Full text
PDF






















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ADYE J., KOFFLER H., MALLETT G. E. The relative thermostability of flagella from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):251–253. doi: 10.1016/0003-9861(57)90268-0. [DOI] [PubMed] [Google Scholar]
- ALLEN M. B. The thermophilic aerobic sporeforming bacteria. Bacteriol Rev. 1953 Jun;17(2):125–173. doi: 10.1128/br.17.2.125-173.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Amelunxen R. E., Clark J. Crystallization of thermostable glyceraldehyde-3-phosphate dehydrogenase after removal of coenzyme. Biochim Biophys Acta. 1970 Dec 22;221(3):650–652. doi: 10.1016/0005-2795(70)90239-4. [DOI] [PubMed] [Google Scholar]
- Amelunxen R. E. Crystallization of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 10;122(2):175–181. doi: 10.1016/0926-6593(66)90059-2. [DOI] [PubMed] [Google Scholar]
- Amelunxen R. E., Noelken M., Singleton R., Jr Studies on the subunit structure of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Arch Biochem Biophys. 1970 Dec;141(2):447–455. doi: 10.1016/0003-9861(70)90161-x. [DOI] [PubMed] [Google Scholar]
- Amelunxen R. E. Some chemical and physical properties of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta. 1967 May 16;139(1):24–32. doi: 10.1016/0005-2744(67)90109-x. [DOI] [PubMed] [Google Scholar]
- Amelunxen R., Lins M. Comparative thermostability of enzymes from Bacillus stearothermophilus and Bacillus cereus. Arch Biochem Biophys. 1968 Jun;125(3):765–769. doi: 10.1016/0003-9861(68)90512-2. [DOI] [PubMed] [Google Scholar]
- Babel W., Rosenthal H. A., Rapoport S. A unified hypothesis on the causes of the cardinal temperatures of microorganisms; the temperature minimum of Bacillus stearothermophilus. Acta Biol Med Ger. 1972;28(4):565–576. [PubMed] [Google Scholar]
- Barnes E. M., Akagi J. M., Himes R. H. Properties of fructose-1,6-diphosphate aldolase from two thermophilic and a mesophilic clostridia. Biochim Biophys Acta. 1971 Jan 13;227(1):199–203. doi: 10.1016/0005-2744(71)90180-x. [DOI] [PubMed] [Google Scholar]
- Barnes L. D., Stellwagen E. Enolase from the thermophile Thermus X-1. Biochemistry. 1973 Apr 10;12(8):1559–1565. doi: 10.1021/bi00732a015. [DOI] [PubMed] [Google Scholar]
- Benson A. M., Mower H. F., Yasunobu K. T. The amino acid sequence of Clostridium butyricum ferredoxin. Arch Biochem Biophys. 1967 Sep;121(3):563–575. doi: 10.1016/0003-9861(67)90039-2. [DOI] [PubMed] [Google Scholar]
- Bigelow C. C. On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol. 1967 Aug;16(2):187–211. doi: 10.1016/0022-5193(67)90004-5. [DOI] [PubMed] [Google Scholar]
- Brewer J. M., Ljungdahl L., Spencer T. E., Neece S. H. Physical properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J Biol Chem. 1970 Sep 25;245(18):4798–4803. [PubMed] [Google Scholar]
- Bridgen J., Harris J. I., McDonald P. W., Amelunxen R. E., Kimmel J. R. Amino Acid Sequence Around the Catalytic Site in Glyceraldehyde-3-Phosphate Dehydrogenase from Bacillus stearothermophilus. J Bacteriol. 1972 Sep;111(3):797–800. doi: 10.1128/jb.111.3.797-800.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock T. D., Darland G. K. Limits of microbial existence: temperature and pH. Science. 1970 Sep 25;169(3952):1316–1318. doi: 10.1126/science.169.3952.1316. [DOI] [PubMed] [Google Scholar]
- Brock T. D., Freeze H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol. 1969 Apr;98(1):289–297. doi: 10.1128/jb.98.1.289-297.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brock T. D. Life at high temperatures. Evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science. 1967 Nov;158(3804):1012–1019. doi: 10.1126/science.158.3804.1012. [DOI] [PubMed] [Google Scholar]
- Bubela B., Holdsworth E. S. Amino acid uptake, protein and nucleic acid synthesis and turnover in Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 17;123(2):364–375. doi: 10.1016/0005-2787(66)90289-9. [DOI] [PubMed] [Google Scholar]
- Bubela B., Holdsworth E. S. Protein synthesis in Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 17;123(2):376–389. doi: 10.1016/0005-2787(66)90290-5. [DOI] [PubMed] [Google Scholar]
- CAMPBELL L. L., CLEVELAND P. D. Thermostable alpha-amylase of Bacillus stearothermophilus. IV. Amino-terminal and carboxyl-terminal amino acid analysis. J Biol Chem. 1961 Nov;236:2966–2969. [PubMed] [Google Scholar]
- CAMPBELL L. L., Jr Purification and properties of an alpha-amylase from facultative thermophilic bacteria. Arch Biochem Biophys. 1955 Jan;54(1):154–161. doi: 10.1016/0003-9861(55)90018-7. [DOI] [PubMed] [Google Scholar]
- CAMPBELL L. L., MANNING G. B. Thermostable alpha-amylase of Bacillus stearothermophilus. III. Amino acid composition. J Biol Chem. 1961 Nov;236:2962–2965. [PubMed] [Google Scholar]
- Campbell L. L., Pace B. Physiology of growth at high temperatures. J Appl Bacteriol. 1968 Mar;31(1):24–35. doi: 10.1111/j.1365-2672.1968.tb00338.x. [DOI] [PubMed] [Google Scholar]
- Carlson C. W., Brosemer R. W. Comparative structural properties of insect triose phosphate dehydrogenases. Biochemistry. 1971 May 25;10(11):2113–2119. doi: 10.1021/bi00787a024. [DOI] [PubMed] [Google Scholar]
- Carter N. D., Yoshida A. Purification and characterization of human phosphoglucose isomerase. Biochim Biophys Acta. 1969 May;181(1):12–19. doi: 10.1016/0005-2795(69)90222-0. [DOI] [PubMed] [Google Scholar]
- Castenholz R. W. Thermophilic blue-green algae and the thermal environment. Bacteriol Rev. 1969 Dec;33(4):476–504. doi: 10.1128/br.33.4.476-504.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cavari B. Z., Arkin-Shlank H., Grossowicz N. Regulation of aspartokinase activity in a thermophilic bacterium. Biochim Biophys Acta. 1972 Jan 28;261(1):161–167. doi: 10.1016/0304-4165(72)90325-x. [DOI] [PubMed] [Google Scholar]
- Cho K. Y., Salton M. R. Fatty acid composition of bacterial membrane and wall lipids. Biochim Biophys Acta. 1966 Feb 1;116(1):73–79. doi: 10.1016/0005-2760(66)90093-2. [DOI] [PubMed] [Google Scholar]
- Chung A. E., Franzen J. S. Oxidized triphosphopyridine nucleotide specific isocitrate dehydrogenase from Azotobacter vinelandii. Isolation and characterization. Biochemistry. 1969 Aug;8(8):3175–3184. doi: 10.1021/bi00836a007. [DOI] [PubMed] [Google Scholar]
- DOWNEY R. J., GEORGI C. E., MILITZER W. E. Electron transport particles from Bacillus stearothermophilus. J Bacteriol. 1962 May;83:1140–1146. doi: 10.1128/jb.83.5.1140-1146.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daron H. H. Fatty acid composition of lipid extracts of a thermophilic Bacillus species. J Bacteriol. 1970 Jan;101(1):145–151. doi: 10.1128/jb.101.1.145-151.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DePinto J. A., Campbell L. L. Purification and properties of the amylase of Bacillus macerans. Biochemistry. 1968 Jan;7(1):114–120. doi: 10.1021/bi00841a015. [DOI] [PubMed] [Google Scholar]
- Devenathan T., Akagi J. M., Hersh R. T., Himes R. H. Ferredoxin from two thermophilic clostridia. J Biol Chem. 1969 Jun 10;244(11):2846–2853. [PubMed] [Google Scholar]
- Dick A. J., Matheson A. T., Wang J. H. A ribosomal-bound aminopeptidase in Escherichia coli B: purification and properties. Can J Biochem. 1970 Nov;48(11):1181–1188. doi: 10.1139/o70-184. [DOI] [PubMed] [Google Scholar]
- FISHER H. F. A LIMITING LAW RELATING THE SIZE AND SHAPE OF PROTEIN MOLECULES TO THEIR COMPOSITION. Proc Natl Acad Sci U S A. 1964 Jun;51:1285–1291. doi: 10.1073/pnas.51.6.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Farrell J., Rose A. Temperature effects on microorganisms. Annu Rev Microbiol. 1967;21:101–120. doi: 10.1146/annurev.mi.21.100167.000533. [DOI] [PubMed] [Google Scholar]
- Friedman S. M. Protein-synthesizing machinery of thermophilic bacteria. Bacteriol Rev. 1968 Mar;32(1):27–38. doi: 10.1128/br.32.1.27-38.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaughran E. R. THE THERMOPHILIC MICROORGANISMS. Bacteriol Rev. 1947 Sep;11(3):189–225. doi: 10.1128/br.11.3.189-225.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldsack D. E. Relation of the hydrophobicity index to the thermal stability of homologous proteins. Biopolymers. 1970 Feb;9(2):247–252. doi: 10.1002/bip.1970.360090209. [DOI] [PubMed] [Google Scholar]
- HIMES R. H., RABINOWITZ J. C. Formyltetrahydrofolate synthetase. II. Characteristics of the enzyme and the enzymic reaction. J Biol Chem. 1962 Sep;237:2903–2914. [PubMed] [Google Scholar]
- Hachimori A., Muramatsu N., Noso Y. Studies on an ATPase of thermophilic bacteria. I. Purification and properties. Biochim Biophys Acta. 1970 Jun 10;206(3):426–437. doi: 10.1016/0005-2744(70)90158-0. [DOI] [PubMed] [Google Scholar]
- Harris C. E., Kobes R. D., Teller D. C., Rutter W. J. The molecular characteristics of yeast aldolase. Biochemistry. 1969 Jun;8(6):2442–2454. doi: 10.1021/bi00834a029. [DOI] [PubMed] [Google Scholar]
- Higa E. H., Ramaley R. F. Purification and properties of threonine deaminase from the X-1 isolate of the genus Thermus. J Bacteriol. 1973 May;114(2):556–562. doi: 10.1128/jb.114.2.556-562.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Himmelhoch R., Peterson E. A. Preparation of leucine aminopeptidase free of endopeptidase activity. Biochemistry. 1968 Jun;7(6):2085–2093. doi: 10.1021/bi00846a010. [DOI] [PubMed] [Google Scholar]
- Howard R. L., Becker R. R. Isolation and some properties of the triphosphopyridine nucleotide isocitrate dehydrogenase from Bacillus stearothermophilus. J Biol Chem. 1970 Jun;245(12):3186–3194. [PubMed] [Google Scholar]
- Howard R. L., Becker R. R. Substrate inactivation of fructose-I,6-diphosphate aldolase from Bacillus stearothermophilus. Biochim Biophys Acta. 1972 Apr 7;268(1):249–252. doi: 10.1016/0005-2744(72)90221-5. [DOI] [PubMed] [Google Scholar]
- Howell N., Akagi J. M., Himes R. H. Thermostability of glycolytic enzymes from thermophilic clostridia. Can J Microbiol. 1969 May;15(5):461–464. doi: 10.1139/m69-081. [DOI] [PubMed] [Google Scholar]
- JUNGE J. M., STEIN E. A., NEURATH H., FISCHER E. H. The amino acid composition of alpha-amylase from Bacillus subtilis. J Biol Chem. 1959 Mar;234(3):556–561. [PubMed] [Google Scholar]
- KOFFLER H., GALE G. O. The relative thermostability of cytoplasmic proteins from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):249–251. doi: 10.1016/0003-9861(57)90267-9. [DOI] [PubMed] [Google Scholar]
- KOFFLER H. Protoplasmic differences between mesophiles and thermophiles. Bacteriol Rev. 1957 Dec;21(4):227–240. doi: 10.1128/br.21.4.227-240.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kirschenbaum D. M. A compilation of amino acid analyses of proteins. I. Anal Biochem. 1971 Nov;44(1):159–173. doi: 10.1016/0003-2697(71)90357-5. [DOI] [PubMed] [Google Scholar]
- Kirschenbaum D. M. A compilation of amino acid analyses of proteins. II. Anal Biochem. 1972 Sep;49(1):248–266. doi: 10.1016/0003-2697(72)90264-3. [DOI] [PubMed] [Google Scholar]
- Klotz I. M. Comparison of molecular structures of proteins: helix content; distribution of apolar residues. Arch Biochem Biophys. 1970 Jun;138(2):704–706. doi: 10.1016/0003-9861(70)90401-7. [DOI] [PubMed] [Google Scholar]
- Koffler H., Mallett G. E., Adye J. MOLECULAR BASIS OF BIOLOGICAL STABILITY TO HIGH TEMPERATURES. Proc Natl Acad Sci U S A. 1957 Jun 15;43(6):464–477. doi: 10.1073/pnas.43.6.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuramitsu H. K. Concerted feedback inhibition of aspartokinase from Bacillus stearothermophillus. Biochim Biophys Acta. 1968 Nov 19;167(3):643–645. doi: 10.1016/0005-2744(68)90064-8. [DOI] [PubMed] [Google Scholar]
- Kuramitsu H. K. Concerted feedback inhibition of aspartokinase from Bacillus stearothermophilus. I. Catalytic and regulatory properties. J Biol Chem. 1970 Jun 10;245(11):2991–2997. [PubMed] [Google Scholar]
- Lamanna C. Relation Between Temperature Growth Range and Size in the Genus Bacillus. J Bacteriol. 1940 May;39(5):593–596. doi: 10.1128/jb.39.5.593-596.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levy J., Biltonen R. Thermodynamic studies of transfer ribonucleic acids. 3. Thermodynamic model for the thermal unfolding of yeast phenylalanine-specific transfer ribonucleic acid. Biochemistry. 1972 Oct 24;11(22):4145–4152. doi: 10.1021/bi00772a018. [DOI] [PubMed] [Google Scholar]
- Levy J., Rialdi G., Biltonen R. Thermodynamic studies of transfer ribonucleic acids. II. Characterization of the thermal unfolding of yeast phenylalanine-specific transfer ribonucleic acid. Biochemistry. 1972 Oct 24;11(22):4138–4144. doi: 10.1021/bi00772a017. [DOI] [PubMed] [Google Scholar]
- Ljungdahl L. G. Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu Rev Microbiol. 1969;23:515–538. doi: 10.1146/annurev.mi.23.100169.002503. [DOI] [PubMed] [Google Scholar]
- Ljungdahl L., Brewer J. M., Neece S. H., Fairwell T. Purification, stability, and composition of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J Biol Chem. 1970 Sep 25;245(18):4791–4797. [PubMed] [Google Scholar]
- MALLETT G. E., KOFFLER H. Hypotheses concerning the relative stability of flagella from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):254–256. doi: 10.1016/0003-9861(57)90269-2. [DOI] [PubMed] [Google Scholar]
- MANNING G. B., CAMPBELL L. L., FOSTER R. J. Thermostable alpha-amylase of Bacillus stearothermophilus. II. Physical properties and molecular weight. J Biol Chem. 1961 Nov;236:2958–2961. [PubMed] [Google Scholar]
- MANNING G. B., CAMPBELL L. L. Thermostable alpha-amylase of Bacillus stearothermophilus. I. Crystallization and some general properties. J Biol Chem. 1961 Nov;236:2952–2957. [PubMed] [Google Scholar]
- MARSH C., MILITZER W. Thermal enzymes. V. Properties of a malic dehydrogenase. Arch Biochem Biophys. 1952 Apr;36(2):269–275. doi: 10.1016/0003-9861(52)90411-6. [DOI] [PubMed] [Google Scholar]
- MARSH C., MILITZER W. Thermal enzymes. VII. Further data on an adenosinetriphosphatase. Arch Biochem Biophys. 1956 Feb;60(2):433–438. doi: 10.1016/0003-9861(56)90448-9. [DOI] [PubMed] [Google Scholar]
- MARSH C., MILITZER W. Thermal enzymes. VIII. Properties of a heat-stable inorganic pyrophosphatase. Arch Biochem Biophys. 1956 Feb;60(2):439–451. doi: 10.1016/0003-9861(56)90449-0. [DOI] [PubMed] [Google Scholar]
- MILITZER W., SONDEREGGER T. B., TUTTLE L. C. Thermal enzymes. II. Cytochromes. Arch Biochem. 1950 Apr;26(2):299–306. [PubMed] [Google Scholar]
- MILITZER W., SONDEREGGER T. B. Thermal enzymes. Arch Biochem. 1949 Nov;24(1):75–82. [PubMed] [Google Scholar]
- MILITZER W., TUTTLE L. C., GEORGI C. E. Thermal enzymes. III. Apyrase from a thermophilic Bacterium. Arch Biochem Biophys. 1951 May;31(3):416–423. doi: 10.1016/0003-9861(51)90157-9. [DOI] [PubMed] [Google Scholar]
- MILITZER W., TUTTLE L. C. Thermal enzymes. IV. Partial separation of an adenosinetriphosphatase from an apyrase fraction. Arch Biochem Biophys. 1952 Aug;39(2):379–386. doi: 10.1016/0003-9861(52)90347-0. [DOI] [PubMed] [Google Scholar]
- Malacinski G. M., Rutter W. J. Multiple molecular forms of alpha-amylase from the rabbit. Biochemistry. 1969 Nov;8(11):4382–4390. doi: 10.1021/bi00839a024. [DOI] [PubMed] [Google Scholar]
- Margoliash E., Schejter A. Cytochrome c. Adv Protein Chem. 1966;21:113–286. doi: 10.1016/s0065-3233(08)60128-x. [DOI] [PubMed] [Google Scholar]
- Moser P., Roncari G., Zuber H. Thermophilic aminopeptidasesfrom Bac. stearothermophilus. II. Aminopeptidase I (AP I): physico-chemical properties; thermostability and activation; formation of the apoenzyme and subunits. Int J Protein Res. 1970;2(3):191–207. [PubMed] [Google Scholar]
- Muramatsu N., Noso Y. Purification and characterization of glucose-6-phosphate isomerase from Bacillus stearothermophilus. Arch Biochem Biophys. 1971 May;144(1):245–252. doi: 10.1016/0003-9861(71)90475-9. [DOI] [PubMed] [Google Scholar]
- Murphey W. H., Barnaby C., Lin F. J., Kaplan N. O. Malate dehydrogenases. II. Purification and properties of Bacillus subtilis, Bacillus stearothermophilus, and Escherichia coli malate dehydrogenases. J Biol Chem. 1967 Apr 10;242(7):1548–1559. [PubMed] [Google Scholar]
- O'Brien W. E., Brewer J. M., Ljungdahl L. G. Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem. 1973 Jan 25;248(2):403–408. [PubMed] [Google Scholar]
- Ogasahara K., Yutani K., Imanishi A., Isemura T. Studies on thermophilic alpha-amylase from Bacillus stearothermophilus. 3. Effect of temperature on the renaturation of denatured thermophilic alpha-amylase. J Biochem. 1970 Jan;67(1):83–89. doi: 10.1093/oxfordjournals.jbchem.a129237. [DOI] [PubMed] [Google Scholar]
- Ohta Y., Ogura Y., Wada A. Thermostable protease from thermophilic bacteria. I. Thermostability, physiocochemical properties, and amino acid composition. J Biol Chem. 1966 Dec 25;241(24):5919–5925. [PubMed] [Google Scholar]
- Ohta Y. Thermostable protease from thermophilic bacteria. II. Studies on the stability of the protease. J Biol Chem. 1967 Feb 10;242(3):509–515. [PubMed] [Google Scholar]
- Penhoet E. E., Kochman M., Rutter W. J. Molecular and catalytic properties of aldolase C. Biochemistry. 1969 Nov;8(11):4396–4402. doi: 10.1021/bi00839a026. [DOI] [PubMed] [Google Scholar]
- Pfueller S. L., Elliott W. H. The extracellular alpha-amylase of bacillus stearothermophilus. J Biol Chem. 1969 Jan 10;244(1):48–54. [PubMed] [Google Scholar]
- Pon N. G., Schnackerz K. D., Blackburn M. N., Chatterjee G. C., Noltmann E. A. Molecular weight and amino acid composition of five-times-crystallized phosphoglucose isomerase from rabbit skeletal muscle. Biochemistry. 1970 Mar 31;9(7):1506–1514. doi: 10.1021/bi00809a005. [DOI] [PubMed] [Google Scholar]
- Rall S. C., Bolinger R. E., Cole R. D. The amino acid sequence of ferredoxin from Clostridium acidi-urici. Biochemistry. 1969 Jun;8(6):2486–2496. doi: 10.1021/bi00834a035. [DOI] [PubMed] [Google Scholar]
- Ray P. H., White D. C., Brock T. D. Effect of growth temperature on the lipid composition of Thermus aquaticus. J Bacteriol. 1971 Oct;108(1):227–235. doi: 10.1128/jb.108.1.227-235.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ray P. H., White D. C., Brock T. D. Effect of temperature on the fatty acid composition of Thermus aquaticus. J Bacteriol. 1971 Apr;106(1):25–30. doi: 10.1128/jb.106.1.25-30.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roncari G., Zuber H. Thermophilic aminopeptidases from Bacillus stearothermophilus. I. Isolation, specificity, and general properties of the thermostable aminopeptidase I. Int J Protein Res. 1969;1(1):45–61. doi: 10.1111/j.1399-3011.1969.tb01625.x. [DOI] [PubMed] [Google Scholar]
- STEIN E. A., JUNGE J. M., FISCHER E. H. The amino acid composition of alpha-amylase from Aspergillus oryzae. J Biol Chem. 1960 Feb;235:371–378. [PubMed] [Google Scholar]
- Sattar S. A., Synek E. J., Westwood J. C., Neals P. Hazard inherent in microbial tracers: reduction of risk by the use of Bacillus stearothermophilus spores in aerobiology. Appl Microbiol. 1972 Jun;23(6):1053–1059. doi: 10.1128/am.23.6.1053-1059.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sauvan R. L., Mira O. J., Amelunxen R. E. Thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. I. Immunochemical studies. Biochim Biophys Acta. 1972 May 18;263(3):794–804. doi: 10.1016/0005-2795(72)90063-3. [DOI] [PubMed] [Google Scholar]
- Schnebli H. P., Vatter A. E., Abrams A. Membrane adenosine triphosphatase from Streptococcus faecalis. Molecular weight, subunit structure, and amino acid composition. J Biol Chem. 1970 Mar 10;245(5):1122–1127. [PubMed] [Google Scholar]
- Singleton R., Jr, Kimmel J. R., Amelunxen R. E. The amino acid composition and other properties of thermostable glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus. J Biol Chem. 1969 Mar 25;244(6):1623–1630. [PubMed] [Google Scholar]
- Stellwagen E., Cronlund M. M., Barnes L. D. A thermostable enolase from the extreme thermophile Thermus aquaticus YT-1. Biochemistry. 1973 Apr 10;12(8):1552–1559. doi: 10.1021/bi00732a014. [DOI] [PubMed] [Google Scholar]
- Stoll E., Hermodson M. A., Ericsson L. H., Zuber H. Subunit structure of the thermophilic aminopeptidase I from Bacillus stearothermophilus. Biochemistry. 1972 Dec 5;11(25):4731–4735. doi: 10.1021/bi00775a015. [DOI] [PubMed] [Google Scholar]
- Sugimoto S., Noso Y. Thermal properties of fructose-I,6-diphosphate aldolase from thermophilic bacteria. Biochim Biophys Acta. 1971 Apr 14;235(1):210–221. doi: 10.1016/0005-2744(71)90049-0. [DOI] [PubMed] [Google Scholar]
- Sun A. Y., Ljungdahl L., Wood H. G. Total synthesis of acetate from CO2. II. Purification and properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J Bacteriol. 1969 May;98(2):842–844. doi: 10.1128/jb.98.2.842-844.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki Koichi, Ieuan Harris J. Glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. FEBS Lett. 1971 Mar 16;13(4):217–220. doi: 10.1016/0014-5793(71)80539-2. [DOI] [PubMed] [Google Scholar]
- THOMPSON P. J., THOMPSON T. L. Some characteristics of a purified heat-stable aldolase. J Bacteriol. 1962 Oct;84:694–700. doi: 10.1128/jb.84.4.694-700.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanaka M., Haniu M., Matsueda G., Yasunobu K. T., Himes R. H., Akagi J. M., Barnes E. M., Devanathan T. The primary structure of the Clostridium tartarivorum ferredoxin, a heat-stable ferredoxin. J Biol Chem. 1971 Jun 25;246(12):3953–3960. [PubMed] [Google Scholar]
- Tanaka M., Nakashima T., Benson A., Mower H., Tasunobu K. T. The amino acid sequence of Clostridium pasteurianum ferredoxin. Biochemistry. 1966 May;5(5):1666–1681. doi: 10.1021/bi00869a032. [DOI] [PubMed] [Google Scholar]
- Thomas D. A., Kuramitsu H. K. Biosynthetic L-threonine deaminase from Bacillus stearothermophilus. I. Catalytic and regulatory properties. Arch Biochem Biophys. 1971 Jul;145(1):96–104. doi: 10.1016/0003-9861(71)90014-2. [DOI] [PubMed] [Google Scholar]
- Tsunoda J. N., Yasunobu K. T., Whiteley H. R. Non-heme iron proteins. IX. The amino acid sequence of ferredoxin from Micrococcus aerogenes. J Biol Chem. 1968 Dec 10;243(23):6262–6272. [PubMed] [Google Scholar]
- Ulrich J. T., McFeters G. A., Temple K. L. Induction and characterization of -galactosidase in an extreme thermophile. J Bacteriol. 1972 May;110(2):691–698. doi: 10.1128/jb.110.2.691-698.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WAUGH D. F. Protein-protein interactions. Adv Protein Chem. 1954;9:325–437. doi: 10.1016/s0065-3233(08)60210-7. [DOI] [PubMed] [Google Scholar]
- WELKER N. E., CAMPBELL L. L. DE NOVO SYNTHESIS OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1963 Dec;86:1202–1210. doi: 10.1128/jb.86.6.1202-1210.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WELKER N. E., CAMPBELL L. L. INDUCED BIOSYNTHESIS OF ALPHA-AMYLASE BY GROWING CULTURES OF BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1963 Dec;86:1196–1201. doi: 10.1128/jb.86.6.1196-1201.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weerkamp A., Mac Elroy R. D. Lactae dehydrogenase from an extremely thermophilic Bacillus. Arch Mikrobiol. 1972;85(2):113–122. doi: 10.1007/BF00409292. [DOI] [PubMed] [Google Scholar]
- Wisdom C., Welker N. E. Membranes of Bacillus stearothermophilus: factors affecting protoplast stability and thermostability of alkaline phosphatase and reduced nicotinamide adenine dinucleotide oxidase. J Bacteriol. 1973 Jun;114(3):1336–1345. doi: 10.1128/jb.114.3.1336-1345.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yoshida M. Allosteric nature of thermostable phosphofructokinase from an extreme thermophilic bacterium. Biochemistry. 1972 Mar 14;11(6):1087–1093. doi: 10.1021/bi00756a022. [DOI] [PubMed] [Google Scholar]
- Yoshida M., Oshima T., Imahori K. The thermostable allosteric enzyme: phosphofructokinase from an extreme thermophile. Biochem Biophys Res Commun. 1971 Apr 2;43(1):36–39. doi: 10.1016/s0006-291x(71)80081-5. [DOI] [PubMed] [Google Scholar]
- Yoshida M., Oshima T. The thermostable allosteric nature of fructose 1,6-diphosphatase from an extreme thermophile. Biochem Biophys Res Commun. 1971 Oct 15;45(2):495–500. doi: 10.1016/0006-291x(71)90846-1. [DOI] [PubMed] [Google Scholar]
- Yoshizaki F., Oshima T., Imahori K. Studies on phosphoglucomutase from an extreme thermophile, Flavobacterium thermophilum HB8. I. Thermostability and other enzymatic properties. J Biochem. 1971 Jun;69(6):1083–1089. doi: 10.1093/oxfordjournals.jbchem.a129561. [DOI] [PubMed] [Google Scholar]
- Zeikus J. G., Brock T. D. Protein synthesis at high temperatures: aminoacylation of tRNA. Biochim Biophys Acta. 1971 Feb 11;228(3):736–745. doi: 10.1016/0005-2787(71)90739-8. [DOI] [PubMed] [Google Scholar]