Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Aug 1;92(16):7367–7371. doi: 10.1073/pnas.92.16.7367

Carbohydrate gluing, an architectural mechanism in the supramolecular structure of an annelid giant hemoglobin.

S Ebina 1, K Matsubara 1, K Nagayama 1, M Yamaki 1, T Gotoh 1
PMCID: PMC41340  PMID: 7638198

Abstract

We report a carbohydrate-dependent supramolecular architecture in the extracellular giant hemoglobin (Hb) from the marine worm Perinereis aibuhitensis; we call this architectural mechanism carbohydrate gluing. This study is an extension of our accidental discovery of deterioration in the form of the Hb caused by a high concentration of glucose. The giant Hbs of annelids are natural supramolecules consisting of about 200 polypeptide chains that associate to form a double-layered hexagonal structure. This Hb has 0.5% (wt) carbohydrates, including mannose, xylose, fucose, galactose, glucose, N-acetylglucosamine (GlcNAc), and N-acetylgalactosamine (GalNAc). Using carbohydrate-staining assays, in conjunction with two-dimensional polyacrylamide gel electrophoresis, we found that two types of linker chains (L1 and L2; the nomenclature of the Hb subunits followed that for another marine worm, Tylorrhynchus heterochaetus) contained carbohydrates with both GlcNAc and GalNAc. Furthermore, two types of globins (a and A) have only GlcNAc-containing carbohydrates, whereas the other types of globins (b and B) had no carbohydrates. Monosaccharides including mannose, fucose, glucose, galactose, GlcNAc, and GalNAc reversibly dissociated the intact form of the Hb, but the removal of carbohydrate with N-glycanase resulted in irreversible dissociation. These results show that carbohydrate acts noncovalently to glue together the components to yield the complete quaternary supramolecular structure of the giant Hb. We suggest that this carbohydrate gluing may be mediated through lectin-like carbohydrate-binding by the associated structural chains ("linkers").

Full text

PDF
7367

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DiScipio R. G., Gehring M. R., Podack E. R., Kan C. C., Hugli T. E., Fey G. H. Nucleotide sequence of cDNA and derived amino acid sequence of human complement component C9. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7298–7302. doi: 10.1073/pnas.81.23.7298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Friedman M., Krull L. H., Cavins J. F. The chromatographic determination of cystine and cysteine residues in proteins as s-beta-(4-pyridylethyl)cysteine. J Biol Chem. 1970 Aug 10;245(15):3868–3871. [PubMed] [Google Scholar]
  3. Fukada Y., Takao T., Ohguro H., Yoshizawa T., Akino T., Shimonishi Y. Farnesylated gamma-subunit of photoreceptor G protein indispensable for GTP-binding. Nature. 1990 Aug 16;346(6285):658–660. doi: 10.1038/346658a0. [DOI] [PubMed] [Google Scholar]
  4. Fushitani K., Riggs A. F. Non-heme protein in the giant extracellular hemoglobin of the earthworm Lumbricus terrestris. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9461–9463. doi: 10.1073/pnas.85.24.9461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gotoh T., Shishikura F., Snow J. W., Ereifej K. I., Vinogradov S. N., Walz D. A. Two globin strains in the giant annelid extracellular haemoglobins. Biochem J. 1987 Jan 15;241(2):441–445. doi: 10.1042/bj2410441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Iobst S. T., Drickamer K. Binding of sugar ligands to Ca(2+)-dependent animal lectins. II. Generation of high-affinity galactose binding by site-directed mutagenesis. J Biol Chem. 1994 Jun 3;269(22):15512–15519. [PubMed] [Google Scholar]
  7. Jhiang S. M., Garey J. R., Riggs A. F. Exon-intron organization in genes of earthworm and vertebrate globins. Science. 1988 Apr 15;240(4850):334–336. doi: 10.1126/science.2832953. [DOI] [PubMed] [Google Scholar]
  8. Kapp O. H., Qabar A. N., Bonner M. C., Stern M. S., Walz D. A., Schmuck M., Pilz I., Wall J. S., Vinogradov S. N. Quaternary structure of the giant extracellular hemoglobin of the leech Macrobdella decora. J Mol Biol. 1990 May 5;213(1):141–158. doi: 10.1016/S0022-2836(05)80127-5. [DOI] [PubMed] [Google Scholar]
  9. Kijimoto-Ochiai S., Katagiri Y. U., Ochiai H. Analysis of N-linked oligosaccharide chains of glycoproteins on nitrocellulose sheets using lectin-peroxidase reagents. Anal Biochem. 1985 May 15;147(1):222–229. doi: 10.1016/0003-2697(85)90031-4. [DOI] [PubMed] [Google Scholar]
  10. LEVIN O. Electron microscope observations on some 60 s erythrocruorins and their split products. J Mol Biol. 1963 Jan;6:95–101. doi: 10.1016/s0022-2836(63)80084-4. [DOI] [PubMed] [Google Scholar]
  11. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  12. Ownby D. W., Zhu H., Schneider K., Beavis R. C., Chait B. T., Riggs A. F. The extracellular hemoglobin of the earthworm, Lumbricus terrestris. Determination of subunit stoichiometry. J Biol Chem. 1993 Jun 25;268(18):13539–13547. [PubMed] [Google Scholar]
  13. Raychowdhury R., Niles J. L., McCluskey R. T., Smith J. A. Autoimmune target in Heymann nephritis is a glycoprotein with homology to the LDL receptor. Science. 1989 Jun 9;244(4909):1163–1165. doi: 10.1126/science.2786251. [DOI] [PubMed] [Google Scholar]
  14. Royer W. E., Jr, Hendrickson W. A., Love W. E. Crystals of Lumbricus erythrocruorin. J Mol Biol. 1987 Sep 5;197(1):149–153. doi: 10.1016/0022-2836(87)90618-8. [DOI] [PubMed] [Google Scholar]
  15. Shlom J. M., Vinogradov S. N. A study of the subunit structure of the extracellular hemoglobin of Lumbricus terrestris. J Biol Chem. 1973 Nov 25;248(22):7904–7912. [PubMed] [Google Scholar]
  16. Suzuki T., Gotoh T. The complete amino acid sequence of giant multisubunit hemoglobin from the polychaete Tylorrhynchus heterochaetus. J Biol Chem. 1986 Jul 15;261(20):9257–9267. [PubMed] [Google Scholar]
  17. Suzuki T., Kapp O. H., Gotoh T. Novel S-S loops in the giant hemoglobin of Tylorrhynchus heterochaetus. J Biol Chem. 1988 Dec 5;263(34):18524–18529. [PubMed] [Google Scholar]
  18. Suzuki T., Ohta T., Yuasa H. J., Takagi T. The giant extracellular hemoglobin from the polychaete Neanthes diversicolor. The cDNA-derived amino acid sequence of linker chain L2 and the exon/intron boundary conserved in linker genes. Biochim Biophys Acta. 1994 Apr 6;1217(3):291–296. doi: 10.1016/0167-4781(94)90288-7. [DOI] [PubMed] [Google Scholar]
  19. Suzuki T., Riggs A. F. Linker chain L1 of earthworm hemoglobin. Structure of gene and protein: homology with low density lipoprotein receptor. J Biol Chem. 1993 Jun 25;268(18):13548–13555. [PubMed] [Google Scholar]
  20. Suzuki T., Takagi T., Gotoh T. Primary structure of two linker chains of the extracellular hemoglobin from the polychaete Tylorrhynchus heterochaetus. J Biol Chem. 1990 Jul 25;265(21):12168–12177. [PubMed] [Google Scholar]
  21. Südhof T. C., Goldstein J. L., Brown M. S., Russell D. W. The LDL receptor gene: a mosaic of exons shared with different proteins. Science. 1985 May 17;228(4701):815–822. doi: 10.1126/science.2988123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tanaka K., Ichihara A. Proteasomes (multicatalytic proteinase complexes) in eukaryotic cells. Cell Struct Funct. 1990 Jun;15(3):127–132. doi: 10.1247/csf.15.127. [DOI] [PubMed] [Google Scholar]
  23. Tsuneshige A., Imai K., Hori H., Tyuma I., Gotoh T. Spectrophotometric, electron paramagnetic resonance and oxygen binding studies on the hemoglobin from the marine polychaete Perinereis aibuhitensis (Grübe): comparative physiology of hemoglobin. J Biochem. 1989 Sep;106(3):406–417. doi: 10.1093/oxfordjournals.jbchem.a122866. [DOI] [PubMed] [Google Scholar]
  24. Ueno M., Ogawa H., Matsumoto I., Seno N. A novel mannose-specific and sugar specifically aggregatable lectin from the bark of the Japanese pagoda tree (Sophora japonica). J Biol Chem. 1991 Feb 15;266(5):3146–3153. [PubMed] [Google Scholar]
  25. Vinogradov S. N., Lugo S. D., Mainwaring M. G., Kapp O. H., Crewe A. V. Bracelet protein: a quaternary structure proposed for the giant extracellular hemoglobin of Lumbricus terrestris. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8034–8038. doi: 10.1073/pnas.83.21.8034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Whitesides G. M., Mathias J. P., Seto C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science. 1991 Nov 29;254(5036):1312–1319. doi: 10.1126/science.1962191. [DOI] [PubMed] [Google Scholar]
  27. Wright C. S., Gavilanes F., Peterson D. L. Primary structure of wheat germ agglutinin isolectin 2. Peptide order deduced from X-ray structure. Biochemistry. 1984 Jan 17;23(2):280–287. doi: 10.1021/bi00297a017. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES