Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1973 Jun;37(2):136–165. doi: 10.1128/br.37.2.136-165.1973

Biology of the bifidobacteria.

J A Poupard, I Husain, R F Norris
PMCID: PMC413809  PMID: 4578756

Full text

PDF
136

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILEY R. W., CLARKE R. T. A bacterial dextranase. Biochem J. 1959 May;72(1):49–54. doi: 10.1042/bj0720049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAILEY R. W., ROBERTON A. M. Carbohydrases of a rumen strain of Lactobacillus bifidus. 2. The intracellular alpha-1-6-glucosidase (isomaltodextrinase). Biochem J. 1962 Feb;82:272–277. doi: 10.1042/bj0820272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARBERO G. J., RUNGE G., FISCHER D., CRAWFORD M. N., TORRES F. E., GYORGY P. Investigations on the bacterial flora, pH, and sugar content in the intestinal tract of infants. J Pediatr. 1952 Feb;40(2):152–163. doi: 10.1016/s0022-3476(52)80176-3. [DOI] [PubMed] [Google Scholar]
  4. BRAUN G. A., GYORGY P., ZILLIKEN F. Gynaminic acid and other naturally occurring forms of N-acetylneuraminic acid. Arch Biochem Biophys. 1956 Aug;63(2):394–402. doi: 10.1016/0003-9861(56)90054-6. [DOI] [PubMed] [Google Scholar]
  5. CUMMINS C. S., GLENDENNING O. M. Composition of the cell wall of Lactobacillus bifidus. Nature. 1957 Aug 17;180(4581):337–338. doi: 10.1038/180337b0. [DOI] [PubMed] [Google Scholar]
  6. CUMMINS C. S., HARRIS H. The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character. J Gen Microbiol. 1956 Jul;14(3):583–600. doi: 10.1099/00221287-14-3-583. [DOI] [PubMed] [Google Scholar]
  7. DEHNERT J. Untersuchung über die gram-positive Stuhlflora des Brustmilchkindes. Zentralbl Bakteriol Orig. 1957 Jul;169(1-2):66–83. [PubMed] [Google Scholar]
  8. DEHNERT J. [Observations on the bifidum problem (A criticism of the differentiation of a "bifidum" and "acid-ophilus group")]. Zentralbl Bakteriol Orig. 1960 Aug;179:490–498. [PubMed] [Google Scholar]
  9. DONALDSON R. M., Jr NORMAL BACTERIAL POPULATIONS OF THE INTESTINE AND THEIR RELATION TO INTESTINAL FUNCTION. N Engl J Med. 1964 May 14;270:1050–CONCL. doi: 10.1056/NEJM196405142702007. [DOI] [PubMed] [Google Scholar]
  10. Damjanović V., Radulović D. Survival of Lactobacillus bifidus after freeze-drying. Cryobiology. 1967 Jul-Aug;4(1):30–32. doi: 10.1016/s0011-2240(67)80184-6. [DOI] [PubMed] [Google Scholar]
  11. Eggerth A. H. The Gram-positive Non-spore-bearing Anaerobic Bacilli of Human Feces. J Bacteriol. 1935 Sep;30(3):277–299. doi: 10.1128/jb.30.3.277-299.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Exterkate F. A., Otten B. J., Wassenberg H. W., Veerkamp J. H. Comparison of the phospholipid composition of Bifidobacterium and Lactobacillus strains. J Bacteriol. 1971 Jun;106(3):824–829. doi: 10.1128/jb.106.3.824-829.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Exterkate F. A., Veerkamp J. H. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. I. Composition of lipids. Biochim Biophys Acta. 1969 Jan 21;176(1):65–77. doi: 10.1016/0005-2760(69)90075-7. [DOI] [PubMed] [Google Scholar]
  14. Exterkate F. A., Vrensen G. F., Veerkamp J. H. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. 3. Morphological structure and osmotic properties of the protoplasts and membrane composition. Biochim Biophys Acta. 1970;219(1):141–154. doi: 10.1016/0005-2736(70)90069-6. [DOI] [PubMed] [Google Scholar]
  15. GEORG L. K., ROBERTSTAD G. W., BRINKMAN S. A., HICKLIN M. D. A NEW PATHOGENIC ANAEROBIC ACTINOYCES SPECIES. J Infect Dis. 1965 Feb;115:88–99. doi: 10.1093/infdis/115.1.88. [DOI] [PubMed] [Google Scholar]
  16. GEORG L. K., ROBERTSTAD G. W., BRINKMAN S. A. IDENTIFICATION OF SPECIES OF ACTINOMYCES. J Bacteriol. 1964 Aug;88:477–490. doi: 10.1128/jb.88.2.477-490.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. GIBBONS R. J., SOCRANSKY S. S., KAPSIMALIS B. ESTABLISHMENT OF HUMAN INDIGENOUS BACTERIA IN GERM-FREE MICE. J Bacteriol. 1964 Nov;88:1316–1323. doi: 10.1128/jb.88.5.1316-1323.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. GLICK M. C., SALL T., ZILLIKEN F., MUDD S. Morphological changes of Lactobacillus bifidus var. pennsylvanicus produced by a cell-wall precursor. Biochim Biophys Acta. 1960 Jan 15;37:361–363. doi: 10.1016/0006-3002(60)90251-1. [DOI] [PubMed] [Google Scholar]
  19. GOLDBERG M. L., RACKER E. Formation and isolation of a glycoladehyde-phosphoketolase intermediate. J Biol Chem. 1962 Dec;237:3841–3842. [PubMed] [Google Scholar]
  20. GYLLENBERG H. G. The development of the straight rod type of Lactobacillus bifidus. J Gen Microbiol. 1955 Oct;13(2):394–396. doi: 10.1099/00221287-13-2-394. [DOI] [PubMed] [Google Scholar]
  21. GYLLENBERG H., CARLBERG G. The dominance of a specific nutritional type of Lactobacillus bifidus in breast-fed infants. Acta Pathol Microbiol Scand. 1958;42(4):380–384. doi: 10.1111/j.1699-0463.1958.tb01751.x. [DOI] [PubMed] [Google Scholar]
  22. GYLLENBERG H., CARLBERG G. The nutritional characteristics of the bifid bacteria (Lactobacillus bifidus) in infants. Acta Pathol Microbiol Scand. 1958;44(3):287–292. doi: 10.1111/j.1699-0463.1958.tb01077.x. [DOI] [PubMed] [Google Scholar]
  23. GYLLENBERG H., ROINE P. The value of colony counts in evaluating the abundance of Lactobacillus bifidus in infant faeces. Acta Pathol Microbiol Scand. 1957;41(2):144–150. doi: 10.1111/j.1699-0463.1957.tb01010.x. [DOI] [PubMed] [Google Scholar]
  24. GYLLENBERG H. Specific contaminants in cultures of bifid bacteria (Lactobacillus bifidus). Acta Pathol Microbiol Scand. 1958;44(3):293–298. doi: 10.1111/j.1699-0463.1958.tb01078.x. [DOI] [PubMed] [Google Scholar]
  25. GYORGY P. A hitherto unrecognized biochemical difference between human milk and cow's milk. Pediatrics. 1953 Feb;11(2):98–108. [PubMed] [Google Scholar]
  26. GYORGY P., NORRIS R. F., ROSE C. S. Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys. 1954 Jan;48(1):193–201. doi: 10.1016/0003-9861(54)90323-9. [DOI] [PubMed] [Google Scholar]
  27. GYORGY P., ROSE C. S. 'Microbiological studies on growth factor for L. bifidus var. pennsylvanicus. Proc Soc Exp Biol Med. 1955 Oct;90(1):219–223. doi: 10.3181/00379727-90-21988. [DOI] [PubMed] [Google Scholar]
  28. GYORGY P., ROSE C. S. Further observations on the metabolic requirements of Lactobacillus bifidus var. pennsylvanicus. J Bacteriol. 1955 May;69(5):483–490. doi: 10.1128/jb.69.5.483-490.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. GYORGY P., ROSE C. S. Reaction of enzymes of Lactobacillus bifidus var. pennsylvanicus with bifidus factor: effect of monosaccharides. Proc Soc Exp Biol Med. 1956 Oct;93(1):58–61. doi: 10.3181/00379727-93-22662. [DOI] [PubMed] [Google Scholar]
  30. GYORGY P., ROSE C. S., SPRINGER G. F. Enzymatic inactivation of bifidus factor and blood group substances. J Lab Clin Med. 1954 Apr;43(4):543–552. [PubMed] [Google Scholar]
  31. GYORGY P., TOCANTINS L. M., MILLER F. R., WEISS A. Hematopoiesis, blood group substance, and bifidus factor. Trans Assoc Am Physicians. 1954;67:117–123. [PubMed] [Google Scholar]
  32. Gall L. S. Normal fecal flora of man. Am J Clin Nutr. 1970 Nov;23(11):1457–1465. doi: 10.1093/ajcn/23.11.1457. [DOI] [PubMed] [Google Scholar]
  33. Gasser F., Mandel M. Deoxyribonucleic acid base composition of the genus Lactobacillus. J Bacteriol. 1968 Sep;96(3):580–588. doi: 10.1128/jb.96.3.580-588.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Gorbach S. L., Nahas L., Lerner P. I., Weinstein L. Studies of intestinal microflora. I. Effects of diet, age, and periodic sampling on numbers of fecal microorganisms in man. Gastroenterology. 1967 Dec;53(6):845–855. [PubMed] [Google Scholar]
  35. HARRISON A. P., Jr, HANSEN P. A. Characterization of the Lactobacteriaceae encountered as secondary invaders in blackhead liver lesions of turkeys. Zentralbl Bakteriol Orig. 1954;161(2-3):125–137. [PubMed] [Google Scholar]
  36. HARRISON W., Jr, STAHL R. C., MAGAVRAN J., SANDERS M., NORRIS R. F., GYORGY P. The incidence of Lactobacillus bifidus in vaginal secretions of pregnant and non-pregnant women. Am J Obstet Gynecol. 1953 Feb;65(2):352–357. doi: 10.1016/0002-9378(53)90438-4. [DOI] [PubMed] [Google Scholar]
  37. HASSINEN J. B., DURBIN G. T., TOMARELLI, BERNHART F. W. The minimal nutritional requirements of Lactobacillus bifidus. J Bacteriol. 1951 Dec;62(6):771–777. doi: 10.1128/jb.62.6.771-777.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. HAYWARD A. C., HALE C. M., BISSET K. A. The morphology and relationships of Lactobacillus bifidus. J Gen Microbiol. 1955 Oct;13(2):292–294. doi: 10.1099/00221287-13-2-292. [DOI] [PubMed] [Google Scholar]
  39. HEHRE E. J., SERY T. W. Dextransplitting anaerobic bacteria from the human intestine. J Bacteriol. 1952 Mar;63(3):424–426. doi: 10.1128/jb.63.3.424-426.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. HOWELL A., Jr, PINE L. Comparison of physiological and biochemical characters of Actinomyces spp. with those of Lactobacillus bifidus. J Gen Microbiol. 1956 Dec;15(3):428–445. doi: 10.1099/00221287-15-3-428. [DOI] [PubMed] [Google Scholar]
  41. HURWITZ J. Pentose phosphate cleavage by Leuconostoc mesenteroides. Biochim Biophys Acta. 1958 Jun;28(3):599–602. doi: 10.1016/0006-3002(58)90526-2. [DOI] [PubMed] [Google Scholar]
  42. Haenel H. Human normal and abnormal gastrointestinal flora. Am J Clin Nutr. 1970 Nov;23(11):1433–1439. doi: 10.1093/ajcn/23.11.1433. [DOI] [PubMed] [Google Scholar]
  43. Hill L. R. An index to deoxyribonucleic acid base compositions of bacterial species. J Gen Microbiol. 1966 Sep;44(3):419–437. doi: 10.1099/00221287-44-3-419. [DOI] [PubMed] [Google Scholar]
  44. Holzapfel W., Scardovi V., Kandler O. Die Aminosäuresequenz des Ornithin und Lysin enthaltenden Mureins einiger Stämme von Lactobacillus bifidus aus dem Pansen. Z Naturforsch B. 1969 Dec;24(12):1524–1528. [PubMed] [Google Scholar]
  45. Husain I., Poupard J. A., Norris R. F. Influence of nutrition on the morphology of a strain of Bifidobacterium bifidum. J Bacteriol. 1972 Sep;111(3):841–844. doi: 10.1128/jb.111.3.841-844.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Johnson J. L., Ordal E. J. Deoxyribonucleic acid homology in bacterial taxonomy: effect of incubation temperature on reaction specificity. J Bacteriol. 1968 Mar;95(3):893–900. doi: 10.1128/jb.95.3.893-900.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Kalser M. H., Cohen R., Arteaga I., Yawn E., Mayoral L., Hoffert W. R., Frazier D. Normal viral and bacterial flora of the human small and large intestine. N Engl J Med. 1966 Mar 3;274(9):500–contd. doi: 10.1056/NEJM196603032740907. [DOI] [PubMed] [Google Scholar]
  48. Kandler O., Koch D., Schleifer K. H. Die Aminosäuresequenz eines glycinhaltigen Mureins einiger Stämme von Lactobacillus bifidus. Arch Mikrobiol. 1968;61(2):181–186. [PubMed] [Google Scholar]
  49. King J. W., Rettger L. F. Gram-Positive Non-Sporulating Anaerobic Rod-Shaped Bacteria of the Intestinal Tract: III. Intra- and Extra-Group Relationships. J Bacteriol. 1942 Sep;44(3):301–316. doi: 10.1128/jb.44.3.301-316.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Koch D., Schleifer K. H., Kandler O. Die Aminosäuresequenz des Serin und Asparaginsäure enthaltenden Mureins von Bifidobacterium bifidum Orla Jensen. Z Naturforsch B. 1970 Nov;25(11):1294–1301. [PubMed] [Google Scholar]
  51. Kojima M., Suda S., Hotta S., Hamada K. Induction of pleomorphism in Lactobacillus bifidus. J Bacteriol. 1968 Feb;95(2):710–711. doi: 10.1128/jb.95.2.710-711.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Kojima M., Suda S., Hotta S., Hamada K. Induction of pleomorphy and calcium ion deficiency in Lactobacillus bifidus. J Bacteriol. 1970 Apr;102(1):217–220. doi: 10.1128/jb.102.1.217-220.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kojima M., Suda S., Hotta S., Hamada K., Suganuma A. Necessity of calcium ion for cell division in Lactobacillus bifidus. J Bacteriol. 1970 Nov;104(2):1010–1013. doi: 10.1128/jb.104.2.1010-1013.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. LAMBERT R., SAITO Y., VEERKAMP J. H. INCORPORATION OF LABELED DERIVATIVES OF 2-DEOXY-2-AMINO-D-GLUCOSE INTO THE CELL WALLS OF LACTOBACILLUS BIFIDUS VAR. PENNSYLVANICUS. Arch Biochem Biophys. 1965 May;110:341–345. doi: 10.1016/0003-9861(65)90130-x. [DOI] [PubMed] [Google Scholar]
  55. Lambert R., Zilliken F. Novel growth factors for Lactobacillus bifidus var pennsylvanicus. Arch Biochem Biophys. 1965 Jun;110(3):544–550. doi: 10.1016/0003-9861(65)90448-0. [DOI] [PubMed] [Google Scholar]
  56. MALYOTH G., BAUER A. Beobachtungen am Bacterium bifidum. Z Kinderheilkd. 1950;68(4):358–367. doi: 10.1007/BF00438576. [DOI] [PubMed] [Google Scholar]
  57. MAYER J. B., TORZEWSKI D., DITTMANN J. ZUM STOFFWECHSEL DES BACTERIUM BIFIDUM (LACTOBACILLUS BIFIDUS). IV. KATALASEAKTIVITAET AEROBER UND ANAEROBER KULTUREN. Z Kinderheilkd. 1964 Nov 17;91:222–227. [PubMed] [Google Scholar]
  58. Mata L. J., Carrillo C., Villatoro E. Fecal microflora in health persons in a preindustrial region. Appl Microbiol. 1969 Apr;17(4):596–602. doi: 10.1128/am.17.4.596-602.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Mata L. J., Urrutia J. J., García B., Fernández R., Béhar M. Shigella infection in breast-fed Guatemalan indian neonates. Am J Dis Child. 1969 Feb;117(2):142–146. doi: 10.1001/archpedi.1969.02100030144004. [DOI] [PubMed] [Google Scholar]
  60. Matteuzzi D., Crociani F., Zani G., Trovatelli L. D. Bifidobacterium suis n. sp.: a new species of the genus Bifidobacterium isolated from pig feces. Z Allg Mikrobiol. 1971;11(5):387–395. doi: 10.1002/jobm.3630110504. [DOI] [PubMed] [Google Scholar]
  61. Mitsuoka T. Vergleichende Untersuchungen über die Bifidobakterien aus dem Verdauungstakt von Menschen und Tieren (Zugleich die Beschreibung von B, thermophilum nov. spec. und B. pseudolongum nov. spec) Zentralbl Bakteriol Orig. 1969 May;210(1):52–64. [PubMed] [Google Scholar]
  62. Moore W. E., Cato E. P., Holdeman L. V. Anaerobic bacteria of the gastrointestinal flora and their occurrence in clinical infections. J Infect Dis. 1969 Jun;119(6):641–649. doi: 10.1093/infdis/119.6.641. [DOI] [PubMed] [Google Scholar]
  63. Muting D., Eschrich W., Mayer J. P. The effect of bacterium bifidum on intestinal bacterial flora and toxic protein metabolites in chronic liver disease. Am J Proctol. 1968 Oct;19(5):336–342. [PubMed] [Google Scholar]
  64. NORRIS R. F., DE SIPIN M., ZILLIKEN F. W., HARVEY T. S., GYORGY P. Occurrence of mucoid variants of Lactobacillus bifidus; demonstration of extracellular and intracellular polysaccharide. J Bacteriol. 1954 Feb;67(2):159–166. doi: 10.1128/jb.67.2.159-166.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. NORRIS R. F., FLANDERS T., TOMARELLI R. M., GYORGY P. The isolation and cultivation of Lactobacillus bifidus; a comparison of branched and unbranched strains. J Bacteriol. 1950 Dec;60(6):681–696. doi: 10.1128/jb.60.6.681-696.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. O'BRIEN P. J., GLICK M. C., ZILLIKEN F. Acidic aminosugars from bacteria. Incorporation of [1-14C]-alpha, beta-methyl-N-acetyl-D-glucosaminide into muramic acid. Biochim Biophys Acta. 1960 Jan 15;37:357–360. doi: 10.1016/0006-3002(60)90250-x. [DOI] [PubMed] [Google Scholar]
  67. OVERMAN J. R., PINE L. ELECTRON MICROSCOPY OF CYTOPLASMIC STRUCTURES IN FACULTATIVE AND ANAEROBIC ACTINOMYCES. J Bacteriol. 1963 Oct;86:656–665. doi: 10.1128/jb.86.4.656-665.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. PETUELY F., LYNAU V. Ein einfacher, vollsynthetischer Optimalnährboden für den Lactobacillus bifidus; über die Bedeutung der Ascorbinsäure für das Wachstum des Lactobacillus bifidus. Biochem Z. 1954;326(1):62–78. [PubMed] [Google Scholar]
  69. POPE S., TOMARELLI R. M., GYORGY P. Bifidus factos; isolation of ethyl N-acetyl-B-D-glucosaminide from Aspergillus fermentations. Arch Biochem Biophys. 1957 Jun;68(2):362–366. doi: 10.1016/0003-9861(57)90368-5. [DOI] [PubMed] [Google Scholar]
  70. Petuely F., Lindner G. Kritische Untersuchung über die Darmflora. 3. Bewertung quantitativer Züchtungsmethoden. Die Darmflora des Brustkindes. Zentralbl Bakteriol Orig. 1965 Feb;195(3):347–384. [PubMed] [Google Scholar]
  71. Pribram E. A CONTRIBUTION TO THE CLASSIFICATION OF MICROORGANISMS. J Bacteriol. 1929 Dec;18(6):361–394. doi: 10.1128/jb.18.6.361-394.1929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. REUTER G. VERGLEICHENDE UNTERSUCHUNGEN UEBER DIE BIFIDUS-FLORA IM SAEUGLINGS- UND ERWACHSENENSTUHL. ZUGLEICH EIN BEITRAG ZUR SYSTEMATISIERUNG UND NOMENKLATUR DER BIFIDUS-KEIME. Zentralbl Bakteriol Orig. 1963;191:486–507. [PubMed] [Google Scholar]
  73. ROSE C. S., GYORGY P. Observations on bacterial interaction. Proc Soc Exp Biol Med. 1955 May;89(1):23–26. doi: 10.3181/00379727-89-21702. [DOI] [PubMed] [Google Scholar]
  74. ROSE C. S., KUHN R., ZILLIKEN F., GYORGY P. Bifidus factor. V. The activity of alpha- and-beta-methyl-N-acetyl-D-glucosaminides. Arch Biochem Biophys. 1954 Mar;49(1):123–129. doi: 10.1016/0003-9861(54)90173-3. [DOI] [PubMed] [Google Scholar]
  75. Reyn A., Birch-Andersen A., Lapage S. P. An electron microscope study of thin sections of Haemophilus vaginalis (Gardner and Dukes) and some possibly related species. Can J Microbiol. 1966 Dec;12(6):1125–1136. doi: 10.1139/m66-154. [DOI] [PubMed] [Google Scholar]
  76. SCHRAMM M., KLYBAS V., RACKER E. Phosphorolytic cleavage of fructose-6-phosphate by fructose-6-phosphate phosphoketolase from Acetobacter xylinum. J Biol Chem. 1958 Dec;233(6):1283–1288. [PubMed] [Google Scholar]
  77. SEBALD M., GASSER F., WERNER H. TENEUR GC PERCENTAGE ET CLASSIFICATION. APPLICATION AU GROUPE DES BIFIDOBACT'ERIES ET 'A QUELQUES GENRES VOISINS. Ann Inst Pasteur (Paris) 1965 Aug;109:251–269. [PubMed] [Google Scholar]
  78. SUNDMAN V., BJORKSTEN K. A. F. The globular involution forms of the bifid bacteria. J Gen Microbiol. 1958 Dec;19(3):491–496. doi: 10.1099/00221287-19-3-491. [DOI] [PubMed] [Google Scholar]
  79. SUNDMAN V., af BJORKSTEN, GYLLENBERG H. G. Morphology of the bifid bacteria (organisms previously incorrectly designated Lactobacillus bifidus) and some related genera. J Gen Microbiol. 1959 Oct;21:371–384. doi: 10.1099/00221287-21-2-371. [DOI] [PubMed] [Google Scholar]
  80. Savage D. C. Associations of indigenous microorganisms with gastrointestinal mucosal epithelia. Am J Clin Nutr. 1970 Nov;23(11):1495–1501. doi: 10.1093/ajcn/23.11.1495. [DOI] [PubMed] [Google Scholar]
  81. Scardovi V., Sgorbati B., Zani G. Starch gel electrophoresis of fructose-6-phosphate phophoketolase in the genus Bifidobacterium. J Bacteriol. 1971 Jun;106(3):1036–1039. doi: 10.1128/jb.106.3.1036-1039.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Scardovi V., Trovatelli L. D., Crociani F., Sgorbati B. Bifid bacteria in bovine rumen. New species of the genus Bifidobacterium: B. globosum n.sp. and B. ruminale n.sp. Arch Mikrobiol. 1969;68(3):278–294. [PubMed] [Google Scholar]
  83. Scardovi V., Trovatelli L. D. New species of bifid bacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1969;123(1):64–88. [PubMed] [Google Scholar]
  84. Scardovi V., Zani G., Trovatelli L. D. Deoxyribonucleic acid homology among the species of the genus Bifidobacterium isolated from animals. Arch Mikrobiol. 1970;72(4):318–325. doi: 10.1007/BF00409030. [DOI] [PubMed] [Google Scholar]
  85. Slack J. M., Winger A., Moore D. W. SEROLOGICAL GROUPING OF ACTINOMYCES BY MEANS OF FLUORESCENT ANTIBODIES. J Bacteriol. 1961 Jul;82(1):54–65. doi: 10.1128/jb.82.1.54-65.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Snyder M. L., Slawson M. S., Bullock W., Parker R. B. Studies on oral filamentous bacteria. II. Serological relationships within the genera Actinomyces, Nocardia, Bacterionema and Leptotrichia. J Infect Dis. 1967 Oct;117(4):341–345. doi: 10.1093/infdis/117.4.341. [DOI] [PubMed] [Google Scholar]
  87. Syed S. A., Abrams G. D., Freter R. Efficiency of various intestinal bacteria in assuming normal functions of enteric flora after association with germ-free mice. Infect Immun. 1970 Oct;2(4):376–386. doi: 10.1128/iai.2.4.376-386.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. TASSOVATZ B. L'ENT'ERO-COLITE AIGUUE BACT'ERIENNE CHEZ LE NOURRISSON. ESSAI DE TRAITEMENT PAR LE BACILLE BIFIDUS. Ann Pediatr (Paris) 1964 May 2;11:291–297. [PubMed] [Google Scholar]
  89. TOMARELLI R. M., NORRIS R. F., ROSE C. S., GYORGY P. The effect of fatty acids on the growth of strains of Lactobacillus bifidus. J Biol Chem. 1950 Nov;187(1):197–204. [PubMed] [Google Scholar]
  90. TOMARELLI R. M., NORRIS R. F. The nutrition of variants of Lactobacillus bifidus. J Biol Chem. 1949 Dec;181(2):879–888. [PubMed] [Google Scholar]
  91. Veerkamp J. H. Biochemical changes in Bifidobacterium bifidum var. Pennsylvanicus after cell wall inhibition. II. Fatty acid composition. Biochim Biophys Acta. 1970 Jul 14;210(2):267–275. doi: 10.1016/0005-2760(70)90171-2. [DOI] [PubMed] [Google Scholar]
  92. Veerkamp J. H. Catabolism of glucose and derivatives of 2-deoxy-2-amino-glucose in Bifidobacterium bifidum var. pennsylvanicus. Arch Biochem Biophys. 1969 Jan;129(1):257–263. doi: 10.1016/0003-9861(69)90173-8. [DOI] [PubMed] [Google Scholar]
  93. Veerkamp J. H. Fatty acid composition of Bifidobacterium and Lactobacillus strains. J Bacteriol. 1971 Nov;108(2):861–867. doi: 10.1128/jb.108.2.861-867.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Veerkamp J. H., Lambert R., Saito Y. The composition of the cell wall of Lactobacillius bifidus var. pennsylvanicus. Arch Biochem Biophys. 1965 Oct;112(1):120–125. doi: 10.1016/0003-9861(65)90019-6. [DOI] [PubMed] [Google Scholar]
  95. Veerkamp J. H. The structure of the cell wall peptidoglycan of Bifidobacterium bifidum var. pennsylvanicus. Arch Biochem Biophys. 1971 Mar;143(1):204–211. doi: 10.1016/0003-9861(71)90200-1. [DOI] [PubMed] [Google Scholar]
  96. Veerkamp J. H. Uptake and metabolism of derivatives of 2-deoxy-2-amino-D-glucose in Bifidobacterium bifidum var. pennsylvanicus. Arch Biochem Biophys. 1969 Jan;129(1):248–256. doi: 10.1016/0003-9861(69)90172-6. [DOI] [PubMed] [Google Scholar]
  97. WANG M., STEERS E., NORRIS R. F. EXTRACELLULAR POLYSACCHARIDE OF MUCOID LACTOBACILLUS BIFIDUS. J Bacteriol. 1963 Nov;86:898–903. doi: 10.1128/jb.86.5.898-903.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. WERNER H., SEELIGER H. P. VERGLEICHENDE UNTERSUCHUNGEN AN BIFIDUS-STAEMMEN VERSCHIEDENER HERKUNFT. Pathol Microbiol (Basel) 1964;27:202–215. [PubMed] [Google Scholar]
  99. WILLIAMS N. B., NORRIS R. F., GYORGY P. Antigenic and cultural relationships of Lactobacillus bifidus and Lactobacillus parabifidus. J Infect Dis. 1953 Mar-Apr;92(2):121–131. doi: 10.1093/infdis/92.2.121. [DOI] [PubMed] [Google Scholar]
  100. Wang M. M., Tsou K. C., Norris R. F. The depolymerization of "bifidan," a polysaccharide of Lactobacillus bifidus, by ascorbic acid. Arch Biochem Biophys. 1969 May;131(2):513–520. doi: 10.1016/0003-9861(69)90424-x. [DOI] [PubMed] [Google Scholar]
  101. Weijers H. A., van de Kamer J. H. Causes of diarrhoea in disturbed digestion. Bibl Nutr Dieta. 1965;7:233–242. doi: 10.1159/000385055. [DOI] [PubMed] [Google Scholar]
  102. Weiss J. E., Rettger L. F. Lactobacillus bifidus. J Bacteriol. 1934 Nov;28(5):501–521. doi: 10.1128/jb.28.5.501-521.1934. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Wyatt R. G., Mata L. J. Bacteria in colostrum and milk of Guatemalan Indian women. J Trop Pediatr (1967) 1969 Dec;15(4):159–162. doi: 10.1093/tropej/15.4.159. [DOI] [PubMed] [Google Scholar]
  104. Yoshioka M., Yoshioka S., Tamura Z., Ohta K. Growth responses of Bifidobacterium bifidum to coenzyme A, its precursors and carrot extract. Jpn J Microbiol. 1968 Dec;12(4):395–402. doi: 10.1111/j.1348-0421.1968.tb00412.x. [DOI] [PubMed] [Google Scholar]
  105. ZILLIKEN F., ROSE C. S., BRAUN G. A., GYORGY P. Preparation of alkyl N-acetyl-alpha and -beta-D-glucosaminides and their microbiological activity for Lactobacillus bifidus var. Penn. Arch Biochem Biophys. 1955 Feb;54(2):392–397. doi: 10.1016/0003-9861(55)90052-7. [DOI] [PubMed] [Google Scholar]
  106. ZILLIKEN F., SMITH P. N., ROSE C. S., GYORGY P. Enzymatic synthesis of a growth factor for Lactobacillus bifidus var. Penn. J Biol Chem. 1954 May;208(1):299–305. [PubMed] [Google Scholar]
  107. ZILLIKEN F., SMITH P. N., ROSE C. S., GYORGY P. Synthesis of 4-O-beta-D-galactopyranosyl-N-acetyl-D-glucosamine by intact cells of Lactobacillus bifidus var. pennsylvanicus. J Biol Chem. 1955 Nov;217(1):79–82. [PubMed] [Google Scholar]
  108. Zubrzycki L., Spaulding E. H. STUDIES ON THE STABILITY OF THE NORMAL HUMAN FECAL FLORA. J Bacteriol. 1962 May;83(5):968–974. doi: 10.1128/jb.83.5.968-974.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. de Vries W., Gerbrandy S. J., Stouthamer A. H. Carbohydrate metabolism in Bifidobacterium bifidum. Biochim Biophys Acta. 1967 Apr 25;136(3):415–425. doi: 10.1016/0304-4165(67)90001-3. [DOI] [PubMed] [Google Scholar]
  110. de Vries W., Stouthamer A. H. Factors determining the degree of anaerobiosis of Bifidobacterium strains. Arch Mikrobiol. 1969;65(3):275–287. doi: 10.1007/BF00407109. [DOI] [PubMed] [Google Scholar]
  111. de Vries W., Stouthamer A. H. Fermentation of glucose, lactose, galactose, mannitol, and xylose by bifidobacteria. J Bacteriol. 1968 Aug;96(2):472–478. doi: 10.1128/jb.96.2.472-478.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. de Vries W., Stouthamer A. H. Pathway of glucose fermentation in relation to the taxonomy of bifidobacteria. J Bacteriol. 1967 Feb;93(2):574–576. doi: 10.1128/jb.93.2.574-576.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES