Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1973 Sep;37(3):320–342. doi: 10.1128/br.37.3.320-342.1973

Proteins from thermophilic microorganisms.

R Singleton Jr, R E Amelunxen
PMCID: PMC413821  PMID: 4357018

Full text

PDF
320

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADYE J., KOFFLER H., MALLETT G. E. The relative thermostability of flagella from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):251–253. doi: 10.1016/0003-9861(57)90268-0. [DOI] [PubMed] [Google Scholar]
  2. ALLEN M. B. The thermophilic aerobic sporeforming bacteria. Bacteriol Rev. 1953 Jun;17(2):125–173. doi: 10.1128/br.17.2.125-173.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amelunxen R. E., Clark J. Crystallization of thermostable glyceraldehyde-3-phosphate dehydrogenase after removal of coenzyme. Biochim Biophys Acta. 1970 Dec 22;221(3):650–652. doi: 10.1016/0005-2795(70)90239-4. [DOI] [PubMed] [Google Scholar]
  4. Amelunxen R. E. Crystallization of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 10;122(2):175–181. doi: 10.1016/0926-6593(66)90059-2. [DOI] [PubMed] [Google Scholar]
  5. Amelunxen R. E., Noelken M., Singleton R., Jr Studies on the subunit structure of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Arch Biochem Biophys. 1970 Dec;141(2):447–455. doi: 10.1016/0003-9861(70)90161-x. [DOI] [PubMed] [Google Scholar]
  6. Amelunxen R. E. Some chemical and physical properties of thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. Biochim Biophys Acta. 1967 May 16;139(1):24–32. doi: 10.1016/0005-2744(67)90109-x. [DOI] [PubMed] [Google Scholar]
  7. Amelunxen R., Lins M. Comparative thermostability of enzymes from Bacillus stearothermophilus and Bacillus cereus. Arch Biochem Biophys. 1968 Jun;125(3):765–769. doi: 10.1016/0003-9861(68)90512-2. [DOI] [PubMed] [Google Scholar]
  8. Babel W., Rosenthal H. A., Rapoport S. A unified hypothesis on the causes of the cardinal temperatures of microorganisms; the temperature minimum of Bacillus stearothermophilus. Acta Biol Med Ger. 1972;28(4):565–576. [PubMed] [Google Scholar]
  9. Barnes E. M., Akagi J. M., Himes R. H. Properties of fructose-1,6-diphosphate aldolase from two thermophilic and a mesophilic clostridia. Biochim Biophys Acta. 1971 Jan 13;227(1):199–203. doi: 10.1016/0005-2744(71)90180-x. [DOI] [PubMed] [Google Scholar]
  10. Barnes L. D., Stellwagen E. Enolase from the thermophile Thermus X-1. Biochemistry. 1973 Apr 10;12(8):1559–1565. doi: 10.1021/bi00732a015. [DOI] [PubMed] [Google Scholar]
  11. Benson A. M., Mower H. F., Yasunobu K. T. The amino acid sequence of Clostridium butyricum ferredoxin. Arch Biochem Biophys. 1967 Sep;121(3):563–575. doi: 10.1016/0003-9861(67)90039-2. [DOI] [PubMed] [Google Scholar]
  12. Bigelow C. C. On the average hydrophobicity of proteins and the relation between it and protein structure. J Theor Biol. 1967 Aug;16(2):187–211. doi: 10.1016/0022-5193(67)90004-5. [DOI] [PubMed] [Google Scholar]
  13. Brewer J. M., Ljungdahl L., Spencer T. E., Neece S. H. Physical properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J Biol Chem. 1970 Sep 25;245(18):4798–4803. [PubMed] [Google Scholar]
  14. Bridgen J., Harris J. I., McDonald P. W., Amelunxen R. E., Kimmel J. R. Amino Acid Sequence Around the Catalytic Site in Glyceraldehyde-3-Phosphate Dehydrogenase from Bacillus stearothermophilus. J Bacteriol. 1972 Sep;111(3):797–800. doi: 10.1128/jb.111.3.797-800.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Brock T. D., Darland G. K. Limits of microbial existence: temperature and pH. Science. 1970 Sep 25;169(3952):1316–1318. doi: 10.1126/science.169.3952.1316. [DOI] [PubMed] [Google Scholar]
