Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1993 May;12(5):1767–1774. doi: 10.1002/j.1460-2075.1993.tb05824.x

Crystal structure of a flavoprotein related to the subunits of bacterial luciferase.

S A Moore 1, M N James 1, D J O'Kane 1, J Lee 1
PMCID: PMC413395  PMID: 8491169

Abstract

The molecular structure of the luxF protein from the bioluminescent bacterium Photobacterium leiognathi has been determined by X-ray diffraction techniques and refined to a conventional R-factor of 17.8% at 2.3 A resolution. The 228 amino acid polypeptide exists as a symmetrical homodimer and 33% of the monomer's solvent-accessible surface area is buried upon dimerization. The monomer displays a novel fold that contains a central seven-stranded beta-barrel. The solvent-exposed surface of the monomer is covered by seven alpha-helices, whereas the dimer interface is primarily a flat surface composed of beta-strands. The protein monomer binds two molecules of flavin mononucleotide, each of which has C6 of the flavin isoalloxazine moiety covalently attached to the C3' carbon atom of myristic acid. Both myristyl groups of these adducts are buried within the hydrophobic core of the protein. One of the cofactors contributes to interactions at the dimer interface. The luxF protein displays considerable amino acid sequence homology with both alpha- and beta-subunits of bacterial luciferase, especially the beta-subunit. Conserved amino acid residues shared between luxF and the luciferase subunits cluster predominantly in two distinct regions of the luxF protein molecule. These homologous regions in the luciferase subunits probably share a three-dimensional fold similar to that of the luxF protein.

Full text

PDF
1767

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P. An investigation of protein subunit and domain interfaces. Protein Eng. 1988 Jul;2(2):101–113. doi: 10.1093/protein/2.2.101. [DOI] [PubMed] [Google Scholar]
  2. Baldwin T. O., Devine J. H., Heckel R. C., Lin J. W., Shadel G. S. The complete nucleotide sequence of the lux regulon of Vibrio fischeri and the luxABN region of Photobacterium leiognathi and the mechanism of control of bacterial bioluminescence. J Biolumin Chemilumin. 1989 Jul;4(1):326–341. doi: 10.1002/bio.1170040145. [DOI] [PubMed] [Google Scholar]
  3. Brünger A. T., Krukowski A., Erickson J. W. Slow-cooling protocols for crystallographic refinement by simulated annealing. Acta Crystallogr A. 1990 Jul 1;46(Pt 7):585–593. doi: 10.1107/s0108767390002355. [DOI] [PubMed] [Google Scholar]
  4. Brünger A. T., Kuriyan J., Karplus M. Crystallographic R factor refinement by molecular dynamics. Science. 1987 Jan 23;235(4787):458–460. doi: 10.1126/science.235.4787.458. [DOI] [PubMed] [Google Scholar]
  5. Daubner S. C., Astorga A. M., Leisman G. B., Baldwin T. O. Yellow light emission of Vibrio fischeri strain Y-1: purification and characterization of the energy-accepting yellow fluorescent protein. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8912–8916. doi: 10.1073/pnas.84.24.8912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Howard A. J., Nielsen C., Xuong N. H. Software for a diffractometer with multiwire area detector. Methods Enzymol. 1985;114:452–472. doi: 10.1016/0076-6879(85)14030-9. [DOI] [PubMed] [Google Scholar]
  7. Illarionov B. A., Blinov V. M., Donchenko A. P., Protopopova M. V., Karginov V. A., Mertvetsov N. P., Gitelson J. I. Isolation of bioluminescent functions from Photobacterium leiognathi: analysis of luxA, luxB, luxG and neighboring genes. Gene. 1990 Jan 31;86(1):89–94. doi: 10.1016/0378-1119(90)90117-a. [DOI] [PubMed] [Google Scholar]
  8. Jones T. A., Thirup S. Using known substructures in protein model building and crystallography. EMBO J. 1986 Apr;5(4):819–822. doi: 10.1002/j.1460-2075.1986.tb04287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  10. Karplus P. A., Schulz G. E. Refined structure of glutathione reductase at 1.54 A resolution. J Mol Biol. 1987 Jun 5;195(3):701–729. doi: 10.1016/0022-2836(87)90191-4. [DOI] [PubMed] [Google Scholar]
  11. Kita A., Kasai N., Kasai S., Nakaya T., Miki K. Crystallization and preliminary X-ray diffraction studies of a flavoprotein, FP390, from a luminescent bacterium, Photobacterium phosphoreum. J Biochem. 1991 Nov;110(5):748–750. doi: 10.1093/oxfordjournals.jbchem.a123652. [DOI] [PubMed] [Google Scholar]
  12. Lindqvist Y., Brändén C. I. The active site of spinach glycolate oxidase. J Biol Chem. 1989 Feb 25;264(6):3624–3628. [PubMed] [Google Scholar]
  13. Mayhew S. G., Whitfield C. D., Ghisla S., Schuman-Jörns M. Identification and properties of new flavins in electron-transferring flavoprotein from Peptostreptococcus elsdenii and pig-liver glycolate oxidase. Eur J Biochem. 1974 May 15;44(2):579–591. doi: 10.1111/j.1432-1033.1974.tb03515.x. [DOI] [PubMed] [Google Scholar]
  14. Meighen E. A. Molecular biology of bacterial bioluminescence. Microbiol Rev. 1991 Mar;55(1):123–142. doi: 10.1128/mr.55.1.123-142.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moore S. A., James M. N., O'Kane D. J., Lee J. Crystallization of Photobacterium leiognathi non-fluorescent flavoprotein, an unusual flavoprotein with limited sequence identity to bacterial luciferase. J Mol Biol. 1992 Mar 20;224(2):523–526. doi: 10.1016/0022-2836(92)91015-h. [DOI] [PubMed] [Google Scholar]
  16. O'Kane D. J., Karle V. A., Lee J. Purification of lumazine proteins from Photobacterium leiognathi and Photobacterium phosphoreum: bioluminescence properties. Biochemistry. 1985 Mar 12;24(6):1461–1467. doi: 10.1021/bi00327a026. [DOI] [PubMed] [Google Scholar]
  17. O'Kane D. J., Prasher D. C. Evolutionary origins of bacterial bioluminescence. Mol Microbiol. 1992 Feb;6(4):443–449. doi: 10.1111/j.1365-2958.1992.tb01488.x. [DOI] [PubMed] [Google Scholar]
  18. Raibekas A. A. Green flavoprotein from P. leiognathi: purification, characterization and identification as the product of the lux G(N) gene. J Biolumin Chemilumin. 1991 Jul-Sep;6(3):169–176. doi: 10.1002/bio.1170060306. [DOI] [PubMed] [Google Scholar]
  19. Singer T. P., McIntire W. S. Covalent attachment of flavin to flavoproteins: occurrence, assay, and synthesis. Methods Enzymol. 1984;106:369–378. doi: 10.1016/0076-6879(84)06039-0. [DOI] [PubMed] [Google Scholar]
  20. Wang B. C. Resolution of phase ambiguity in macromolecular crystallography. Methods Enzymol. 1985;115:90–112. doi: 10.1016/0076-6879(85)15009-3. [DOI] [PubMed] [Google Scholar]
  21. Watt W., Tulinsky A., Swenson R. P., Watenpaugh K. D. Comparison of the crystal structures of a flavodoxin in its three oxidation states at cryogenic temperatures. J Mol Biol. 1991 Mar 5;218(1):195–208. doi: 10.1016/0022-2836(91)90884-9. [DOI] [PubMed] [Google Scholar]
  22. Xin X., Xi L., Tu S. C. Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase alpha subunit. Biochemistry. 1991 Nov 26;30(47):11255–11262. doi: 10.1021/bi00111a010. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES