannerini S. Biochem. Syst. Ecol. 1993;21:765–784. doi: 10.1016/0305-1978(93)90089-A. [DOI] [Google Scholar]
  • [7].McLean S, Duncan A J. J. Chem. Ecol. 2006;32:1213–1228. doi: 10.1007/s10886-006-9081-4. [DOI] [PubMed] [Google Scholar]
  • [8].Bryant, J. P.; Clausen, T. P.; Swihart, R. K.; Landhäusser, S. M.; Stevens, M. T.; Hawkins, C. D.; Carrière, S.; Kirilenko, A. P.; Veitch, A. M.; Popko, R. A.; Cleland, D. T.; Williams, J. H.; Jakubas, W. J.; Carlson, M. R.; Bodony, K. L.; Cebrian, M.; Paragi, T. F.; Picone, P. M.; Moore, J. E.; Packee, E. C.; Malone, T. Am. Nat.2009, 174,13-23. [DOI] [PubMed]
  • [9].Mitchell J R, Potter W Z, Hinson J A, Snodgrass W R, Timbrell J A, Gillette J R. Toxic drug reactions. In: Gillete J R, Mitchell J R, editors. Handbook of Experimental Pharmacology. 1975. pp. 383–419. [Google Scholar]
  • [10].Swihart R K, DeAngelis D L, Feng Z, Bryant J P. BMC Ecol. 2009;9:5. doi: 10.1186/1472-6785-9-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [11].Marsh K J, Wallis I R, Andrew R L, Foley W J. J. Chem. Ecol. 2006;32:1247–1266. doi: 10.1007/s10886-006-9082-3. [DOI] [PubMed] [Google Scholar]
  • [12].Sorensen J S, Dearing M D. Oecologia. 2003;134:88–94. doi: 10.1007/s00442-002-1085-3. [DOI] [PubMed] [Google Scholar]
  • [13].DeGabriel J L, Moore B D, Foley W J, Johnson C N. Ecology. 2009;90:711–719. doi: 10.1890/08-0940.1. [DOI] [PubMed] [Google Scholar]
  • [14].Zangerl A R, Berenbaum M R. J. Chem. Ecol. 2004;30:1985–2002. doi: 10.1023/B:JOEC.0000045590.28631.00. [DOI] [PubMed] [Google Scholar]
  • [15].Marsh K J, Foley W J, Cowling A, Wallis I R. J. Comp. Physiol. B. 2003;173:69–78. doi: 10.1007/s00360-002-0318-4. [DOI] [PubMed] [Google Scholar]
  • [16].DeGabriel J L, Moore B D, Shipley L A, Krockenberger A K, Wallis I R, Johnson C N, Foley W J. Oecologia. 2009;161:539–48. doi: 10.1007/s00442-009-1407-9. [DOI] [PubMed] [Google Scholar]
  • [17].Haley S L, Lamb J G, Franklin M R, Constance J E, Dearing M D. Physiol. Biochem. Zool. 2008;81:584–93. doi: 10.1086/589951. [DOI] [PubMed] [Google Scholar]
  • [18].Magnanou E, Malenke J R, Dearing M D. Mol. Ecol. 2009;18:2401–2414. doi: 10.1111/j.1365-294X.2009.04171.x. [DOI] [PubMed] [Google Scholar]
  • [19].Wiggins N L, McArthur C, McLean S, Boyle R. J. Chem. Ecol. 2003;29:147–1464. doi: 10.1023/A:1024221705354. [DOI] [PubMed] [Google Scholar]
  • [20].Marsh K J, Wallis I R, Foley W J. Nature. 2002;419:712–715. doi: 10.1038/nature01003. [DOI] [PubMed] [Google Scholar]
  • [22].Li W, Schuler M A, Berenbaum M R. Proc. Natl. Acad. Sci. USA. 2003;100:14593–14598. doi: 10.1073/pnas.1934643100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [23].Li W, Zangerl A R, Schuler M A, Berenbaum M R. Insect Mol. Biol. 2004;13:603–613. doi: 10.1111/j.0962-1075.2004.00518.x. [DOI] [PubMed] [Google Scholar]
  • [24].Kohl K D, Dearing M D. J. Exp. Biol. 2011;214:4133–4140. doi: 10.1242/jeb.062356. [DOI] [PubMed] [Google Scholar]
  • [25].Marsh K J, Wallis I R, McLean S, Sorensen J S, Foley W J. Ecology. 2006;87:2103–2112. doi: 10.1890/0012-9658(2006)87[2103:CDODPI]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • [26].Wiggins N L, McArthur C, Davies N W. Oecologia. 2006;147:650–657. doi: 10.1007/s00442-005-0305-z. [DOI] [PubMed] [Google Scholar]
  • [27].Wiggins N L, McArthur C, Davies N W, McLean S. J. Chem. Ecol. 2006;32:1133–1147. doi: 10.1007/s10886-006-9076-1. [DOI] [PubMed] [Google Scholar]
  • [28].Shipley L A, Forbey J S, Moore B D. Integr. Comp. Biol. 2009;49:274–290. doi: 10.1093/icb/icp051. [DOI] [PubMed] [Google Scholar]
  • [29].Skopec M M, Haley S, Dearing M D. Comp. Biochem. Physiol. Part D Genomics Proteomics. 2007;2:34–43. doi: 10.1016/j.cbd.2006.11.001. [DOI] [PubMed] [Google Scholar]
  • [30].Skopec M M, Haley S, Torregrossa A M, Dearing M D. Physiol. Biochem. Zool. 2008;81:426–433. doi: 10.1086/589106. [DOI] [PubMed] [Google Scholar]
  • [31].Torregrossa A M, Azzara A V, Dearing M D. Oecologia. 2012;168:711–718. doi: 10.1007/s00442-011-2121-y. [DOI] [PubMed] [Google Scholar]
  • [32].Piccaglia R, Marottil M, Giovanellil E, Deans S G, Eaglesham E. Ind. Crops Prod. 1993;2:47–50. doi: 10.1016/0926-6690(93)90010-7. [DOI] [Google Scholar]
  • [33].Zahorik D M, Houpt K A, Swartzmanadert J. Appl. Animal Behav. Sci. 1990;26:27–39. doi: 10.1016/0168-1591(90)90084-Q. [DOI] [Google Scholar]
  • [34].Müller-Schwarze D, Thoss V J. Chem. Ecol. 2008;34:1377–1381. doi: 10.1007/s10886-008-9543-y. [DOI] [PubMed] [Google Scholar]
  • [35].Mucciarelli M, Camusso W, Bertea C M, Bossi S, Maffei M. Phytochemistry. 2001;57:91–98. doi: 10.1016/S0031-9422(00)00393-9. [DOI] [PubMed] [Google Scholar]
  • [36].Umezu T, Sakata A, Ito H. Pharmacol. Biochem. Behav. 2001;69:383–390. doi: 10.1016/S0091-3057(01)00543-3. [DOI] [PubMed] [Google Scholar]
  • [37].Moorthy B, Madyastha P, Madyastha K M. Indian J. Chem. Section B. 1991;30:138–146. [Google Scholar]
  • [38].McClanahan R H, Thomasse N D, Slattery J T, Nelson S D. Chem. Res. Toxicol. 1989;2:349–355. doi: 10.1021/tx00011a013. [DOI] [PubMed] [Google Scholar]
  • [39].European Agency for the Evaluation of Medicinal Products (EMEA). 2005, http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/04/WC500089958.pdf.
  • [40].Maffei M, Camusso W, Sacco S. Phytochemistry. 2001;58:703–707. doi: 10.1016/S0031-9422(01)00313-2. [DOI] [PubMed] [Google Scholar]
  • [41].Gershenzon J. J. Chem. Ecol. 1994;20:1281–1328. doi: 10.1007/BF02059810. [DOI] [PubMed] [Google Scholar]
  • [42].Gershenzon J, McConkey E, Croteau R B. Plant Physiol. 2000;122:205–214. doi: 10.1104/pp.122.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [43].Turner G W, Croteau R. Plant Physiol. 2004;136:4215–4227. doi: 10.1104/pp.104.050229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [4].De Feo V, Ricciardi A I, Biscardi D, Senatore F J. Essential Oil Res. 1998;10:61–65. doi: 10.1080/10412905.1998.9700839. [DOI] [Google Scholar]
  • [45].McConkey M E, Gershenzon J, Croteau R B. Plant Physiol. 2000;122:215–224. doi: 10.1104/pp.122.1.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [46].Latta R G, Linhart Y B, Snyder M A, Lundquist L. Biochem. Syst. Ecol. 2003;31:451–465. doi: 10.1016/S0305-1978(02)00176-X. [DOI] [Google Scholar]
  • [47].Thoss V, O’Reilly-Wapstra J, Iason G R. J. Chem. Ecol. 2007;33:477–491. doi: 10.1007/s10886-006-9244-3. [DOI] [PubMed] [Google Scholar]
  • [48].McAuslane H J, Alborn H T, Toth J P. J. Chem. Ecol. 1997;23:2861–2879. doi: 10.1023/A:1022575313325. [DOI] [Google Scholar]
  • [49].Baldwin I T. Chemical changes rapidly induced by folivory. In: Bernays E, editor. Insect-Plant Interaction. 1994. pp. 1–23. [Google Scholar]
  • [50].Barnola L F, Hasegawa M, Cedno A. Biochem. Syst. Ecol. 1994;22:437–45. doi: 10.1016/0305-1978(94)90039-6. [DOI] [Google Scholar]
  • [51].Zygadlo J, Maestri D M, Lamarque A L, Guzman C A, Velasco-Negueruela A, Perez Alonso M J, Garcia-Vallejos M C, Grosso N R. Biochem. Syst. Ecol. 1994;24:319–323. doi: 10.1016/0305-1978(96)00030-0. [DOI] [Google Scholar]
  • [52].Alkire B H, Tucker A O, Maciarello M J. Econ. Bot. 1994;48:60–64. doi: 10.1007/BF02901380. [DOI] [Google Scholar]
  • [53].De Moraes C M, Lewis D J, Pare P W, Alborn H T, Tumlinson J H. Nature. 1998;393:570–573. doi: 10.1038/31219. [DOI] [Google Scholar]
  • [54].Halpern M, Raats D, Lev-Yadun S. Environm. Microbiol. 2007;9:584–592. doi: 10.1111/j.1462-2920.2006.01174.x. [DOI] [PubMed] [Google Scholar]
  • [55].Stermitz F R, Lorenz P, Tawara J N, Zenewicz L A, Lewis K. Proc. Natl. Acad. Sci. USA. 2000;97:1433–1437. doi: 10.1073/pnas.030540597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [56].Efferth T. Curr. Mol. Med. 2001;1:45–65. doi: 10.2174/1566524013364194. [DOI] [PubMed] [Google Scholar]
  • [57].Gillet J P, Efferth T, Remacle J. Biochim. Biophys. Acta. 2007;1775:237–262. doi: 10.1016/j.bbcan.2007.05.002. [DOI] [PubMed] [Google Scholar]
  • [58].Eichhorn T, Efferth T. J. Ethnopharmacol. 2012;141:557–570. doi: 10.1016/j.jep.2011.08.053. [DOI] [PubMed] [Google Scholar]
  • [59].Efferth T. Planta Med. 2012;78:935–942. doi: 10.1055/s-0032-1307486. [DOI] [PubMed] [Google Scholar]
  • [60].Sorensen J S, Dearing M D. J. Chem. Ecol. 2006;32:1181–1196. doi: 10.1007/s10886-006-9079-y. [DOI] [PubMed] [Google Scholar]
  • [61].Sorensen J S, Turnbull C A, Dearing M D. Physiol. Biochem. Zool. 2004;77:139–148. doi: 10.1086/378923. [DOI] [PubMed] [Google Scholar]
  • [62].Pass G J, McLean S, Stupans I, Davies N. Xenobiotica. 2001;31:205–221. doi: 10.1080/00498250110043535. [DOI] [PubMed] [Google Scholar]
  • [63].Madabushi R, Frank B, Drewelow B, Derendorf H, Butterweck V. Europ. J. Clin. Pharmacol. 2006;62:225–233. doi: 10.1007/s00228-006-0096-0. [DOI] [PubMed] [Google Scholar]
  • [64].Fahey J W, Stephenson K K, Dinkova-Kostova A T, Egner P A, Kensler T W, Talalay P. Carcinogenesis. 2005;26:1247–1255. doi: 10.1093/carcin/bgi068. [DOI] [PubMed] [Google Scholar]
  • [65].Fau D, Lekehal M, Farrell G, Moreau A, Moulis C, Feldmann G, Haouzi D, Pessayre D. Gastroenterology. 1997;113:1334–1346. doi: 10.1053/gast.1997.v113.pm9322529. [DOI] [PubMed] [Google Scholar]
  • [66].Danielson P B. Curr. Drug Metabol. 2002;3:561–597. doi: 10.2174/1389200023337054. [DOI] [PubMed] [Google Scholar]
  • [67].Gonzalez F J, Nebert D W. Trends Genet. 1990;6:182–186. doi: 10.1016/0168-9525(90)90174-5. [DOI] [PubMed] [Google Scholar]
  • [68].Conney A H. Pharmacol. Rev. 1967;19:317–366. [PubMed] [Google Scholar]
  • [69].Efferth T. Molekulare Pharmakologie und Toxikologie. 2006. [Google Scholar]
  • [70].Khani S C, Zaphiropoulos P G, Fujita V S, Porter T D, Koop D R, Coon M J. Proc. Natl. Acad. Sci. USA. 1987;84:638–642. doi: 10.1073/pnas.84.3.638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • [71].Nebert D W, Nelson D R, Feyereisen R. Xenobiotica. 1989;19:1149–1160. doi: 10.3109/00498258909043167. [DOI] [PubMed] [Google Scholar]
  • [72].Lewis D F, Watson E, Lake B G. Mutat. Res. 1998;410:245–270. doi: 10.1016/S1383-5742(97)00040-9. [DOI] [PubMed] [Google Scholar]
  • [73].Cloud P. Paleobiology. 1976;2:351–387. [Google Scholar]
  • [74].Dover G A, Tautz D. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986;312:275–289. doi: 10.1098/rstb.1986.0007. [DOI] [PubMed] [Google Scholar]
  • [75].Dover D A. J. Mol. Evol. 1987;26:47–58. doi: 10.1007/BF02111281. [DOI] [PubMed] [Google Scholar]
  • [76].Strachan T, Read A. Wiley-Liss. 4th ed. 2010. Human molecular genetics. [Google Scholar]
  • [77].Heim M H, Meyer U A. Genomics. 1992;14:49–58. doi: 10.1016/S0888-7543(05)80282-4. [DOI] [PubMed] [Google Scholar]
  • [78].Kaplowitz N. Gastroenterology. 1997;113:1408–1412. doi: 10.1053/gast.1997.v113.agast971131408. [DOI] [PubMed] [Google Scholar]

Articles from Natural Products and Bioprospecting are provided here courtesy of Springer

RESOURCES