  16. Brock T. D., Freeze H. Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile. J Bacteriol. 1969 Apr;98(1):289–297. doi: 10.1128/jb.98.1.289-297.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Brock T. D. Life at high temperatures. Evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science. 1967 Nov;158(3804):1012–1019. doi: 10.1126/science.158.3804.1012. [DOI] [PubMed] [Google Scholar]
  18. Bubela B., Holdsworth E. S. Amino acid uptake, protein and nucleic acid synthesis and turnover in Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 17;123(2):364–375. doi: 10.1016/0005-2787(66)90289-9. [DOI] [PubMed] [Google Scholar]
  19. Bubela B., Holdsworth E. S. Protein synthesis in Bacillus stearothermophilus. Biochim Biophys Acta. 1966 Aug 17;123(2):376–389. doi: 10.1016/0005-2787(66)90290-5. [DOI] [PubMed] [Google Scholar]
  20. CAMPBELL L. L., CLEVELAND P. D. Thermostable alpha-amylase of Bacillus stearothermophilus. IV. Amino-terminal and carboxyl-terminal amino acid analysis. J Biol Chem. 1961 Nov;236:2966–2969. [PubMed] [Google Scholar]
  21. CAMPBELL L. L., Jr Purification and properties of an alpha-amylase from facultative thermophilic bacteria. Arch Biochem Biophys. 1955 Jan;54(1):154–161. doi: 10.1016/0003-9861(55)90018-7. [DOI] [PubMed] [Google Scholar]
  22. CAMPBELL L. L., MANNING G. B. Thermostable alpha-amylase of Bacillus stearothermophilus. III. Amino acid composition. J Biol Chem. 1961 Nov;236:2962–2965. [PubMed] [Google Scholar]
  23. Campbell L. L., Pace B. Physiology of growth at high temperatures. J Appl Bacteriol. 1968 Mar;31(1):24–35. doi: 10.1111/j.1365-2672.1968.tb00338.x. [DOI] [PubMed] [Google Scholar]
  24. Carlson C. W., Brosemer R. W. Comparative structural properties of insect triose phosphate dehydrogenases. Biochemistry. 1971 May 25;10(11):2113–2119. doi: 10.1021/bi00787a024. [DOI] [PubMed] [Google Scholar]
  25. Carter N. D., Yoshida A. Purification and characterization of human phosphoglucose isomerase. Biochim Biophys Acta. 1969 May;181(1):12–19. doi: 10.1016/0005-2795(69)90222-0. [DOI] [PubMed] [Google Scholar]
  26. Castenholz R. W. Thermophilic blue-green algae and the thermal environment. Bacteriol Rev. 1969 Dec;33(4):476–504. doi: 10.1128/br.33.4.476-504.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Cavari B. Z., Arkin-Shlank H., Grossowicz N. Regulation of aspartokinase activity in a thermophilic bacterium. Biochim Biophys Acta. 1972 Jan 28;261(1):161–167. doi: 10.1016/0304-4165(72)90325-x. [DOI] [PubMed] [Google Scholar]
  28. Cho K. Y., Salton M. R. Fatty acid composition of bacterial membrane and wall lipids. Biochim Biophys Acta. 1966 Feb 1;116(1):73–79. doi: 10.1016/0005-2760(66)90093-2. [DOI] [PubMed] [Google Scholar]
  29. Chung A. E., Franzen J. S. Oxidized triphosphopyridine nucleotide specific isocitrate dehydrogenase from Azotobacter vinelandii. Isolation and characterization. Biochemistry. 1969 Aug;8(8):3175–3184. doi: 10.1021/bi00836a007. [DOI] [PubMed] [Google Scholar]
  30. DOWNEY R. J., GEORGI C. E., MILITZER W. E. Electron transport particles from Bacillus stearothermophilus. J Bacteriol. 1962 May;83:1140–1146. doi: 10.1128/jb.83.5.1140-1146.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Daron H. H. Fatty acid composition of lipid extracts of a thermophilic Bacillus species. J Bacteriol. 1970 Jan;101(1):145–151. doi: 10.1128/jb.101.1.145-151.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. DePinto J. A., Campbell L. L. Purification and properties of the amylase of Bacillus macerans. Biochemistry. 1968 Jan;7(1):114–120. doi: 10.1021/bi00841a015. [DOI] [PubMed] [Google Scholar]
  33. Devenathan T., Akagi J. M., Hersh R. T., Himes R. H. Ferredoxin from two thermophilic clostridia. J Biol Chem. 1969 Jun 10;244(11):2846–2853. [PubMed] [Google Scholar]
  34. Dick A. J., Matheson A. T., Wang J. H. A ribosomal-bound aminopeptidase in Escherichia coli B: purification and properties. Can J Biochem. 1970 Nov;48(11):1181–1188. doi: 10.1139/o70-184. [DOI] [PubMed] [Google Scholar]
  35. FISHER H. F. A LIMITING LAW RELATING THE SIZE AND SHAPE OF PROTEIN MOLECULES TO THEIR COMPOSITION. Proc Natl Acad Sci U S A. 1964 Jun;51:1285–1291. doi: 10.1073/pnas.51.6.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Farrell J., Rose A. Temperature effects on microorganisms. Annu Rev Microbiol. 1967;21:101–120. doi: 10.1146/annurev.mi.21.100167.000533. [DOI] [PubMed] [Google Scholar]
  37. Friedman S. M. Protein-synthesizing machinery of thermophilic bacteria. Bacteriol Rev. 1968 Mar;32(1):27–38. doi: 10.1128/br.32.1.27-38.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Gaughran E. R. THE THERMOPHILIC MICROORGANISMS. Bacteriol Rev. 1947 Sep;11(3):189–225. doi: 10.1128/br.11.3.189-225.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Goldsack D. E. Relation of the hydrophobicity index to the thermal stability of homologous proteins. Biopolymers. 1970 Feb;9(2):247–252. doi: 10.1002/bip.1970.360090209. [DOI] [PubMed] [Google Scholar]
  40. HIMES R. H., RABINOWITZ J. C. Formyltetrahydrofolate synthetase. II. Characteristics of the enzyme and the enzymic reaction. J Biol Chem. 1962 Sep;237:2903–2914. [PubMed] [Google Scholar]
  41. Hachimori A., Muramatsu N., Noso Y. Studies on an ATPase of thermophilic bacteria. I. Purification and properties. Biochim Biophys Acta. 1970 Jun 10;206(3):426–437. doi: 10.1016/0005-2744(70)90158-0. [DOI] [PubMed] [Google Scholar]
  42. Harris C. E., Kobes R. D., Teller D. C., Rutter W. J. The molecular characteristics of yeast aldolase. Biochemistry. 1969 Jun;8(6):2442–2454. doi: 10.1021/bi00834a029. [DOI] [PubMed] [Google Scholar]
  43. Higa E. H., Ramaley R. F. Purification and properties of threonine deaminase from the X-1 isolate of the genus Thermus. J Bacteriol. 1973 May;114(2):556–562. doi: 10.1128/jb.114.2.556-562.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Himmelhoch R., Peterson E. A. Preparation of leucine aminopeptidase free of endopeptidase activity. Biochemistry. 1968 Jun;7(6):2085–2093. doi: 10.1021/bi00846a010. [DOI] [PubMed] [Google Scholar]
  45. Howard R. L., Becker R. R. Isolation and some properties of the triphosphopyridine nucleotide isocitrate dehydrogenase from Bacillus stearothermophilus. J Biol Chem. 1970 Jun;245(12):3186–3194. [PubMed] [Google Scholar]
  46. Howard R. L., Becker R. R. Substrate inactivation of fructose-I,6-diphosphate aldolase from Bacillus stearothermophilus. Biochim Biophys Acta. 1972 Apr 7;268(1):249–252. doi: 10.1016/0005-2744(72)90221-5. [DOI] [PubMed] [Google Scholar]
  47. Howell N., Akagi J. M., Himes R. H. Thermostability of glycolytic enzymes from thermophilic clostridia. Can J Microbiol. 1969 May;15(5):461–464. doi: 10.1139/m69-081. [DOI] [PubMed] [Google Scholar]
  48. JUNGE J. M., STEIN E. A., NEURATH H., FISCHER E. H. The amino acid composition of alpha-amylase from Bacillus subtilis. J Biol Chem. 1959 Mar;234(3):556–561. [PubMed] [Google Scholar]
  49. KOFFLER H., GALE G. O. The relative thermostability of cytoplasmic proteins from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):249–251. doi: 10.1016/0003-9861(57)90267-9. [DOI] [PubMed] [Google Scholar]
  50. KOFFLER H. Protoplasmic differences between mesophiles and thermophiles. Bacteriol Rev. 1957 Dec;21(4):227–240. doi: 10.1128/br.21.4.227-240.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Kirschenbaum D. M. A compilation of amino acid analyses of proteins. I. Anal Biochem. 1971 Nov;44(1):159–173. doi: 10.1016/0003-2697(71)90357-5. [DOI] [PubMed] [Google Scholar]
  52. Kirschenbaum D. M. A compilation of amino acid analyses of proteins. II. Anal Biochem. 1972 Sep;49(1):248–266. doi: 10.1016/0003-2697(72)90264-3. [DOI] [PubMed] [Google Scholar]
  53. Klotz I. M. Comparison of molecular structures of proteins: helix content; distribution of apolar residues. Arch Biochem Biophys. 1970 Jun;138(2):704–706. doi: 10.1016/0003-9861(70)90401-7. [DOI] [PubMed] [Google Scholar]
  54. Koffler H., Mallett G. E., Adye J. MOLECULAR BASIS OF BIOLOGICAL STABILITY TO HIGH TEMPERATURES. Proc Natl Acad Sci U S A. 1957 Jun 15;43(6):464–477. doi: 10.1073/pnas.43.6.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Kuramitsu H. K. Concerted feedback inhibition of aspartokinase from Bacillus stearothermophillus. Biochim Biophys Acta. 1968 Nov 19;167(3):643–645. doi: 10.1016/0005-2744(68)90064-8. [DOI] [PubMed] [Google Scholar]
  56. Kuramitsu H. K. Concerted feedback inhibition of aspartokinase from Bacillus stearothermophilus. I. Catalytic and regulatory properties. J Biol Chem. 1970 Jun 10;245(11):2991–2997. [PubMed] [Google Scholar]
  57. Lamanna C. Relation Between Temperature Growth Range and Size in the Genus Bacillus. J Bacteriol. 1940 May;39(5):593–596. doi: 10.1128/jb.39.5.593-596.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Levy J., Biltonen R. Thermodynamic studies of transfer ribonucleic acids. 3. Thermodynamic model for the thermal unfolding of yeast phenylalanine-specific transfer ribonucleic acid. Biochemistry. 1972 Oct 24;11(22):4145–4152. doi: 10.1021/bi00772a018. [DOI] [PubMed] [Google Scholar]
  59. Levy J., Rialdi G., Biltonen R. Thermodynamic studies of transfer ribonucleic acids. II. Characterization of the thermal unfolding of yeast phenylalanine-specific transfer ribonucleic acid. Biochemistry. 1972 Oct 24;11(22):4138–4144. doi: 10.1021/bi00772a017. [DOI] [PubMed] [Google Scholar]
  60. Ljungdahl L. G. Total synthesis of acetate from CO2 by heterotrophic bacteria. Annu Rev Microbiol. 1969;23:515–538. doi: 10.1146/annurev.mi.23.100169.002503. [DOI] [PubMed] [Google Scholar]
  61. Ljungdahl L., Brewer J. M., Neece S. H., Fairwell T. Purification, stability, and composition of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J Biol Chem. 1970 Sep 25;245(18):4791–4797. [PubMed] [Google Scholar]
  62. MALLETT G. E., KOFFLER H. Hypotheses concerning the relative stability of flagella from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):254–256. doi: 10.1016/0003-9861(57)90269-2. [DOI] [PubMed] [Google Scholar]
  63. MANNING G. B., CAMPBELL L. L., FOSTER R. J. Thermostable alpha-amylase of Bacillus stearothermophilus. II. Physical properties and molecular weight. J Biol Chem. 1961 Nov;236:2958–2961. [PubMed] [Google Scholar]
  64. MANNING G. B., CAMPBELL L. L. Thermostable alpha-amylase of Bacillus stearothermophilus. I. Crystallization and some general properties. J Biol Chem. 1961 Nov;236:2952–2957. [PubMed] [Google Scholar]
  65. MARSH C., MILITZER W. Thermal enzymes. V. Properties of a malic dehydrogenase. Arch Biochem Biophys. 1952 Apr;36(2):269–275. doi: 10.1016/0003-9861(52)90411-6. [DOI] [PubMed] [Google Scholar]
  66. MARSH C., MILITZER W. Thermal enzymes. VII. Further data on an adenosinetriphosphatase. Arch Biochem Biophys. 1956 Feb;60(2):433–438. doi: 10.1016/0003-9861(56)90448-9. [DOI] [PubMed] [Google Scholar]
  67. MARSH C., MILITZER W. Thermal enzymes. VIII. Properties of a heat-stable inorganic pyrophosphatase. Arch Biochem Biophys. 1956 Feb;60(2):439–451. doi: 10.1016/0003-9861(56)90449-0. [DOI] [PubMed] [Google Scholar]
  68. MILITZER W., SONDEREGGER T. B., TUTTLE L. C. Thermal enzymes. II. Cytochromes. Arch Biochem. 1950 Apr;26(2):299–306. [PubMed] [Google Scholar]
  69. MILITZER W., SONDEREGGER T. B. Thermal enzymes. Arch Biochem. 1949 Nov;24(1):75–82. [PubMed] [Google Scholar]
  70. MILITZER W., TUTTLE L. C., GEORGI C. E. Thermal enzymes. III. Apyrase from a thermophilic Bacterium. Arch Biochem Biophys. 1951 May;31(3):416–423. doi: 10.1016/0003-9861(51)90157-9. [DOI] [PubMed] [Google Scholar]
  71. MILITZER W., TUTTLE L. C. Thermal enzymes. IV. Partial separation of an adenosinetriphosphatase from an apyrase fraction. Arch Biochem Biophys. 1952 Aug;39(2):379–386. doi: 10.1016/0003-9861(52)90347-0. [DOI] [PubMed] [Google Scholar]
  72. Malacinski G. M., Rutter W. J. Multiple molecular forms of alpha-amylase from the rabbit. Biochemistry. 1969 Nov;8(11):4382–4390. doi: 10.1021/bi00839a024. [DOI] [PubMed] [Google Scholar]
  73. Margoliash E., Schejter A. Cytochrome c. Adv Protein Chem. 1966;21:113–286. doi: 10.1016/s0065-3233(08)60128-x. [DOI] [PubMed] [Google Scholar]
  74. Moser P., Roncari G., Zuber H. Thermophilic aminopeptidasesfrom Bac. stearothermophilus. II. Aminopeptidase I (AP I): physico-chemical properties; thermostability and activation; formation of the apoenzyme and subunits. Int J Protein Res. 1970;2(3):191–207. [PubMed] [Google Scholar]
  75. Muramatsu N., Noso Y. Purification and characterization of glucose-6-phosphate isomerase from Bacillus stearothermophilus. Arch Biochem Biophys. 1971 May;144(1):245–252. doi: 10.1016/0003-9861(71)90475-9. [DOI] [PubMed] [Google Scholar]
  76. Murphey W. H., Barnaby C., Lin F. J., Kaplan N. O. Malate dehydrogenases. II. Purification and properties of Bacillus subtilis, Bacillus stearothermophilus, and Escherichia coli malate dehydrogenases. J Biol Chem. 1967 Apr 10;242(7):1548–1559. [PubMed] [Google Scholar]
  77. O'Brien W. E., Brewer J. M., Ljungdahl L. G. Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem. 1973 Jan 25;248(2):403–408. [PubMed] [Google Scholar]
  78. Ogasahara K., Yutani K., Imanishi A., Isemura T. Studies on thermophilic alpha-amylase from Bacillus stearothermophilus. 3. Effect of temperature on the renaturation of denatured thermophilic alpha-amylase. J Biochem. 1970 Jan;67(1):83–89. doi: 10.1093/oxfordjournals.jbchem.a129237. [DOI] [PubMed] [Google Scholar]
  79. Ohta Y., Ogura Y., Wada A. Thermostable protease from thermophilic bacteria. I. Thermostability, physiocochemical properties, and amino acid composition. J Biol Chem. 1966 Dec 25;241(24):5919–5925. [PubMed] [Google Scholar]
  80. Ohta Y. Thermostable protease from thermophilic bacteria. II. Studies on the stability of the protease. J Biol Chem. 1967 Feb 10;242(3):509–515. [PubMed] [Google Scholar]
  81. Penhoet E. E., Kochman M., Rutter W. J. Molecular and catalytic properties of aldolase C. Biochemistry. 1969 Nov;8(11):4396–4402. doi: 10.1021/bi00839a026. [DOI] [PubMed] [Google Scholar]
  82. Pfueller S. L., Elliott W. H. The extracellular alpha-amylase of bacillus stearothermophilus. J Biol Chem. 1969 Jan 10;244(1):48–54. [PubMed] [Google Scholar]
  83. Pon N. G., Schnackerz K. D., Blackburn M. N., Chatterjee G. C., Noltmann E. A. Molecular weight and amino acid composition of five-times-crystallized phosphoglucose isomerase from rabbit skeletal muscle. Biochemistry. 1970 Mar 31;9(7):1506–1514. doi: 10.1021/bi00809a005. [DOI] [PubMed] [Google Scholar]
