Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1993 Feb;12(2):769–777. doi: 10.1002/j.1460-2075.1993.tb05711.x

Hormonal induction of low affinity receptor guanylyl cyclase.

J R Jewett 1, K J Koller 1, D V Goeddel 1, D G Lowe 1
PMCID: PMC413264  PMID: 8095019

Abstract

We describe a unique transient binding phenomenon for atrial natriuretic peptide (ANP) binding to the natriuretic peptide receptor-A (NPR-A) guanylyl cyclase stably expressed in 293 cells. The time course of ANP binding to intact cells peaked at 15 min followed by a subsequent decrease. Reduced binding was a consequence of an ANP induced low affinity state of NPR-A, and required the receptors' kinase homology domain. In a particulate fraction, ANP-stimulated cGMP production was dependent on ATP as a cofactor, and ATP promoted a lower affinity state. Our findings suggest that the kinase homology domain of NPR-A mediates the regulatory action of ATP, not only for signal transduction, but in the modulation of NPR-A hormone affinity.

Full text

PDF
769

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anand-Srivastava M. B., Sairam M. R., Cantin M. Ring-deleted analogs of atrial natriuretic factor inhibit adenylate cyclase/cAMP system. Possible coupling of clearance atrial natriuretic factor receptors to adenylate cyclase/cAMP signal transduction system. J Biol Chem. 1990 May 25;265(15):8566–8572. [PubMed] [Google Scholar]
  2. Bennett B. D., Bennett G. L., Vitangcol R. V., Jewett J. R., Burnier J., Henzel W., Lowe D. G. Extracellular domain-IgG fusion proteins for three human natriuretic peptide receptors. Hormone pharmacology and application to solid phase screening of synthetic peptide antisera. J Biol Chem. 1991 Dec 5;266(34):23060–23067. [PubMed] [Google Scholar]
  3. Bourne H. R., Sanders D. A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990 Nov 8;348(6297):125–132. doi: 10.1038/348125a0. [DOI] [PubMed] [Google Scholar]
  4. Chang M. S., Lowe D. G., Lewis M., Hellmiss R., Chen E., Goeddel D. V. Differential activation by atrial and brain natriuretic peptides of two different receptor guanylate cyclases. Nature. 1989 Sep 7;341(6237):68–72. doi: 10.1038/341068a0. [DOI] [PubMed] [Google Scholar]
  5. Chinkers M., Garbers D. L., Chang M. S., Lowe D. G., Chin H. M., Goeddel D. V., Schulz S. A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature. 1989 Mar 2;338(6210):78–83. doi: 10.1038/338078a0. [DOI] [PubMed] [Google Scholar]
  6. Chinkers M., Garbers D. L. Signal transduction by guanylyl cyclases. Annu Rev Biochem. 1991;60:553–575. doi: 10.1146/annurev.bi.60.070191.003005. [DOI] [PubMed] [Google Scholar]
  7. Chinkers M., Garbers D. L. Signal transduction by guanylyl cyclases. Annu Rev Biochem. 1991;60:553–575. doi: 10.1146/annurev.bi.60.070191.003005. [DOI] [PubMed] [Google Scholar]
  8. Chinkers M., Garbers D. L. The protein kinase domain of the ANP receptor is required for signaling. Science. 1989 Sep 22;245(4924):1392–1394. doi: 10.1126/science.2571188. [DOI] [PubMed] [Google Scholar]
  9. Chinkers M., Singh S., Garbers D. L. Adenine nucleotides are required for activation of rat atrial natriuretic peptide receptor/guanylyl cyclase expressed in a baculovirus system. J Biol Chem. 1991 Mar 5;266(7):4088–4093. [PubMed] [Google Scholar]
  10. Chinkers M., Wilson E. M. Ligand-independent oligomerization of natriuretic peptide receptors. Identification of heteromeric receptors and a dominant negative mutant. J Biol Chem. 1992 Sep 15;267(26):18589–18597. [PubMed] [Google Scholar]
  11. Currie M. G., Fok K. F., Kato J., Moore R. J., Hamra F. K., Duffin K. L., Smith C. E. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):947–951. doi: 10.1073/pnas.89.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davis R. J., Czech M. P. Amiloride directly inhibits growth factor receptor tyrosine kinase activity. J Biol Chem. 1985 Feb 25;260(4):2543–2551. [PubMed] [Google Scholar]
  13. De Lean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980 Aug 10;255(15):7108–7117. [PubMed] [Google Scholar]
  14. De Léan A. Amiloride potentiates atrial natriuretic factor inhibitory action by increasing receptor binding in bovine adrenal zona glomerulosa. Life Sci. 1986 Sep 22;39(12):1109–1116. doi: 10.1016/0024-3205(86)90203-1. [DOI] [PubMed] [Google Scholar]
  15. Fuller F., Porter J. G., Arfsten A. E., Miller J., Schilling J. W., Scarborough R. M., Lewicki J. A., Schenk D. B. Atrial natriuretic peptide clearance receptor. Complete sequence and functional expression of cDNA clones. J Biol Chem. 1988 Jul 5;263(19):9395–9401. [PubMed] [Google Scholar]
  16. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  17. Haigler H. T., Maxfield F. R., Willingham M. C., Pastan I. Dansylcadaverine inhibits internalization of 125I-epidermal growth factor in BALB 3T3 cells. J Biol Chem. 1980 Feb 25;255(4):1239–1241. [PubMed] [Google Scholar]
  18. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  19. Hirata M., Chang C. H., Murad F. Stimulatory effects of atrial natriuretic factor on phosphoinositide hydrolysis in cultured bovine aortic smooth muscle cells. Biochim Biophys Acta. 1989 Mar 6;1010(3):346–351. doi: 10.1016/0167-4889(89)90060-8. [DOI] [PubMed] [Google Scholar]
  20. Holland R., Woodgett J. R., Hardie D. G. Evidence that amiloride antagonises insulin-stimulated protein phosphorylation by inhibiting protein kinase activity. FEBS Lett. 1983 Apr 18;154(2):269–273. doi: 10.1016/0014-5793(83)80163-x. [DOI] [PubMed] [Google Scholar]
  21. Iwata T., Uchida-Mizuno K., Katafuchi T., Ito T., Hagiwara H., Hirose S. Bifunctional atrial natriuretic peptide receptor (type A) exists as a disulfide-linked tetramer in plasma membranes of bovine adrenal cortex. J Biochem. 1991 Jul;110(1):35–39. doi: 10.1093/oxfordjournals.jbchem.a123539. [DOI] [PubMed] [Google Scholar]
  22. Knighton D. R., Zheng J. H., Ten Eyck L. F., Ashford V. A., Xuong N. H., Taylor S. S., Sowadski J. M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science. 1991 Jul 26;253(5018):407–414. doi: 10.1126/science.1862342. [DOI] [PubMed] [Google Scholar]
  23. Koller K. J., Lowe D. G., Bennett G. L., Minamino N., Kangawa K., Matsuo H., Goeddel D. V. Selective activation of the B natriuretic peptide receptor by C-type natriuretic peptide (CNP). Science. 1991 Apr 5;252(5002):120–123. doi: 10.1126/science.1672777. [DOI] [PubMed] [Google Scholar]
  24. Koller K. J., de Sauvage F. J., Lowe D. G., Goeddel D. V. Conservation of the kinaselike regulatory domain is essential for activation of the natriuretic peptide receptor guanylyl cyclases. Mol Cell Biol. 1992 Jun;12(6):2581–2590. doi: 10.1128/mcb.12.6.2581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Krupinski J., Coussen F., Bakalyar H. A., Tang W. J., Feinstein P. G., Orth K., Slaughter C., Reed R. R., Gilman A. G. Adenylyl cyclase amino acid sequence: possible channel- or transporter-like structure. Science. 1989 Jun 30;244(4912):1558–1564. doi: 10.1126/science.2472670. [DOI] [PubMed] [Google Scholar]
  26. Kurose H., Inagami T., Ui M. Participation of adenosine 5'-triphosphate in the activation of membrane-bound guanylate cyclase by the atrial natriuretic factor. FEBS Lett. 1987 Jul 27;219(2):375–379. doi: 10.1016/0014-5793(87)80256-9. [DOI] [PubMed] [Google Scholar]
  27. Larose L., McNicoll N., Ong H., De Léan A. Allosteric modulation by ATP of the bovine adrenal natriuretic factor R1 receptor functions. Biochemistry. 1991 Sep 17;30(37):8990–8995. doi: 10.1021/bi00101a012. [DOI] [PubMed] [Google Scholar]
  28. Lefkowitz R. J., Stadel J. M., Caron M. G. Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu Rev Biochem. 1983;52:159–186. doi: 10.1146/annurev.bi.52.070183.001111. [DOI] [PubMed] [Google Scholar]
  29. Linz W., Albus U., Wiemer G., Breipohl G., Knolle J., Schölkens B. A. Amiloride potentiates the vascular effects of atrial natriuretic factor. J Hypertens Suppl. 1988 Dec;6(4):S300–S302. doi: 10.1097/00004872-198812040-00093. [DOI] [PubMed] [Google Scholar]
  30. Lowe D. G., Chang M. S., Hellmiss R., Chen E., Singh S., Garbers D. L., Goeddel D. V. Human atrial natriuretic peptide receptor defines a new paradigm for second messenger signal transduction. EMBO J. 1989 May;8(5):1377–1384. doi: 10.1002/j.1460-2075.1989.tb03518.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lowe D. G., Fendly B. M. Human natriuretic peptide receptor-A guanylyl cyclase. Hormone cross-linking and antibody reactivity distinguish receptor glycoforms. J Biol Chem. 1992 Oct 25;267(30):21691–21697. [PubMed] [Google Scholar]
  32. Lowe D. G. Human natriuretic peptide receptor-A guanylyl cyclase is self-associated prior to hormone binding. Biochemistry. 1992 Nov 3;31(43):10421–10425. doi: 10.1021/bi00158a001. [DOI] [PubMed] [Google Scholar]
  33. Meloche S., McNicoll N., Liu B., Ong H., De Léan A. Atrial natriuretic factor R1 receptor from bovine adrenal zona glomerulosa: purification, characterization, and modulation by amiloride. Biochemistry. 1988 Oct 18;27(21):8151–8158. doi: 10.1021/bi00421a025. [DOI] [PubMed] [Google Scholar]
  34. Meloche S., Ong H., De Léan A. Functional heterogeneity of atrial natriuretic factor receptor in bovine adrenal zona glomerulosa is explained by an amiloride-sensitive high affinity molecular complex. J Biol Chem. 1987 Jul 25;262(21):10252–10258. [PubMed] [Google Scholar]
  35. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  36. Nussenzveig D. R., Lewicki J. A., Maack T. Cellular mechanisms of the clearance function of type C receptors of atrial natriuretic factor. J Biol Chem. 1990 Dec 5;265(34):20952–20958. [PubMed] [Google Scholar]
  37. Potter L. R., Garbers D. L. Dephosphorylation of the guanylyl cyclase-A receptor causes desensitization. J Biol Chem. 1992 Jul 25;267(21):14531–14534. [PubMed] [Google Scholar]
  38. Schulz S., Green C. K., Yuen P. S., Garbers D. L. Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell. 1990 Nov 30;63(5):941–948. doi: 10.1016/0092-8674(90)90497-3. [DOI] [PubMed] [Google Scholar]
  39. Schulz S., Singh S., Bellet R. A., Singh G., Tubb D. J., Chin H., Garbers D. L. The primary structure of a plasma membrane guanylate cyclase demonstrates diversity within this new receptor family. Cell. 1989 Sep 22;58(6):1155–1162. doi: 10.1016/0092-8674(89)90513-8. [DOI] [PubMed] [Google Scholar]
  40. Song D. L., Kohse K. P., Murad F. Brain natriuretic factor. Augmentation of cellular cyclic GMP, activation of particulate guanylate cyclase and receptor binding. FEBS Lett. 1988 May 9;232(1):125–129. doi: 10.1016/0014-5793(88)80400-9. [DOI] [PubMed] [Google Scholar]
  41. Thorpe D. S., Niu S., Morkin E. Overexpression of dimeric guanylyl cyclase cores of an atrial natriuretic peptide receptor. Biochem Biophys Res Commun. 1991 Oct 31;180(2):538–544. doi: 10.1016/s0006-291x(05)81098-8. [DOI] [PubMed] [Google Scholar]
  42. Wreggett K. A., De Léan A. The ternary complex model. Its properties and application to ligand interactions with the D2-dopamine receptor of the anterior pituitary gland. Mol Pharmacol. 1984 Sep;26(2):214–227. [PubMed] [Google Scholar]
  43. Yuen P. S., Garbers D. L. Guanylyl cyclase-linked receptors. Annu Rev Neurosci. 1992;15:193–225. doi: 10.1146/annurev.ne.15.030192.001205. [DOI] [PubMed] [Google Scholar]
  44. de Sauvage F. J., Camerato T. R., Goeddel D. V. Primary structure and functional expression of the human receptor for Escherichia coli heat-stable enterotoxin. J Biol Chem. 1991 Sep 25;266(27):17912–17918. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES