Abstract
The efficacy of statin treatment on cognitive decline is controversial, and the effect of statins on cognitive deficits in individuals with traumatic brain injury (TBI) has yet to be investigated. Therefore, we systematically reviewed the effect of statins on cognitive deficits in adult male rodents after TBI. After identifying eligible studies by searching four electronic databases on February 28, 2014, we assessed study quality, evaluated the efficacy of statin treatment, and performed stratified metaregression and metaregression to assess the influence of study design on statin efficacy. Eleven studies fulfilled our inclusion criteria from a total of 183 publications. The overall methodological quality of these studies was poor. Meta-analysis showed that statins exert statistically significant positive effects on cognitive performance after TBI. Stratified analysis showed that atorvastatin has the greatest effect on acquisition memory, simvastatin has the greatest effect on retention memory, and statin effects on acquisition memory are higher in closed head injury models. Metaregression analysis further showed that that animal species, study quality, and anesthetic agent impact statin effects on retention memory. We conclude that statins might reduce cognitive deficits after TBI. However, additional well-designed and well-reported animal studies are needed to inform further clinical study.
1. Introduction
Traumatic brain injury (TBI) is a leading cause of death and disability in industrialized countries and is the leading cause of long-term disability in children and young adults worldwide [1]. One of the most significant disabilities associated with TBI is short- and long-term cognitive deficits [2]. Approximately 65% of patients with moderate to severe TBI report long-term problems with cognitive functioning, and as many as 15% with mild TBI have persistent problems that often include cognitive deficits [3, 4]. These deficits interfere with work, relationships, leisure, and daily living activities, exacting a personal and economic cost that is difficult to quantify [4]. However, despite substantial efforts, few therapeutic options exist to prevent or alleviate cognitive dysfunction after TBI in humans [5, 6].
Statins (3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors) are implicated in stroke, Alzheimer's disease, and multiple sclerosis [7] and constitute potential treatment options for TBI due to their pleiotropicity [8]. In experimental TBI, simvastatin increases neurogenesis and suppresses apoptosis [9, 10], ameliorates secondary brain damage [11], and attenuates microglial and astroglial activation [12]. Both simvastatin and atorvastatin increase neurogenesis and inhibit neuronal death [13], and atorvastatin also reduces brain edema [14]. Lovastatin improves histological outcome and reduces inflammation [15]. Furthermore, simvastatin, lovastatin, and atorvastatin restore cognitive deficits caused by TBI [13, 16]. However, there is no systematic evidence available that statins improve cognition in humans with TBI. Moreover, as with all drugs, statins can exert undesirable effects. In 2012, the U.S. Food and Drug Administration issued a statement on cognitive impairment as a potential adverse effect of statins [17], with myopathy being the most well-characterized adverse sequelae [18]. Also, longitudinal studies (both randomized trials and observational studies) of the effects of statins on cognition in individuals without dementia have yielded negative results [19–21].
Although statins show promise for treating cognitive impairment caused by TBI, further clinical trials are needed. Furthermore, given the controversy regarding the effect of statins on cognition, a robust and systematic summary of existing data may assist in the design of clinical trials. Therefore, we investigated the efficacy of statins in treating cognitive deficits in experimental animal models of TBI and explored the impact of study design and quality on reported outcome.
2. Materials and Methods
2.1. Search Strategy and Study Selection
We searched four electronic databases (PubMed, Medline, Ovid, and ScienceDirect; February 28, 2014) for studies that examined pharmacological treatments for cognitive, behavioral, and motor problems in rodents after TBI. The key search terms (Table 1) were kept broad to capture all potentially relevant articles. Reference lists from the resulting research articles and reviews were used to identify further relevant publications.
Table 1.
Traumatic brain injury | Statins | |
---|---|---|
Traumatic brain injury | Statins | Compactin |
Traumatic brain injuries | Statin | Mevinolin |
TBI | Atorvastatin | Rosuvastatin |
Head injury | Dalvastatin | Simvastatin |
Head injuries | Fluvastatin | Pitavastatin |
Brain injury | Lovastatin | Pravastatin |
Brain injuries | Mevastatin | |
Injury brain | HMG-CoA reductase inhibitors | |
Injuries brain | Hydroxymethylglutaryl-CoA reductase inhibitors |
|
Head trauma | Hydroxymethylglutaryl-coenzyme A inhibitors |
|
Hydroxymethylglutaryl-CoA inhibitors |
To be included in this meta-analysis, a study had to meet several inclusion criteria (Table 2). Three investigators assessed titles and abstracts and obtained copies of articles that described controlled studies of statins in animal models of TBI to determine their eligibility for inclusion. Disagreements among investigators were resolved by consensus after discussion.
Table 2.
Inclusion criteria | Exclusion criteria |
---|---|
(1) Statins were administered. | (1) Statins were not administered. |
(2) Experimental TBI was induced in rodents. | (2) No control group was used. |
(3) Cognitive function was measured by the MWM. | (3) Nonimpact (e.g., cortical ablation) or penetrating (e.g., missile-induced) TBI was performed. |
(4) Male rodents (i.e., rats or mice) were used. | (4) Treatment group was administered another neuroprotective agent in addition to a statin. |
(5) Article was published in English or Chinese language. | (5) Other types of animals (e.g., sheep, cats, and dogs) were used. |
(6) A TBI treatment group was treated with a pharmacological agent, and a control group was administered a placebo after injury. | (6) Only biochemical or physiological outcomes of treatment efficacy were assessed. |
(7) Samples included female rodents. | |
(8) Duplicate publications. |
2.2. Data Extraction
Two investigators extracted information about the studies including animal species, sample size, type of TBI model, main experimental groups, substances used as experimental and control treatments, method/dose/timing of statin administration, type of anesthetic agent, and time of outcome assessment. Disagreements between investigators were resolved by consensus after discussion.
The Morris water maze (MWM) was used to assess cognition. When cognition was assessed at different times after TBI, only the last day was considered. Cumulative statin dose was taken into consideration when comparing neurobehavioral outcomes among studies.
In cases of missing data, we contacted the authors and requested the additional information. If data were expressed only graphically, numerical values were requested from the authors; if a response was not received, digital ruler software was used to estimate numerical values from the graphs. If required data were not presented or obtainable, the study was excluded from analysis.
2.3. Methodological Quality of Studies
The methodological quality of individual studies was assessed based on a checklist modified from the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) as previously described with minor modification [22, 23]. The checklist was comprised of 10 items: (1) peer reviewed publication; (2) presence of randomization of subjects into treatment groups; (3) assessment of dose-response relationship; (4) blinded assessment of behavioural outcome; (5) monitoring of physiological parameters such as body temperature; (6) calculation of necessary sample size to achieve sufficient power; (7) statement of compliance with animal welfare regulations; (8) avoidance of anaesthetic agents with marked intrinsic neuroprotective properties (e.g., ketamine); (9) statement of potential conflicts of interest; (10) use of a suitable animal model. One point was given for evidence of each quality criterion (Table 3).
Table 3.
Author | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | Quality score |
---|---|---|---|---|---|---|---|---|---|---|---|
Abrahamson et al., 2009 [24] | √ | √ | √ | √ | √ | 5 | |||||
Chauhan and Gatto, 2011 [16] | √ | √ | √ | 3 | |||||||
Indraswari et al., 2012 [25] | √ | √ | √ | √ | √ | √ | √ | √ | 8 | ||
Lu et al., 2004 [26] | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Lu et al., 2007 [13] | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Wang et al., 2012 [27] | √ | √ | √ | √ | √ | 5 | |||||
Wang et al., 2007 [28] | √ | √ | √ | √ | 4 | ||||||
Wu et al., 2008 [10] | √ | √ | √ | √ | √ | √ | √ | 7 | |||
Jin et al., 2013 [29] | √ | √ | √ | √ | 4 | ||||||
Liu, 2009 [30] | √ | √ | √ | √ | √ | 5 | |||||
Zhang et al., 2012 [31] | √ | √ | √ | √ | √ | 5 |
Note: (1) peer reviewed publication; (2) presence of randomization of subjects into treatment groups; (3) assessment of dose-response relationship; (4) blinded assessment of behavioural outcome; (5) monitoring of physiological parameters such as body temperature; (6) calculation of necessary sample size to achieve sufficient power; (7) statement of compliance with animal welfare regulations; (8) avoidance of anaesthetic agents with marked intrinsic neuroprotective properties (e.g., ketamine); (9) statement of potential conflict of interests; (10) use of a suitable animal model.
2.4. Statistical Analysis
In line with the Cochrane Handbook for Systematic Reviews of Interventions, the global estimated effect of statin treatment on cognitive outcome was determined by calculating standardized mean difference (SMD; equal to the difference in mean outcome between groups divided by the standard deviation of outcomes among participants, reported in units of standard deviation) and 95% confidence intervals (CI) using a random effects model to avoid heterogeneity [23]. SMD is used as a summary statistic in meta-analyses when studies assess the same outcome but measure the outcome in a variety of ways (e.g., multiple studies measuring depression but using different psychometric scales). Within- and between-study variation or heterogeneity was assessed using Cochran's Q-statistic [32, 33], with a significant Q-statistic (P < 0.10) indicating heterogeneity among studies. Heterogeneity was also assessed using the I 2 metric, with higher values denoting a greater degree of heterogeneity (0–40%: little heterogeneity; 30–60%: moderate heterogeneity; 50–90%: substantial heterogeneity; 75–100%: considerable heterogeneity). I 2 values ≤50% indicate acceptable heterogeneity among studies [34]. For studies comparing different doses and/or times of drug administration with a single control group, we compared control group data with pooled data from all experimental groups.
Stratified meta-analysis was used to explore the influence of the type of statin, dose, study quality, animal species, type of TBI model, anesthetic agent, and route of drug delivery on estimated effect size [35].
Differences in mean effect sizes were assessed partitioning heterogeneity using the χ 2 distribution with n − 1 degrees of freedom (df). Bonferroni correction was used to adjust significance levels for multiple comparisons (declared significance = 1− (1−denoted significance) ∧ (1/number of comparisons)), yielding critical P values of 0.0047 for acquisition memory and 0.0043 for retention memory [36, 37].
Metaregression analyses were conducted to reveal potential sources of heterogeneity, as described in a previous study [38]. Covariates included the type of statin, dose, quality of the study, animal species, type of TBI model, anesthetic agent, and route of drug delivery. Due to limited power of our metaregression analyses, we incorporated each covariate separately into the regression model.
The presence of small effect sizes was investigated using funnel plots and Egger's tests. For Egger's tests, a P value of <0.10 was considered to indicate the presence of small effect sizes [32].
All statistical analyses were performed using Review Manager (version 5.2) and Stata software (version 12.0).
3. Results
3.1. Study Inclusion
A total of 183 publications were identified, of which 11 met our inclusion criteria [10, 13, 16, 24–31]. Of these, two were excluded from analysis because they did not report sample size [24, 28]. Thus, our meta-analysis is based on nine publications, which include 11 comparisons of acquisition memory and 12 comparisons of retention memory (Figure 1).
3.2. Characteristics of Study
Of the 11 included studies (Table 4), three were published in Chinese academic journals [29–31]. Controlled cortical impact injury [10, 13, 16, 24–26] and fluid percussion injury [27, 29–31] were the most frequently used animal models of TBI. Seven studies used rats, three studies used nontransgenic mice, and one study [24] used transgenic mice. Atorvastatin, simvastatin, rosuvastatin, lovastatin, and pravastatin were administered as experimental treatments in doses of 1, 2, 3, or 20 mg/kg/day via oral gavage or subcutaneous injection. All studies used the MWM to assess cognitive function after TBI.
Table 4.
Study | Animal species | Injury model | Main experimental groups | Method/dose of statin administration |
Anesthetic agent | Time of statin administration | Time of outcome measurement | Quality score |
---|---|---|---|---|---|---|---|---|
Abrahamson et al., 2009 [24] | Male APPNLh/NLh mice |
CCI | (1) TBI + vehicle (n = 5-6) (2) TBI + simvastatin (n = 5-6) |
Orally, 3 mg/kg/d |
Isoflurane | 3 h after injury | 10–14 d after injury | 5 |
| ||||||||
Chauhan and Gatto, 2011 [16] | Male C57BL/6J mice | CCI | (1) TBI+ saline (n = 8) (2) TBI + pravastatin (n = 12) (3) TBI + lovastatin (n = 9) (4) TBI + simvastatin (n = 8) |
Orally, 2 mg/kg/d for 8 weeks |
Ketamine | immediately after injury | 7-8 weeks after injury | 3 |
| ||||||||
Indraswari et al., 2012 [25] | Male C57BL/6J mice | CCI | (1) TBI + saline (n = 12) (2) TBI + rosuvastatin (n = 12) |
Orally, 1 mg/kg/d for 5 d |
Isoflurane | within 1 h after injury | 31–34 d after injury | 8 |
| ||||||||
Lu et al., 2004 [26] | Male Wistar rats |
CCI | (1) TBI + saline (n = 4) (2) TBI + atorvastatin (n = 4) |
Orally, 1 mg/kg/d for 7 d |
Chloral hydrate | 1 d after injury | 1, 4, 8, and 15 d after injury | 7 |
| ||||||||
Lu et al., 2007 [13] | Male Wistar rats |
CCI | (1) TBI + saline (n = 10) (2) TBI + atorvastatin (n = 10) and (1) TBI + saline (n = 10) (2) TBI + atorvastatin (n = 10) (3) TBI + simvastatin (n = 10) |
orally 1 mg/kg/d for 14 d |
Chloral hydrate | 1 d after injury | 11–15 and 31–35 d after injury |
7 |
| ||||||||
Wang et al., 2012 [27] | Male Wistar rats |
FPI | (1) TBI + control (n = 10) (2) TBI + atorvastatin (n = 10) |
Orally, 1 mg/kg/d for 14 d |
Chloral hydrate | 1 h after injury | 21–25 d after injury | 5 |
| ||||||||
Wang et al., 2007 [28] | Male C57Bl/6J mice | CHI | (1) TBI + vehicle (n = ?) (2) TBI + simvastatin (n = ?) (3) TBI + atorvastatin (n = ?) |
Subcutaneous injection, 20 mg/kg/d for 17 d |
Isoflurane | Unclear | 21–25 d after injury | 4 |
| ||||||||
Wu et al., 2008 [10] | Male Wistar rats |
CCI | (1) TBI + saline (n = 8) (2) TBI + simvastatin (n = 8) |
Orally, 1 mg/kg/d for 14 d |
Chloral hydrate | 1 d after injury | 31–35 d after injury | 7 |
| ||||||||
Jin et al., 2013 [29] | Male Wistar rats |
FPI | (1) TBI + saline (n = 12) (2) TBI + atorvastatin (n = 12) |
Orally, 1 mg/kg/d for 14 d |
Chloral hydrate | Within 1 h after injury | 21–25 d after injury | 4 |
| ||||||||
Liu, 2009 [30] | Male Wistar rats |
FPI | (1) TBI + saline (n = 11) (2) TBI + simvastatin (n = 13) |
Orally, 20 mg/kg/d, unclear treatment duration |
Chloral hydrate | 1 d after injury | 21–25 d after injury | 5 |
| ||||||||
Zhang et al., 2012 [31] | Male Wistar rats |
FPI | (1) TBI + saline (n = 12) (2) TBI + atorvastatin (n = 12) (3) TBI + simvastatin (n = 12) (4) TBI + rosuvastatin (n = 12) |
Orally, atorvastatin/simvastatin: 2 mg/kg/d for 21 d, rosuvastatin: 1 mg/kg/d for 21 d |
Chloral hydrate | Within 1 d after injury | 22–28 d after injury | 5 |
Note: CCI: controlled cortical impact; FPI: fluid percussion injury; CHI: closed head injury.
3.3. Methodological Quality of Studies
Overall, the median quality score for the 11 included studies was poor (5; interquartile range: 4–7), with scores ranging from 3 to 8. No studies received a score of 0, and four studies [10, 13, 25, 26] received scores indicating high quality (7–10 points). One study [25] did not report randomization of animals into treatment groups. Six studies did not report monitoring of physiological parameters during surgical procedures (although the majority of remaining studies only monitored body or rectal temperature). Only one study [25] assessed dose-response relationships and contained a statement of potential conflict of interests. Four studies [39–42] failed to state that outcome measures were made by experimenters who were blind to animal treatment. Moreover, no study described calculation of necessary sample size.
3.4. Overall Efficacy
For acquisition memory, the global estimated effect of statins was −1.81 (95% CI: −2.54 to 1.07, P < 0.0001), with significant heterogeneity among studies (χ 2 = 49.81, df = 10, P < 0.0001, I 2 = 80%; Figure 2(a)). For retention memory, the global estimated effect of statins was 2.12 (95% CI: 1.33 to 2.9, P < 0.0001), with significant heterogeneity among studies (χ 2 = 55.33, df = 11, P < 0.0001, I 2 = 80%; Figure 2(b)).
3.5. Stratified Meta-Analysis
In a stratified analysis, trials are grouped according to a particular feature or characteristic and separate meta-analyses are conducted for the trials within each subgroup. The overall summaries of each subgroup can then be inspected for evidence of variation in the effects of the intervention, which would suggest that the stratifying characteristic is an important source of heterogeneity and may moderate treatment efficacy [43].
To compare the efficacy of different types of statins, we examined the protective effects of simvastatin, atorvastatin, and rosuvastatin administration on acquisition memory. We did not include pravastatin and lovastatin in this analysis because of limited data. For retention memory, the effects of simvastatin and atorvastatin administration were examined, and rosuvastatin, pravastatin, and lovastatin were excluded because of limited data. Atorvastatin treatment had a greater beneficial effect on acquisition memory (−4.55, 95% CI: −7.33 to −1.36) compared with simvastatin (−1.85, 95% CI: −2.38 to −1.31) or rosuvastatin (−1.28, 95% CI: −1.29 to −0.65) treatment. For retention memory, simvastatin administration (2.87, 95% CI: 1.46 to 4.28) had a greater beneficial effect than rosuvastatin administration, although simvastatin effects showed significant heterogeneity among studies (I 2 = 77%, P < 0.01). No significant differences among types of statins were observed (P = 0.08 for acquisition memory and P = 0.48 for retention memory, resp.).
Next, we sought to analyze the efficacy of different doses of statins on cognitive performance. For both acquisition and retention memory, significant beneficial effects were noted for all doses of statins, with a maximum effect at the lowest dose (−3.93, 95% CI: −6.74 to −1.12, Figure 3(b); 2.63, 95% CI: 1.75 to 3.52, Figure 4(b), resp.). However, no significant differences among doses were detected (χ 2 = 2.93, df = 1, and P = 0.09; χ 2 = 2.37, df = 1, and P = 0.12, resp.).
The effect sizes for acquisition and retention memory were also examined relative to study quality score. No significant differences in effect sizes were observed between lower-scored and higher-scored studies (χ 2 = 10.63, df = 4, and P = 0.03; χ 2 = 5.68, df = 2, and P = 0.06 for acquisition and retention memory, resp.). However, effect size for acquisition memory was maximum for studies with a quality score of 4 (−2.94, 95% CI: −4.04 to −1.85; Figure 3(c)), and effect size for retention memory was higher for studies with a quality score of 7 (2.84, 95% CI: 1.49 to 4.19; Figure 4(c)) than those with scores of 3 or 5.
For acquisition memory, effect size was similar for experiments using male Wistar rats and those using male C57BL/6J mice (χ 2 = 1.36, df = 1, and P = 0.24; Figure 3(d)). However, for retention memory, effect size was higher for studies using male Wistar rats (2.58, 95% CI: 1.90 to 3.52; χ 2 = 5.6, df = 1, and P = 0.02; Figure 4(d)).
Concerning anesthetic agents and types of TBI models, for acquisition memory, effect size was significantly higher in studies using closed head injury models (−3.57, 95% CI: −5.01 to −2.14; χ 2 = 12.09, df = 2, and P = 0.002; Figure 5(a)) and those using isoflurane anaesthesia (−2.27, 95% CI: −4.68 to −0.15; χ 2 = 3.93, df = 2, and P = 0.14; Figure 5(b)). For retention memory, effect size was significantly higher in studies using fluid percussion injury models (2.39, 95% CI: 1.82 to 2.90; χ 2 = 0.42, df = 1, and P = 0.52; Figure 6(a)) and those using chloral hydrate anaesthesia (2.58, 95% CI: 1.90 to 3.25; χ 2 = 5.60, df = 1, and P = 0.02; Figure 6(b)).
For acquisition memory, intraperitoneal administration (−3.57, 95% CI: −5.01 to −2.14; Figure 5(c)) was associated with a greater beneficial outcome than oral administration, but there were no significant differences between routes of administration (χ 2 = 5.69, df = 1, and P = 0.02).
3.6. Metaregression Analyses
Metaregression is an extension of subgroup analysis that allows investigation of the effect of continuous as well as categorical characteristics. In principle, metaregression also allows investigation of the effects of multiple factors simultaneously. The outcome variable is the effect estimate, and the explanatory variables are characteristics of studies that might influence effect size, which are often called “potential effect modifiers” or covariates.
To further explore heterogeneity among studies, metaregression was conducted for acquisition and retention memory. For retention memory, animal species, quality score, and type of anesthetic agent were significant sources of heterogeneity (P < 0.05). However, for acquisition memory, heterogeneity was independent of these factors (Table 5).
Table 5.
Covariates | Coef. | Std. err. | t | P > |t| | [95% conf. interval] | |
---|---|---|---|---|---|---|
Species | −1.218926 | 1.425615 | −0.86 | 0.415 | −4.443892 | 2.00604 |
Quality | −.1059611 | .5134567 | −0.21 | 0.841 | −1.267481 | 1.055559 |
Route | 1.794537 | 2.46653 | 0.73 | 0.485 | −3.785142 | 7.374215 |
Statins | ||||||
Atorva | −4.098033 | 2.606752 | −1.57 | 0.167 | −10.47653 | 2.28046 |
Lova | .1509175 | 3.110633 | 0.05 | 0.963 | −7.460527 | 7.762362 |
Prava | −1.058402 | 2.688579 | −0.39 | 0.707 | −7.637118 | 5.520313 |
Simva | −1.752053 | 2.462111 | −0.71 | 0.503 | −7.776621 | 4.272516 |
Dose | ||||||
1 mg | −2.813334 | 2.734279 | −1.03 | 0.338 | −9.278877 | 3.652209 |
2 mg | −.0024291 | 2.536972 | −0.00 | 0.999 | −6.001415 | 5.996557 |
20 mg | −1.646112 | 2.854527 | −0.58 | 0.582 | −8.395994 | 5.103771 |
Anaesthetic used | ||||||
Chloral hydrate | −.3426693 | 2.006333 | −0.17 | 0.869 | −4.969281 | 4.283942 |
Ketamine | 1.502998 | 2.222102 | 0.68 | 0.518 | −3.621178 | 6.627174 |
Injury model | ||||||
CCI | 2.776583 | 2.521451 | 1.10 | 0.303 | −3.037893 | 8.591059 |
FPI | 1.121622 | 2.456371 | 0.46 | 0.660 | −4.54278 | 6.786024 |
Covariates | Coef. | Std. err. | t | P > |t| | [95% conf. interval] | |
---|---|---|---|---|---|---|
Species | −2.045101 | .7652448 | −2.67 | 0.023 | −3.750172 | −.3400288 |
Dose | −1.358647 | .8065987 | −1.68 | 0.123 | −3.155861 | .4385665 |
Quality | .5416233 | .2248974 | 2.41 | 0.037 | .0405206 | 1.042726 |
Anaesthetic used | 2.045101 | .7652448 | 2.67 | 0.023 | .3400288 | 3.750172 |
Injury model | −.5074523 | .9452993 | −0.54 | 0.603 | −2.61371 | 1.598806 |
Statins | ||||||
Atorva | .4747928 | 1.355065 | 0.35 | 0.736 | −2.729427 | 3.679012 |
Lova | −.4478023 | 1.743837 | −0.26 | 0.805 | −4.571322 | 3.675718 |
Prava | −2.709569 | 1.71473 | −1.58 | 0.158 | −6.764262 | 1.345123 |
Simva | .9555847 | 1.387517 | 0.69 | 0.513 | −2.325371 | 4.23654 |
3.7. Publication Bias
Finally, we sought to identify the presence of small study effects, which may contribute to publication bias. Funnel plots show asymmetry for both acquisition and retention memory data, indicating evidence of small study effects (Figures 7(a) and 7(b); Egger regression, P < 0.0001 and P = 0.007, resp.).
3.8. Possible Drug Protection Mechanism Analysis
All studies selected during initial screening assessed the biological mechanisms of statin activity. Across studies, the neuroprotective effect of statins was attributed primarily to regulation of circulating endothelial progenitor cells and angiogenesis, increased neurogenesis and reduced neuronal degeneration, intravascular thrombosis and inflammation, and reduced microglial activation (Table 6).
Table 6.
Possible protective mechanisms of statins | Studies |
---|---|
Blunted TBI-induced increases in amyloid beta protein, reduced hippocampal tissue damage, and microglial activation | [24] |
Restored axonal integrity | [16] |
Downregulation of inflammatory gene expression, reduced neuronal degeneration, preserved neuronal density, and reduced microgliosis | [25] |
Reduction of intravascular thrombosis, increased cerebral microvascular patency and integrity | [26] |
Increased neurogenesis in the dentate gyrus, reduced delayed neuronal death in the hippocampal CA3 region | [10, 13] |
Reduced hippocampal degeneration, improved cerebral blood flow | [28] |
Regulation of circulating endothelial progenitor cells and angiogenesis | [27, 29–31] |
4. Discussions
The results of animal experiments are used to inform decisions regarding the design and conduct of subsequent clinical trials. Systematic reviews of animal studies can allow such decisions to be based on the entirety of existing evidence that is synthesized in an unbiased manner. We therefore systematically reviewed and collated experimental evidence of the effect of statin administration before or after TBI in animal models, determined the efficacy of statin treatment in TBI, and explored the impact of study characteristics on statin efficacy.
Although there are some systematic reviews of pharmacological treatments (i.e., beta-2 receptor antagonists, progesterone) for TBI in animal models [44, 45], to our knowledge, this investigation is the first systematic review and meta-analysis of the efficacy of statins on cognitive deficits in animal models of TBI. Despite the presence of small effects and statistical heterogeneity among studies, our investigation shows that statins potentially exert neuroprotective effects in terms of improving cognitive outcome after TBI, with atorvastatin exerting the most protective effect on acquisition memory and simvastatin exerting the most protective effect on retention memory. Moreover, statin treatment provides better neuroprotection of acquisition memory for closed head injury. However, stratified analysis detected no significant influence of study quality, statin dose, animal species, drug delivery route, or anesthetic agent. Similar works [23, 46] have been performed in the context of experimental stroke, which demonstrate the neuroprotective effects of statins on animal stroke models in terms of reduced infarct volume and improved neurological severity score. Although stroke and TBI are different conditions, many aspects of their pathologies are similar, and these investigations provide further evidence of the neuroprotective effects of statins, thereby supporting their potential use for human TBI therapy.
We assessed the methodological quality of studies in accordance with previously described standards for preclinical development of neuroprotective drugs with minor modifications [22]. Overall, we found that the quality of the included studies was poor, as many failed to report blinded assessment of outcome or to determine a dose-response relationship, which are important issues that are generally required in clinical studies [47]. Moreover, lower quality studies showed a trend toward better acquisition memory outcomes. Therefore, the global estimated effect of statins on cognition may be overstated in low quality studies.
Furthermore, we found significant heterogeneity among study results. The main reasons for heterogeneity were the limited number of studies and the small sample sizes within those studies. Another important contribution to this heterogeneity may be the low quality of studies and potential bias of the studies selected for analysis [48]. To examine potential sources of heterogeneity, we performed metaregression analysis. Unfortunately, for retention memory, the adjusted R 2 was negative (data not shown) because the number of studies was small and the covariates explained less heterogeneity than would be expected by chance [49]. Therefore, it was not possible to accurately judge whether the heterogeneity we observed was independent of these factors, which made the analysis less reliable.
Our study has several limitations, which are also observed in previous systematic reviews of animal studies [44, 50, 51]. First, our analysis is only based on published data and did not take unpublished data into account; therefore publication bias should be considered. Second, we focused only on the effect of statins on cognitive deficits following TBI, largely due to insufficient data regarding histopathology such as lesion volume. Functional outcome, in combination with effects on histopathology, may be as important in terms of assessing benefit of potential neuroprotective drugs [52]. Third, the current findings may be influenced by the selective inclusion of studies that examined only male rodents. Although intact male and female animals should be examined prior to clinical investigation, the small number of studies that examined intact females, combined with potential sex differences in outcome [53], meant that their inclusion could have muddied the results [51]. Fourth, a variety of different metrics were used (e.g., pressure, weight, and velocity) to evaluate TBI severity, and no studies specified the degree of severity (e.g., mild, moderate, or severe). Thus, the results of different studies could be more accurately compared if injury severity is reported in a consistent manner. Fifth, although we found that statin treatment can have beneficial effects in animal models of TBI, the majority of studies used only controlled cortical impact or fluid percussion injury models. However, any one animal model may not fully recapitulate all the aspects of secondary injury development observed in humans with TBI [54], thereby limiting the extent to which this experimental research translates to a clinical population. Finally, there were large numbers of studies that failed to report, or provide upon written request, the necessary data, which therefore had to be derived from graphs. Although we enlarged the graphs, and data were independently extracted by two investigators, this technique can be imprecise. Moreover, extracting multiple pieces of information from a single publication has the potential to introduce bias into systematic reviews because the results are generated by the same investigators.
To improve the transition from animal experiments to human clinical trials, future animal studies of statins or other drugs should improve their methodological reporting and quality control as follows: (1) additional appropriate and standardized TBI models are needed to evaluate the impact of promising pharmacological interventions; (2) treatment efficacy should be tested in both sexes and different species (i.e., rabbits, cats, or gyrencephalic primates); (3) researchers should consult and follow the ARRIVE guidelines [55, 56] when designing studies and report full methodological details to allow others to reproduce and validate their results and to enable more accurate reviews and meta-analyses; (4) other short- and long-term outcomes such as lesion volume, brain edema, blood-brain barrier permeability, and depression-like behavior should also be examined.
5. Conclusions
Despite its limitations, this systematic review and meta-analysis demonstrates that statins could reduce cognitive deficits in animal models of TBI. A fundamental assumption is that the results of animal studies, if performed well enough, will predict effects in humans. However, promising neuroprotective drugs previously identified as effective in animal TBI models have failed in Phase II or III clinical trials [54]. Therefore, without rigorous, robust, and detailed preclinical evaluation, it is unlikely that novel neuroprotective drugs will prove effective when tested in large, time-consuming, and expensive human clinical trials, thereby warranting further well-designed and well-reported experimental animal studies.
Acknowledgments
This work was financially supported by the key-discipline construct programs of Hunan province and SATCM. The authors are grateful to Simiao Wu and Ruili Wei for their kind help.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
References
- 1.Feigin VL, Theadom A, Barker-Collo S, et al. Incidence of traumatic brain injury in New Zealand: a population-based study. The Lancet Neurology. 2013;12(1):53–64. doi: 10.1016/S1474-4422(12)70262-4. [DOI] [PubMed] [Google Scholar]
- 2.Walker KR, Tesco G. Molecular mechanisms of cognitive dysfunction following traumatic brain injury. Frontiers in Aging Neuroscience. 2013;5, article 29 doi: 10.3389/fnagi.2013.00029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Dikmen SS, Corrigan JD, Levin HS, MacHamer J, Stiers W, Weisskopf MG. Cognitive outcome following traumatic brain injury. Journal of Head Trauma Rehabilitation. 2009;24(6):430–438. doi: 10.1097/HTR.0b013e3181c133e9. [DOI] [PubMed] [Google Scholar]
- 4.Rabinowitz AR, Levin HS. Cognitive sequelae of traumatic brain injury. Psychiatric Clinics of North America. 2014;37(1):1–11. doi: 10.1016/j.psc.2013.11.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Menon DK. Exploring new routes for neuroprotective drug development in traumatic brain injury. Science Translational Medicine. 2010;2(27):p. 27rv21. doi: 10.1126/scitranslmed.3000330. [DOI] [PubMed] [Google Scholar]
- 6.Lu J, Frerich JM, Turtzo LC, et al. Histone deacetylase inhibitors are neuroprotective and preserve NGF-mediated cell survival following traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(26):10747–10752. doi: 10.1073/pnas.1308950110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Stepień K, Tomaszewski M, Czuczwar SJ. Neuroprotective properties of statins. Pharmacological Reports. 2005;57(5):561–569. [PubMed] [Google Scholar]
- 8.Liao JK, Laufs U. Pleiotropic effects of statins. Annual Review of Pharmacology and Toxicology. 2005;45:89–118. doi: 10.1146/annurev.pharmtox.45.120403.095748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Wu H, Lu D, Jiang H, et al. Increase in phosphorylation of Akt and its downstream signaling targets and suppression of apoptosis by simvastatin after traumatic brain injury: laboratory investigation. Journal of Neurosurgery. 2008;109(4):691–698. doi: 10.3171/JNS/2008/109/10/0691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Wu H, Lu D, Jiang H, et al. Simvastatin-mediated upregulation of VEGF and BDNF, activation of the PI3K/Akt pathway, and increase of neurogenesis are associated with therapeutic improvement after traumatic brain injury. Journal of Neurotrauma. 2008;25(2):130–139. doi: 10.1089/neu.2007.0369. [DOI] [PubMed] [Google Scholar]
- 11.Chen G, Zhang S, Shi J, Ai J, Qi M, Hang C. Simvastatin reduces secondary brain injury caused by cortical contusion in rats: possible involvement of TLR4/NF-κB pathway. Experimental Neurology. 2009;216(2):398–406. doi: 10.1016/j.expneurol.2008.12.019. [DOI] [PubMed] [Google Scholar]
- 12.Li B, Mahmood A, Lu D, et al. Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1β level after traumatic brain injury. Neurosurgery. 2009;65(1):179–185. doi: 10.1227/01.NEU.0000346272.76537.DC. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Lu D, Qu C, Goussev A, et al. Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. Journal of Neurotrauma. 2007;24(7):1132–1146. doi: 10.1089/neu.2007.0288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Turkoglu OF, Eroglu H, Okutan O, et al. Atorvastatin efficiency after traumatic brain injury in rats. Surgical Neurology. 2009;72(2):146–152. doi: 10.1016/j.surneu.2008.07.004. [DOI] [PubMed] [Google Scholar]
- 15.Chen S, Hung T, Chen C, et al. Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sciences. 2007;81(4):288–298. doi: 10.1016/j.lfs.2007.05.023. [DOI] [PubMed] [Google Scholar]
- 16.Chauhan NB, Gatto R. Restoration of cognitive deficits after statin feeding in TBI. Restorative Neurology and Neuroscience. 2011;29(1):23–34. doi: 10.3233/RNN-2011-0573. [DOI] [PubMed] [Google Scholar]
- 17.Richardson K, Schoen M, French B, et al. Statins and cognitive function: a systematic review. Annals of Internal Medicine. 2013;159(10):688–697. doi: 10.7326/0003-4819-159-10-201311190-00007. [DOI] [PubMed] [Google Scholar]
- 18.Bruckert E, Hayem G, Dejager S, Yau C, Bégaud B. Mild to moderate muscular symptoms with high-dosage statin therapy in hyperlipidemic patients—the PRIMO study. Cardiovascular Drugs and Therapy. 2005;19(6):403–414. doi: 10.1007/s10557-005-5686-z. [DOI] [PubMed] [Google Scholar]
- 19.Ancelin ML, Carrìere I, Barberger-Gateau P, et al. Lipid lowering agents, cognitive decline, and dementia: the three-city study. Journal of Alzheimer's Disease. 2012;30(3):629–637. doi: 10.3233/JAD-2012-120064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Benito-León J, Louis ED, Vega S, Bermejo-Pareja F. Statins and cognitive functioning in the elderly: a population-based study. Journal of Alzheimer's Disease. 2010;21(1):95–102. doi: 10.3233/JAD-2010-100180. [DOI] [PubMed] [Google Scholar]
- 21.Trompet S, Van Vliet P, De Craen AJM, et al. Pravastatin and cognitive function in the elderly. Results of the PROSPER study. Journal of Neurology. 2010;257(1):85–90. doi: 10.1007/s00415-009-5271-7. [DOI] [PubMed] [Google Scholar]
- 22.Macleod MR, O'Collins T, Howells DW, Donnan GA. Pooling of animal experimental data reveals influence of study design and publication bias. Stroke. 2004;35(5):1203–1208. doi: 10.1161/01.STR.0000125719.25853.20. [DOI] [PubMed] [Google Scholar]
- 23.García-Bonilla L, Campos M, Giralt D, et al. Evidence for the efficacy of statins in animal stroke models: a meta-analysis. Journal of Neurochemistry. 2012;122(2):233–243. doi: 10.1111/j.1471-4159.2012.07773.x. [DOI] [PubMed] [Google Scholar]
- 24.Abrahamson EE, Ikonomovic MD, Edward Dixon C, DeKosky ST. Simvastatin therapy prevents brain trauma-induced increases in β-amyloid peptide levels. Annals of Neurology. 2009;66(3):407–414. doi: 10.1002/ana.21731. [DOI] [PubMed] [Google Scholar]
- 25.Indraswari F, Wang H, Lei B, et al. Statins improve outcome in murine models of intracranial hemorrhage and traumatic brain injury: a translational approach. Journal of Neurotrauma. 2012;29(7):1388–1400. doi: 10.1089/neu.2011.2117. [DOI] [PubMed] [Google Scholar]
- 26.Lu D, Mahmood A, Goussev A, et al. Atorvastatin reduction of intravascular thrombosis, increase in cerebral microvascular patency and integrity, and enhancement of spatial learning in rats subjected to traumatic brain injury. Journal of Neurosurgery. 2004;101(5):813–821. doi: 10.3171/jns.2004.101.5.0813. [DOI] [PubMed] [Google Scholar]
- 27.Wang B, Sun L, Tian Y, et al. Effects of atorvastatin in the regulation of circulating EPCs and angiogenesis in traumatic brain injury in rats. Journal of the Neurological Sciences. 2012;319(1-2):117–123. doi: 10.1016/j.jns.2012.04.015. [DOI] [PubMed] [Google Scholar]
- 28.Wang H, Lynch JR, Song P, et al. Simvastatin and atorvastatin improve behavioral outcome, reduce hippocampal degeneration, and improve cerebral blood flow after experimental traumatic brain injury. Experimental Neurology. 2007;206(1):59–69. doi: 10.1016/j.expneurol.2007.03.031. [DOI] [PubMed] [Google Scholar]
- 29.Jin W, Wang B, Zhao Z, et al. Atorvastatin regulates endothelial progenitor cells and improves spatial cognition and memory function in rats with traumatic brain injury. Guangdong Medical Journal. 2013;34(6):835–837. [Google Scholar]
- 30.Liu Q. The Effects of Simvastatin on the Mobilization of Endothelial Progenitor Cells and Angiogenesis of Brain Tissue of Rats after Traumatic Brain Injury: An Experimental Study. Tianjin Medical University; 2009. [Google Scholar]
- 31.Zhang Y, Liu L, Zhao Z, Zhang J. Effects of statins in the regulation of circulating EPCs and cognition and memory function in rats with traumatic brain injury. Shandong Medical Journal. 2012;52(36):51–54, 105. [Google Scholar]
- 32.Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. The British Medical Journal. 1997;315(7109):629–634. doi: 10.1136/bmj.315.7109.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Sacks HS, Berrier J, Reitman D, Ancona-Berk VA, Chalmers TC. Meta-analyses of randomized controlled trials. The New England Journal of Medicine. 1987;316(8):450–455. doi: 10.1056/NEJM198702193160806. [DOI] [PubMed] [Google Scholar]
- 34.Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration; 2011. (Version 5.1.0). [Google Scholar]
- 35.Vesterinen HM, Sena ES, Egan KJ, et al. Meta-analysis of data from animal studies: a practical guide. Journal of Neuroscience Method. 2014;221:92–102. doi: 10.1016/j.jneumeth.2013.09.010. [DOI] [PubMed] [Google Scholar]
- 36.Vesterinen HM, Currie GL, Carter S, et al. Systematic review and stratified meta-analysis of the efficacy of RhoA and Rho kinase inhibitors in animal models of ischaemic stroke. Systematic Reviews. 2013;2:p. 33. doi: 10.1186/2046-4053-2-33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Borenstein M. Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons; 2009. [Google Scholar]
- 38.Liu JB, Li M, Chen H, et al. Association of vitiligo with HLA-A2: a meta-analysis. Journal of the European Academy of Dermatology and Venereology. 2007;21(2):205–213. doi: 10.1111/j.1468-3083.2006.01899.x. [DOI] [PubMed] [Google Scholar]
- 39.Grasso G, Sfacteria A, Meli F, Fodale V, Buemi M, Iacopino DG. Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Research. 2007;1182(1):99–105. doi: 10.1016/j.brainres.2007.08.078. [DOI] [PubMed] [Google Scholar]
- 40.Xiong Y, Mahmood A, Lu D, et al. Role of gender in outcome after traumatic brain injury and therapeutic effect of erythropoietin in mice. Brain Research. 2007;1185(1):301–312. doi: 10.1016/j.brainres.2007.09.052. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Xiong Y, Dunyue L, Changsheng Q, et al. Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice: Laboratory investigation. Journal of Neurosurgery. 2008;109(3):510–521. doi: 10.3171/JNS/2008/109/9/0510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Zhang Y, Chopp M, Mahmood A, Meng Y, Qu C, Xiong Y. Impact of inhibition of erythropoietin treatment-mediated neurogenesis in the dentate gyrus of the hippocampus on restoration of spatial learning after traumatic brain injury. Experimental Neurology. 2012;235(1):336–344. doi: 10.1016/j.expneurol.2012.02.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Deeks JJ, Altman DG, Bradburn MJ. Systematic Reviews in Health Care: Meta-Analysis in Context. BMJ; 2001. Statistical methods for examining heterogeneity and combining results from several studies in meta-analysis; pp. 285–312. [Google Scholar]
- 44.Ker K, Perel P, Blackhall K. Beta-2 receptor antagonists for traumatic brain injury: A systematic review of controlled trials in animal models. CNS Neuroscience and Therapeutics. 2009;15(1):52–64. doi: 10.1111/j.1755-5949.2008.00069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Gibson CL, Gray LJ, Bath PMW, Murphy SP. Progesterone for the treatment of experimental brain injury; a systematic review. Brain. 2008;131(2):318–328. doi: 10.1093/brain/awm183. [DOI] [PubMed] [Google Scholar]
- 46.Baryan HK, Allan SM, Vail A, Smith CJ. Systematic review and meta-analysis of the efficacy of statins in experimental stroke. International Journal of Stroke. 2012;7(2):150–156. doi: 10.1111/j.1747-4949.2011.00740.x. [DOI] [PubMed] [Google Scholar]
- 47.Wardlaw JM, Warlow CP, Sandercock PA, Dennis MS, Lindley RI. Neuroprotection disappointment yet aGAIN. The Lancet. 2000;356(9229, article 597) doi: 10.1016/s0140-6736(05)73980-5. [DOI] [PubMed] [Google Scholar]
- 48.Peng W, Yang J, Wang Y, et al. Systematic review and meta-analysis of randomized controlled trials of Xingnaojing treatment for stroke. 2014;2014:9 pages. doi: 10.1155/2014/210851.210851 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Sterne JAC, Newton HJ, Cox NJ. Meta-Analysis in Stata: An Updated Collection from the Stata Journal. StataCorp LP; 2009. [Google Scholar]
- 50.Perel P, Roberts I, Sena E, et al. Comparison of treatment effects between animal experiments and clinical trials: systematic review. British Medical Journal. 2007;334(7586):197–200. doi: 10.1136/bmj.39048.407928.BE. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Wheaton P, Mathias JL, Vink R. Impact of pharmacological treatments on outcome in adult rodents after traumatic brain injury: a meta-analysis. Journal of Psychopharmacology. 2011;25(12):1581–1599. doi: 10.1177/0269881110388331. [DOI] [PubMed] [Google Scholar]
- 52.STAIR. Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30(12):2752–2758. doi: 10.1161/01.str.30.12.2752. [DOI] [PubMed] [Google Scholar]
- 53.O'Connor CA, Cernak I, Vink R. Interaction between anesthesia, gender, and functional outcome task following diffuse traumatic brain injury in rats. Journal of Neurotrauma. 2003;20(6):533–541. doi: 10.1089/089771503767168465. [DOI] [PubMed] [Google Scholar]
- 54.Xiong Y, Mahmood A, Chopp M. Animal models of traumatic brain injury. Nature Reviews Neuroscience. 2013;14(2):128–142. doi: 10.1038/nrn3407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Danos O, Davies K, Lehn P, Mulligan R. The ARRIVE guidelines, a welcome improvement to standards for reporting animal research. Journal of Gene Medicine. 2010;12(7):559–560. doi: 10.1002/jgm.1472. [DOI] [PubMed] [Google Scholar]
- 56.Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biology. 2010;8(6) doi: 10.1371/journal.pbio.1000412.e1000412 [DOI] [PMC free article] [PubMed] [Google Scholar]