  84. Rall S. C., Bolinger R. E., Cole R. D. The amino acid sequence of ferredoxin from Clostridium acidi-urici. Biochemistry. 1969 Jun;8(6):2486–2496. doi: 10.1021/bi00834a035. [DOI] [PubMed] [Google Scholar]
  85. Ray P. H., White D. C., Brock T. D. Effect of growth temperature on the lipid composition of Thermus aquaticus. J Bacteriol. 1971 Oct;108(1):227–235. doi: 10.1128/jb.108.1.227-235.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Ray P. H., White D. C., Brock T. D. Effect of temperature on the fatty acid composition of Thermus aquaticus. J Bacteriol. 1971 Apr;106(1):25–30. doi: 10.1128/jb.106.1.25-30.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Roncari G., Zuber H. Thermophilic aminopeptidases from Bacillus stearothermophilus. I. Isolation, specificity, and general properties of the thermostable aminopeptidase I. Int J Protein Res. 1969;1(1):45–61. doi: 10.1111/j.1399-3011.1969.tb01625.x. [DOI] [PubMed] [Google Scholar]
  88. STEIN E. A., JUNGE J. M., FISCHER E. H. The amino acid composition of alpha-amylase from Aspergillus oryzae. J Biol Chem. 1960 Feb;235:371–378. [PubMed] [Google Scholar]
  89. Sattar S. A., Synek E. J., Westwood J. C., Neals P. Hazard inherent in microbial tracers: reduction of risk by the use of Bacillus stearothermophilus spores in aerobiology. Appl Microbiol. 1972 Jun;23(6):1053–1059. doi: 10.1128/am.23.6.1053-1059.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Sauvan R. L., Mira O. J., Amelunxen R. E. Thermostable glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. I. Immunochemical studies. Biochim Biophys Acta. 1972 May 18;263(3):794–804. doi: 10.1016/0005-2795(72)90063-3. [DOI] [PubMed] [Google Scholar]
  91. Schnebli H. P., Vatter A. E., Abrams A. Membrane adenosine triphosphatase from Streptococcus faecalis. Molecular weight, subunit structure, and amino acid composition. J Biol Chem. 1970 Mar 10;245(5):1122–1127. [PubMed] [Google Scholar]
  92. Singleton R., Jr, Kimmel J. R., Amelunxen R. E. The amino acid composition and other properties of thermostable glyceraldehyde 3-phosphate dehydrogenase from Bacillus stearothermophilus. J Biol Chem. 1969 Mar 25;244(6):1623–1630. [PubMed] [Google Scholar]
  93. Stellwagen E., Cronlund M. M., Barnes L. D. A thermostable enolase from the extreme thermophile Thermus aquaticus YT-1. Biochemistry. 1973 Apr 10;12(8):1552–1559. doi: 10.1021/bi00732a014. [DOI] [PubMed] [Google Scholar]
  94. Stoll E., Hermodson M. A., Ericsson L. H., Zuber H. Subunit structure of the thermophilic aminopeptidase I from Bacillus stearothermophilus. Biochemistry. 1972 Dec 5;11(25):4731–4735. doi: 10.1021/bi00775a015. [DOI] [PubMed] [Google Scholar]
  95. Sugimoto S., Noso Y. Thermal properties of fructose-I,6-diphosphate aldolase from thermophilic bacteria. Biochim Biophys Acta. 1971 Apr 14;235(1):210–221. doi: 10.1016/0005-2744(71)90049-0. [DOI] [PubMed] [Google Scholar]
  96. Sun A. Y., Ljungdahl L., Wood H. G. Total synthesis of acetate from CO2. II. Purification and properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J Bacteriol. 1969 May;98(2):842–844. doi: 10.1128/jb.98.2.842-844.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Suzuki Koichi, Ieuan Harris J. Glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. FEBS Lett. 1971 Mar 16;13(4):217–220. doi: 10.1016/0014-5793(71)80539-2. [DOI] [PubMed] [Google Scholar]
  98. THOMPSON P. J., THOMPSON T. L. Some characteristics of a purified heat-stable aldolase. J Bacteriol. 1962 Oct;84:694–700. doi: 10.1128/jb.84.4.694-700.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Tanaka M., Haniu M., Matsueda G., Yasunobu K. T., Himes R. H., Akagi J. M., Barnes E. M., Devanathan T. The primary structure of the Clostridium tartarivorum ferredoxin, a heat-stable ferredoxin. J Biol Chem. 1971 Jun 25;246(12):3953–3960. [PubMed] [Google Scholar]
  100. Tanaka M., Nakashima T., Benson A., Mower H., Tasunobu K. T. The amino acid sequence of Clostridium pasteurianum ferredoxin. Biochemistry. 1966 May;5(5):1666–1681. doi: 10.1021/bi00869a032. [DOI] [PubMed] [Google Scholar]
  101. Thomas D. A., Kuramitsu H. K. Biosynthetic L-threonine deaminase from Bacillus stearothermophilus. I. Catalytic and regulatory properties. Arch Biochem Biophys. 1971 Jul;145(1):96–104. doi: 10.1016/0003-9861(71)90014-2. [DOI] [PubMed] [Google Scholar]
  102. Tsunoda J. N., Yasunobu K. T., Whiteley H. R. Non-heme iron proteins. IX. The amino acid sequence of ferredoxin from Micrococcus aerogenes. J Biol Chem. 1968 Dec 10;243(23):6262–6272. [PubMed] [Google Scholar]
  103. Ulrich J. T., McFeters G. A., Temple K. L. Induction and characterization of -galactosidase in an extreme thermophile. J Bacteriol. 1972 May;110(2):691–698. doi: 10.1128/jb.110.2.691-698.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. WAUGH D. F. Protein-protein interactions. Adv Protein Chem. 1954;9:325–437. doi: 10.1016/s0065-3233(08)60210-7. [DOI] [PubMed] [Google Scholar]
  105. WELKER N. E., CAMPBELL L. L. DE NOVO SYNTHESIS OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1963 Dec;86:1202–1210. doi: 10.1128/jb.86.6.1202-1210.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. WELKER N. E., CAMPBELL L. L. INDUCED BIOSYNTHESIS OF ALPHA-AMYLASE BY GROWING CULTURES OF BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1963 Dec;86:1196–1201. doi: 10.1128/jb.86.6.1196-1201.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Weerkamp A., Mac Elroy R. D. Lactae dehydrogenase from an extremely thermophilic Bacillus. Arch Mikrobiol. 1972;85(2):113–122. doi: 10.1007/BF00409292. [DOI] [PubMed] [Google Scholar]
  108. Wisdom C., Welker N. E. Membranes of Bacillus stearothermophilus: factors affecting protoplast stability and thermostability of alkaline phosphatase and reduced nicotinamide adenine dinucleotide oxidase. J Bacteriol. 1973 Jun;114(3):1336–1345. doi: 10.1128/jb.114.3.1336-1345.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  109. Yoshida M. Allosteric nature of thermostable phosphofructokinase from an extreme thermophilic bacterium. Biochemistry. 1972 Mar 14;11(6):1087–1093. doi: 10.1021/bi00756a022. [DOI] [PubMed] [Google Scholar]
  110. Yoshida M., Oshima T., Imahori K. The thermostable allosteric enzyme: phosphofructokinase from an extreme thermophile. Biochem Biophys Res Commun. 1971 Apr 2;43(1):36–39. doi: 10.1016/s0006-291x(71)80081-5. [DOI] [PubMed] [Google Scholar]
  111. Yoshida M., Oshima T. The thermostable allosteric nature of fructose 1,6-diphosphatase from an extreme thermophile. Biochem Biophys Res Commun. 1971 Oct 15;45(2):495–500. doi: 10.1016/0006-291x(71)90846-1. [DOI] [PubMed] [Google Scholar]
  112. Yoshizaki F., Oshima T., Imahori K. Studies on phosphoglucomutase from an extreme thermophile, Flavobacterium thermophilum HB8. I. Thermostability and other enzymatic properties. J Biochem. 1971 Jun;69(6):1083–1089. doi: 10.1093/oxfordjournals.jbchem.a129561. [DOI] [PubMed] [Google Scholar]
  113. Zeikus J. G., Brock T. D. Protein synthesis at high temperatures: aminoacylation of tRNA. Biochim Biophys Acta. 1971 Feb 11;228(3):736–745. doi: 10.1016/0005-2787(71)90739-8. [DOI] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES