Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1993 Aug;12(8):3305–3314. doi: 10.1002/j.1460-2075.1993.tb06000.x

Molecular dissection of the cauliflower mosaic virus translation transactivator.

M De Tapia 1, A Himmelbach 1, T Hohn 1
PMCID: PMC413598  PMID: 8344266

Abstract

The cauliflower mosaic virus (CaMV) transactivator (TAV) is a complex protein that appears to be involved in many aspects of the virus life cycle. One of its roles is to control translation from the polycistronic CaMV 35S RNA. Here we report a molecular dissection of TAV in relation to its ability to enhance dicistronic translation in transient expression experiments. We have identified a protein domain that is responsible and sufficient for that activity. This 'MiniTAV domain' consists of only 140 of the 520 amino acids in the full-length sequence. A further domain located outside the MiniTAV, and therefore dispensable for transactivation, is probably involved in interactions with other molecules. This was identified by its ability to compete with wild-type TAV and some of its deletion mutants. We found, furthermore, that the TAV protein binds RNA. Two regions needed for RNA-binding properties were defined outside the MiniTAV domain and RNA binding seems not to be directly involved in the transactivation mechanism.

Full text

PDF
3305

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abastado J. P., Miller P. F., Hinnebusch A. G. A quantitative model for translational control of the GCN4 gene of Saccharomyces cerevisiae. New Biol. 1991 May;3(5):511–524. [PubMed] [Google Scholar]
  2. Balázs E. Disease symptoms in transgenic tobacco induced by integrated gene VI of cauliflower mosaic virus. Virus Genes. 1990 Feb;3(3):205–211. doi: 10.1007/BF00393180. [DOI] [PubMed] [Google Scholar]
  3. Baughman G. A., Jacobs J. D., Howell S. H. Cauliflower mosaic virus gene VI produces a symptomatic phenotype in transgenic tobacco plants. Proc Natl Acad Sci U S A. 1988 Feb;85(3):733–737. doi: 10.1073/pnas.85.3.733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bonneville J. M., Sanfaçon H., Fütterer J., Hohn T. Posttranscriptional trans-activation in cauliflower mosaic virus. Cell. 1989 Dec 22;59(6):1135–1143. doi: 10.1016/0092-8674(89)90769-1. [DOI] [PubMed] [Google Scholar]
  6. Bonneville J. M., Volovitch M., Modjtahedi N., Demery D., Yot P. In vitro synthesis of cauliflower mosaic virus DNA in viroplasms. Adv Exp Med Biol. 1984;179:113–119. doi: 10.1007/978-1-4684-8730-5_11. [DOI] [PubMed] [Google Scholar]
  7. Bujard H., Gentz R., Lanzer M., Stueber D., Mueller M., Ibrahimi I., Haeuptle M. T., Dobberstein B. A T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo. Methods Enzymol. 1987;155:416–433. doi: 10.1016/0076-6879(87)55028-5. [DOI] [PubMed] [Google Scholar]
  8. Certa U., Bannwarth W., Stüber D., Gentz R., Lanzer M., Le Grice S., Guillot F., Wendler I., Hunsmann G., Bujard H. Subregions of a conserved part of the HIV gp41 transmembrane protein are differentially recognized by antibodies of infected individuals. EMBO J. 1986 Nov;5(11):3051–3056. doi: 10.1002/j.1460-2075.1986.tb04605.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Citovsky V., Knorr D., Schuster G., Zambryski P. The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell. 1990 Feb 23;60(4):637–647. doi: 10.1016/0092-8674(90)90667-4. [DOI] [PubMed] [Google Scholar]
  10. Daubert S. D., Schoelz J., Debao L., Shepherd R. J. Expression of disease symptoms in cauliflower mosaic virus genomic hybrids. J Mol Appl Genet. 1984;2(6):537–547. [PubMed] [Google Scholar]
  11. Daubert S., Routh G. Point mutations in cauliflower mosaic virus gene VI confer host-specific symptom changes. Mol Plant Microbe Interact. 1990 Sep-Oct;3(5):341–345. doi: 10.1094/mpmi-3-341. [DOI] [PubMed] [Google Scholar]
  12. De Zoeten G. A., Penswick J. R., Horisberger M. A., Ahl P., Schultze M., Hohn T. The expression, localization, and effect of a human interferon in plants. Virology. 1989 Sep;172(1):213–222. doi: 10.1016/0042-6822(89)90123-2. [DOI] [PubMed] [Google Scholar]
  13. Evans R. M., Hollenberg S. M. Zinc fingers: gilt by association. Cell. 1988 Jan 15;52(1):1–3. doi: 10.1016/0092-8674(88)90522-3. [DOI] [PubMed] [Google Scholar]
  14. Fromm M. E., Taylor L. P., Walbot V. Stable transformation of maize after gene transfer by electroporation. 1986 Feb 27-Mar 5Nature. 319(6056):791–793. doi: 10.1038/319791a0. [DOI] [PubMed] [Google Scholar]
  15. Fütterer J., Gordon K., Pfeiffer P., Sanfaçon H., Pisan B., Bonneville J. M., Hohn T. Differential inhibition of downstream gene expression by the cauliflower mosaic virus 35S RNA leader. Virus Genes. 1989 Sep;3(1):45–55. doi: 10.1007/BF00301986. [DOI] [PubMed] [Google Scholar]
  16. Fütterer J., Gordon K., Sanfaçon H., Bonneville J. M., Hohn T. Positive and negative control of translation by the leader sequence of cauliflower mosaic virus pregenomic 35S RNA. EMBO J. 1990 Jun;9(6):1697–1707. doi: 10.1002/j.1460-2075.1990.tb08293.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fütterer J., Hohn T. Role of an upstream open reading frame in the translation of polycistronic mRNAs in plant cells. Nucleic Acids Res. 1992 Aug 11;20(15):3851–3857. doi: 10.1093/nar/20.15.3851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fütterer J., Hohn T. Translation of a polycistronic mRNA in the presence of the cauliflower mosaic virus transactivator protein. EMBO J. 1991 Dec;10(12):3887–3896. doi: 10.1002/j.1460-2075.1991.tb04958.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Fütterer J., Kiss-László Z., Hohn T. Nonlinear ribosome migration on cauliflower mosaic virus 35S RNA. Cell. 1993 May 21;73(4):789–802. doi: 10.1016/0092-8674(93)90257-q. [DOI] [PubMed] [Google Scholar]
  20. Georgopoulos C., Ang D. The Escherichia coli groE chaperonins. Semin Cell Biol. 1990 Feb;1(1):19–25. [PubMed] [Google Scholar]
  21. Gordon K., Fütterer J., Hohn T. Efficient initiation of translation at non-AUG triplets in plant cells. Plant J. 1992 Sep;2(5):809–813. [PubMed] [Google Scholar]
  22. Gordon K., Pfeiffer P., Fütterer J., Hohn T. In vitro expression of cauliflower mosaic virus genes. EMBO J. 1988 Feb;7(2):309–317. doi: 10.1002/j.1460-2075.1988.tb02814.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gorman C. M., Moffat L. F., Howard B. H. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol. 1982 Sep;2(9):1044–1051. doi: 10.1128/mcb.2.9.1044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gowda S., Wu F. C., Scholthof H. B., Shepherd R. J. Gene VI of figwort mosaic virus (caulimovirus group) functions in posttranscriptional expression of genes on the full-length RNA transcript. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9203–9207. doi: 10.1073/pnas.86.23.9203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Guilley H., Dudley R. K., Jonard G., Balàzs E., Richards K. E. Transcription of Cauliflower mosaic virus DNA: detection of promoter sequences, and characterization of transcripts. Cell. 1982 Oct;30(3):763–773. doi: 10.1016/0092-8674(82)90281-1. [DOI] [PubMed] [Google Scholar]
  26. Hasegawa A., Verver J., Shimada A., Saito M., Goldbach R., Van Kammen A., Miki K., Kameya-Iwaki M., Hibi T. The complete sequence of soybean chlorotic mottle virus DNA and the identification of a novel promoter. Nucleic Acids Res. 1989 Dec 11;17(23):9993–10013. doi: 10.1093/nar/17.23.9993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Hohn T., Katsura I. Structure and assembly of bacteriophage lambda. Curr Top Microbiol Immunol. 1977;78:69–110. doi: 10.1007/978-3-642-66800-5_3. [DOI] [PubMed] [Google Scholar]
  28. Hull R., Sadler J., Longstaff M. The sequence of carnation etched ring virus DNA: comparison with cauliflower mosaic virus and retroviruses. EMBO J. 1986 Dec 1;5(12):3083–3090. doi: 10.1002/j.1460-2075.1986.tb04614.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Jefferson R. A., Kavanagh T. A., Bevan M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987 Dec 20;6(13):3901–3907. doi: 10.1002/j.1460-2075.1987.tb02730.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lütcke H. A., Chow K. C., Mickel F. S., Moss K. A., Kern H. F., Scheele G. A. Selection of AUG initiation codons differs in plants and animals. EMBO J. 1987 Jan;6(1):43–48. doi: 10.1002/j.1460-2075.1987.tb04716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Mason W. S., Taylor J. M., Hull R. Retroid virus genome replication. Adv Virus Res. 1987;32:35–96. doi: 10.1016/s0065-3527(08)60474-1. [DOI] [PubMed] [Google Scholar]
  33. Mead D. A., Szczesna-Skorupa E., Kemper B. Single-stranded DNA 'blue' T7 promoter plasmids: a versatile tandem promoter system for cloning and protein engineering. Protein Eng. 1986 Oct-Nov;1(1):67–74. doi: 10.1093/protein/1.1.67. [DOI] [PubMed] [Google Scholar]
  34. Nagai K., Thøgersen H. C. Synthesis and sequence-specific proteolysis of hybrid proteins produced in Escherichia coli. Methods Enzymol. 1987;153:461–481. doi: 10.1016/0076-6879(87)53072-5. [DOI] [PubMed] [Google Scholar]
  35. Pfeiffer P., Hohn T. Involvement of reverse transcription in the replication of cauliflower mosaic virus: a detailed model and test of some aspects. Cell. 1983 Jul;33(3):781–789. doi: 10.1016/0092-8674(83)90020-x. [DOI] [PubMed] [Google Scholar]
  36. Pietrzak M., Shillito R. D., Hohn T., Potrykus I. Expression in plants of two bacterial antibiotic resistance genes after protoplast transformation with a new plant expression vector. Nucleic Acids Res. 1986 Jul 25;14(14):5857–5868. doi: 10.1093/nar/14.14.5857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Richins R. D., Scholthof H. B., Shepherd R. J. Sequence of figwort mosaic virus DNA (caulimovirus group). Nucleic Acids Res. 1987 Oct 26;15(20):8451–8466. doi: 10.1093/nar/15.20.8451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanger M., Daubert S., Goodman R. M. The regions of sequence variation in caulimovirus gene VI. Virology. 1991 Jun;182(2):830–834. doi: 10.1016/0042-6822(91)90624-k. [DOI] [PubMed] [Google Scholar]
  39. Schoelz J., Shepherd R. J., Daubert S. Region VI of cauliflower mosaic virus encodes a host range determinant. Mol Cell Biol. 1986 Jul;6(7):2632–2637. doi: 10.1128/mcb.6.7.2632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Scholelz J. E., Shepherd R. J. Host range control of cauliflower mosaic virus. Virology. 1988 Jan;162(1):30–37. doi: 10.1016/0042-6822(88)90391-1. [DOI] [PubMed] [Google Scholar]
  41. Scholthof H. B., Gowda S., Wu F. C., Shepherd R. J. The full-length transcript of a caulimovirus is a polycistronic mRNA whose genes are trans activated by the product of gene VI. J Virol. 1992 May;66(5):3131–3139. doi: 10.1128/jvi.66.5.3131-3139.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schuler G. D., Altschul S. F., Lipman D. J. A workbench for multiple alignment construction and analysis. Proteins. 1991;9(3):180–190. doi: 10.1002/prot.340090304. [DOI] [PubMed] [Google Scholar]
  43. Shepherd R. J. DNA viruses of higher plants. Adv Virus Res. 1976;20:305–339. doi: 10.1016/s0065-3527(08)60508-4. [DOI] [PubMed] [Google Scholar]
  44. Sonenberg N. Picornavirus RNA translation continues to surprise. Trends Genet. 1991 Apr;7(4):105–106. doi: 10.1016/0168-9525(91)90440-2. [DOI] [PubMed] [Google Scholar]
  45. Stratford R., Covey S. N. Segregation of cauliflower mosaic virus symptom genetic determinants. Virology. 1989 Oct;172(2):451–459. doi: 10.1016/0042-6822(89)90187-6. [DOI] [PubMed] [Google Scholar]
  46. Summers J., Smith P. M., Horwich A. L. Hepadnavirus envelope proteins regulate covalently closed circular DNA amplification. J Virol. 1990 Jun;64(6):2819–2824. doi: 10.1128/jvi.64.6.2819-2824.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Thomas A. A., Scheper G. C., Voorma H. O. Hypothesis: is eukaryotic initiation factor 2 the scanning factor? New Biol. 1992 Apr;4(4):404–407. [PubMed] [Google Scholar]
  48. Torruella M., Gordon K., Hohn T. Cauliflower mosaic virus produces an aspartic proteinase to cleave its polyproteins. EMBO J. 1989 Oct;8(10):2819–2825. doi: 10.1002/j.1460-2075.1989.tb08428.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Zijlstra C., Hohn T. Cauliflower Mosaic Virus Gene VI Controls Translation from Dicistronic Expression Units in Transgenic Arabidopsis Plants. Plant Cell. 1992 Dec;4(12):1471–1484. doi: 10.1105/tpc.4.12.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zimmern D. Homologous proteins encoded by yeast mitochondrial introns and by a group of RNA viruses from plants. J Mol Biol. 1983 Dec 15;171(3):345–352. doi: 10.1016/0022-2836(83)90098-0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES