Full text
PDF



























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BETZ A., CHANCE B. PHASE RELATIONSHIP OF GLYCOLYTIC INTERMEDIATES IN YEAST CELLS WITH OSCILLATORY METABOLIC CONTROL. Arch Biochem Biophys. 1965 Mar;109:585–594. doi: 10.1016/0003-9861(65)90404-2. [DOI] [PubMed] [Google Scholar]
- BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BUCHWALD M., BRITTEN R. J. Incorporation of ribonucleic acid bases into the metabolic pool and RNA of E. coli. Biophys J. 1963 Mar;3:155–166. doi: 10.1016/s0006-3495(63)86811-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baich A., Johnson M. Evolutionary advantage of control of a biosynthetic pathway. Nature. 1968 May 4;218(5140):464–465. doi: 10.1038/218464a0. [DOI] [PubMed] [Google Scholar]
- Bechet J., Wiame J. M. Indication of a specific regulatory binding protein for ornithinetranscarbamylase in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1965 Nov 8;21(3):226–234. doi: 10.1016/0006-291x(65)90276-7. [DOI] [PubMed] [Google Scholar]
- Bostock C. J., Donachie W. D., Masters M., Mitchison J. M. Synthesis of enzymes and DNA in synchronous cultures of Schizosaccharomyces pombe. Nature. 1966 May 21;210(5038):808–810. doi: 10.1038/210808a0. [DOI] [PubMed] [Google Scholar]
- CAMPBELL A. Synchronization of cell division. Bacteriol Rev. 1957 Dec;21(4):263–272. doi: 10.1128/br.21.4.263-272.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COHEN G., JACOB F. Sur la répression de la synthèse des enzymes intervenant dans la formation du tryptophane chez Escherichia coll. C R Hebd Seances Acad Sci. 1959 Jun 15;248(24):3490–3492. [PubMed] [Google Scholar]
- COLE F. E., SCHMIDT R. R. CONTROL OF ASPARTATE TRANSCARBAMYLASE ACTIVITY DURING SYNCHRONOUS GROWTH OF CHLORELLA PYRENOIDOSA. Biochim Biophys Acta. 1964 Sep 4;90:616–618. doi: 10.1016/0304-4165(64)90244-2. [DOI] [PubMed] [Google Scholar]
- CONWAY E. J., ARMSTRONG W. M. The total intracellular concentration of solutes in yeast and other plant cells and the distensibility of the plant-cell wall. Biochem J. 1961 Dec;81:631–639. doi: 10.1042/bj0810631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COWIE D. B., McCLURE F. T. Metabolic pools and the synthesis of macromolecules. Biochim Biophys Acta. 1959 Jan;31(1):236–245. doi: 10.1016/0006-3002(59)90460-3. [DOI] [PubMed] [Google Scholar]
- Chapman C., Bartley W. The kinetics of enzyme changes in yeast under conditions that cause the loss of mitochondria. Biochem J. 1968 Apr;107(4):455–465. doi: 10.1042/bj1070455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox R. P., Elson N. A., Tu S. H., Griffin M. J. Hormonal induction of alkaline phosphatase activity by an increase in catalytic efficiency of the enzyme. J Mol Biol. 1971 May 28;58(1):197–215. doi: 10.1016/0022-2836(71)90241-5. [DOI] [PubMed] [Google Scholar]
- DATTA P., GEST H. ALTERNATIVE PATTERNS OF END-PRODUCT CONTROL IN BIOSYNTHESIS OF AMINO-ACIDS OF THE ASPARTIC FAMILY. Nature. 1964 Sep 19;203:1259–1261. doi: 10.1038/2031259a0. [DOI] [PubMed] [Google Scholar]
- DEAN A. C., HINSHELWOOD C. SOME BASIC ASPECTS OF CELL REGULATION. Nature. 1964 Jan 18;201:232–239. doi: 10.1038/201232a0. [DOI] [PubMed] [Google Scholar]
- DONACHIE W. D. THE REGULATION OF PYRIMIDINE BIOSYNTHESIS IN NEUROSPORA CASSA. II. HETEROKARYONS AND THE ROLE OF THE "REGULATORY MECHANISMS". Biochim Biophys Acta. 1964 Feb 10;82:293–302. doi: 10.1016/0304-4165(64)90300-9. [DOI] [PubMed] [Google Scholar]
- DONACHIE W. D. THE REGULATION OF PYRIMIDINE BIOSYNTHESIS IN NEUROSPORA CRASSA. I. END-PRODUCT INHIBITION AND REPRESSION OF ASPARTATE CARBAMOYLTRANSFERASE. Biochim Biophys Acta. 1964 Feb 10;82:284–292. doi: 10.1016/0304-4165(64)90299-5. [DOI] [PubMed] [Google Scholar]
- Davis R. H. Utilization of exogenous and endogenous ornithine by Neurospora crassa. J Bacteriol. 1968 Aug;96(2):389–395. doi: 10.1128/jb.96.2.389-395.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donachie W. D. Control of enzyme steps during the bacterial cell cycle. Nature. 1965 Mar 13;205(976):1084–1086. doi: 10.1038/2051084a0. [DOI] [PubMed] [Google Scholar]
- Engelberg J. On deterministic origins of mitotic variability. J Theor Biol. 1968 Aug;20(2):249–259. doi: 10.1016/0022-5193(68)90194-x. [DOI] [PubMed] [Google Scholar]
- Fowden L., Lewis D., Tristram H. Toxic amino acids: their action as antimetabolites. Adv Enzymol Relat Areas Mol Biol. 1967;29:89–163. doi: 10.1002/9780470122747.ch3. [DOI] [PubMed] [Google Scholar]
- GILES C. H., MCKAY R. B. ADSORPTION OF CATIONIC (BASIC) DYES BY FIXED YEAST CELLS. J Bacteriol. 1965 Feb;89:390–397. doi: 10.1128/jb.89.2.390-397.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GORINI L., MAAS W. K. The potential for the formation of a biosynthetic enzyme in Escherichia coli. Biochim Biophys Acta. 1957 Jul;25(1):208–209. doi: 10.1016/0006-3002(57)90450-x. [DOI] [PubMed] [Google Scholar]
- GORINI L. Regulation en retour (feedback control) de la synthèse de l'arginine chez Escherichia coli. Bull Soc Chim Biol (Paris) 1958;40(12):1939–1952. [PubMed] [Google Scholar]
- Goodwin B. C. An entrainment model for timed enzyme syntheses in bacteria. Nature. 1966 Jan 29;209(5022):479–481. doi: 10.1038/209479a0. [DOI] [PubMed] [Google Scholar]
- Gorini L. ANTAGONISM BETWEEN SUBSTRATE AND REPRESSOR IN CONTROLLING THE FORMATION OF A BIOSYNTHETIC ENZYME. Proc Natl Acad Sci U S A. 1960 May;46(5):682–690. doi: 10.1073/pnas.46.5.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffith J. S. Mathematics of cellular control processes. I. Negative feedback to one gene. J Theor Biol. 1968 Aug;20(2):202–208. doi: 10.1016/0022-5193(68)90189-6. [DOI] [PubMed] [Google Scholar]
- Gross T. S., Rowbury R. J. Biochemical and physiological properties of methionyl-sRNA synthetase mutants of Salmonella typhimurium. J Gen Microbiol. 1971 Jan;65(1):5–21. doi: 10.1099/00221287-65-1-5. [DOI] [PubMed] [Google Scholar]
- Gumaa K. A., McLean P., Greenbaum A. L. Compartmentation in relation to metabolic control in liver. Essays Biochem. 1971;7:39–86. [PubMed] [Google Scholar]
- HANCOCK R. The intracellular amino acids of Staphylococcus aureus: release and analysis. Biochim Biophys Acta. 1958 May;28(2):402–412. doi: 10.1016/0006-3002(58)90488-8. [DOI] [PubMed] [Google Scholar]
- HOLZER H. Regulation of carbohydrate metabolism by enzyme competition. Cold Spring Harb Symp Quant Biol. 1961;26:277–288. doi: 10.1101/sqb.1961.026.01.034. [DOI] [PubMed] [Google Scholar]
- HOMMES F. A. OSCILLATION TIMES OF THE OSCILLATORY REDUCTION OF PYRIDINE NUCLEOTIDES DURING ANAEROBIC GLYCOLYSIS IN BREWER'S YEAST. Arch Biochem Biophys. 1964 Dec;108:500–505. doi: 10.1016/0003-9861(64)90433-3. [DOI] [PubMed] [Google Scholar]
- Halvorson H. O., Carter B. L., Tauro P. Synthesis of enzymes during the cell cycle. Adv Microb Physiol. 1971;6:47–106. [PubMed] [Google Scholar]
- Hare T. A., Schmidt R. R. Nitrogen metabolism during synchronous growth of Chlorella. II. Free-, peptide-, and protein-amino acid distribution. J Cell Physiol. 1970 Feb;75(1):73–82. doi: 10.1002/jcp.1040750109. [DOI] [PubMed] [Google Scholar]
- Haseltine W. A. In vitro transcription of Escherichia coli ribosomal RNA genes. Nature. 1972 Feb 11;235(5337):329–333. doi: 10.1038/235329a0. [DOI] [PubMed] [Google Scholar]
- JACOB F., MONOD J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961 Jun;3:318–356. doi: 10.1016/s0022-2836(61)80072-7. [DOI] [PubMed] [Google Scholar]
- KEMPNER E. S., COWIE D. B. Metabolic pools and the utilization of amino acid analogs for protein synthesis. Biochim Biophys Acta. 1960 Aug 26;42:401–408. doi: 10.1016/0006-3002(60)90817-9. [DOI] [PubMed] [Google Scholar]
- KENNELL D., MAGASANIK B. The relation of ribosome content to the rate of enzyme synthesis in Aerobacter aerogenes. Biochim Biophys Acta. 1962 Jan 22;55:139–151. doi: 10.1016/0006-3002(62)90940-x. [DOI] [PubMed] [Google Scholar]
- Kacser H., Burns J. A. The control of flux. Symp Soc Exp Biol. 1973;27:65–104. [PubMed] [Google Scholar]
- Kalant N., Beitner R. Intracellular compartmentation of glycolytic phosphate esters. J Biol Chem. 1971 Jan 25;246(2):504–507. [PubMed] [Google Scholar]
- Karlström O., Gorini L. A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. II. Application to the physiological evidence. J Mol Biol. 1969 Jan 14;39(1):89–94. doi: 10.1016/0022-2836(69)90335-0. [DOI] [PubMed] [Google Scholar]
- Kilburn D. G., Lilly M. D., Webb F. C. The energetics of mammalian cell growth. J Cell Sci. 1969 May;4(3):645–654. doi: 10.1242/jcs.4.3.645. [DOI] [PubMed] [Google Scholar]
- Klevecz R. R. Temporal order in mammalian cells. I. The periodic synthesis of lactate dehydrogenase in the cell cycle. J Cell Biol. 1969 Nov;43(2):207–219. doi: 10.1083/jcb.43.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klingenberg M. Metabolite transport in mitochondria: an example for intracellular membrane function. Essays Biochem. 1970;6:119–159. [PubMed] [Google Scholar]
- Kovach J. S., Phang J. M., Ference M., Goldberger R. F. Studies on repression of the histidine operon. II. The role of the first enzyme in control of the histidine system. Proc Natl Acad Sci U S A. 1969 Jun;63(2):481–488. doi: 10.1073/pnas.63.2.481. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacroute F., Piérard A., Grenson M., Wiame J. M. The biosynthesis of carbamoyl phosphate in Saccharomyces cerevisiae. J Gen Microbiol. 1965 Jul;40(1):127–142. doi: 10.1099/00221287-40-1-127. [DOI] [PubMed] [Google Scholar]
- Lewis J. A., Ames B. N. Histidine regulation in Salmonella typhimurium. XI. The percentage of transfer RNA His charged in vivo and its relation to the repression of the histidine operon. J Mol Biol. 1972 Apr 28;66(1):131–142. doi: 10.1016/s0022-2836(72)80011-1. [DOI] [PubMed] [Google Scholar]
- MANDELSTAM J. The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol Rev. 1960 Sep;24(3):289–308. doi: 10.1128/br.24.3.289-308.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
- Masters M., Donachie W. D. Repression and the control of cyclic enzyme synthesis in Bacillus subtilis. Nature. 1966 Jan 29;209(5022):476–479. doi: 10.1038/209476a0. [DOI] [PubMed] [Google Scholar]
- Matile P., Bahr G. F. Biochemical and quantitative electron microscopic evidence for heterogeneity of mitochondria from Saccharomyces cerevisiae. Exp Cell Res. 1968 Oct;52(2):301–307. doi: 10.1016/0014-4827(68)90471-0. [DOI] [PubMed] [Google Scholar]
- Mitchison J. M. Enzyme synthesis in synchronous cultures. Science. 1969 Aug 15;165(3894):657–663. doi: 10.1126/science.165.3894.657. [DOI] [PubMed] [Google Scholar]
- NEIDHARDT F. C., FRAENKEL D. G. Metabolic regulation of RNA synthesis in bacteria. Cold Spring Harb Symp Quant Biol. 1961;26:63–74. doi: 10.1101/sqb.1961.026.01.012. [DOI] [PubMed] [Google Scholar]
- Neidhardt F. C. Roles of amino acid activating enzymes in cellular physiology. Bacteriol Rev. 1966 Dec;30(4):701–719. doi: 10.1128/br.30.4.701-719.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newsholme E. A., Gevers W. Control of glycolysis and gluconeogenesis in liver and kidney cortex. Vitam Horm. 1967;25:1–87. doi: 10.1016/s0083-6729(08)60033-3. [DOI] [PubMed] [Google Scholar]
- Nierlich D. P., Vielmetter W. Kinetic studies on the relationship of ribonucleotide precursor pools and ribonucleic acid synthesis. J Mol Biol. 1968 Feb 28;32(1):135–147. doi: 10.1016/0022-2836(68)90151-4. [DOI] [PubMed] [Google Scholar]
- O'Donovan G. A., Ingraham J. L. Cold-sensitive mutants of Escherichia coli resulting from increased feedback inhibition. Proc Natl Acad Sci U S A. 1965 Aug;54(2):451–457. doi: 10.1073/pnas.54.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmiter R. D. Regulation of protein synthesis in chick oviduct. I. Independent regulation of ovalbumin, conalbumin, ovomucoid, and lysozyme induction. J Biol Chem. 1972 Oct 25;247(20):6450–6461. [PubMed] [Google Scholar]
- Patte J. C., Le Bras G., Cohen G. N. Regulation by methionine of the synthesis of a third aspartokinase and of a second homoserine dehydrogenase in Escherichia coli K 12. Biochim Biophys Acta. 1967 Mar 22;136(2):245–247. doi: 10.1016/0304-4165(67)90069-4. [DOI] [PubMed] [Google Scholar]
- Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc R Soc Lond B Biol Sci. 1965 Oct 12;163(991):224–231. doi: 10.1098/rspb.1965.0069. [DOI] [PubMed] [Google Scholar]
- Raison J. K. Temperature-induced phase changes in membrane lipids and their influence on metabolic regulation. Symp Soc Exp Biol. 1973;27:485–512. [PubMed] [Google Scholar]
- Ramos F., Thuriaux P., Wiame J. M., Bechet J. The participation of ornithine and citrulline in the regulation of arginine metabolism in Saccharomyces cerevisiae. Eur J Biochem. 1970 Jan;12(1):40–47. doi: 10.1111/j.1432-1033.1970.tb00818.x. [DOI] [PubMed] [Google Scholar]
- Rapoport S. The regulation of glycolysis in mammalian erythrocytes. Essays Biochem. 1968;4:69–103. [PubMed] [Google Scholar]
- Righetti P., Little E. P., Wolf G. Reutilization of amino acids in protein synthesis in HeLa cells. J Biol Chem. 1971 Sep 25;246(18):5724–5732. [PubMed] [Google Scholar]
- Robichon-Szulmajster H., Cherest H. Regulation of homoserine O-transacetylase, first step in methionine biosyntheis in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1967 Jul 21;28(2):256–262. doi: 10.1016/0006-291x(67)90438-x. [DOI] [PubMed] [Google Scholar]
- Rosen R. Recent developments in the theory of control and regulation of cellular processes. 3. Int Rev Cytol. 1968;23:25–88. doi: 10.1016/s0074-7696(08)60269-7. [DOI] [PubMed] [Google Scholar]
- Rothman-Denes L., Martin R. G. Two mutations in the first gene of the histidine operon of Salmonella typhimurium affecting control. J Bacteriol. 1971 Apr;106(1):227–237. doi: 10.1128/jb.106.1.227-237.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rowbury R. J., Lawrence D. A., Smith D. A. Regulation of the methionine-specific aspartokinase and homoserine dehydrogenase of Salmonella typhimurium. J Gen Microbiol. 1968 Dec;54(3):337–342. doi: 10.1099/00221287-54-3-337. [DOI] [PubMed] [Google Scholar]
- SCHAECHTER M., MAALOE O., KJELDGAARD N. O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol. 1958 Dec;19(3):592–606. doi: 10.1099/00221287-19-3-592. [DOI] [PubMed] [Google Scholar]
- SERCARZ E. E., GORINI L. DIFFERENT CONTRIBUTION OF EXOGENOUS AND ENDOGENOUS ARGININE TO REPRESSOR FORMATION. J Mol Biol. 1964 Feb;8:254–262. doi: 10.1016/s0022-2836(64)80135-2. [DOI] [PubMed] [Google Scholar]
- SIMS A. P., FOLKES B. F. A KINETIC STUDY OF THE ASSIMILATION OF (15N)-AMMONIA AND THE SYNTHESIS OF AMINO ACIDS IN AN EXPONENTIALLY GROWING CULTURE OF CANDIDA UTILIS. Proc R Soc Lond B Biol Sci. 1964 Feb 18;159:479–502. doi: 10.1098/rspb.1964.0015. [DOI] [PubMed] [Google Scholar]
- Sanwal B. D. Allosteric controls of amphilbolic pathways in bacteria. Bacteriol Rev. 1970 Mar;34(1):20–39. doi: 10.1128/br.34.1.20-39.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Savageau M. A. Parameter sensitivity as a criterion for evaluating and comparing the performance of biochemical systems. Nature. 1971 Feb 19;229(5286):542–544. doi: 10.1038/229542a0. [DOI] [PubMed] [Google Scholar]
- Shaw C. R. Isozymes: classification, frequency, and significance. Int Rev Cytol. 1969;25:297–332. doi: 10.1016/s0074-7696(08)60206-5. [DOI] [PubMed] [Google Scholar]
- Smith D. F., Holmes R. A. Kinetics of Allosteric Inhibition In Vivo: a Quantitative Analysis with Synchronous Cultures of Blastocladiella emersonii. J Bacteriol. 1970 Dec;104(3):1223–1229. doi: 10.1128/jb.104.3.1223-1229.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stebbing N. Amino acid pool components as regulators of protein synthesis in the fission yeast, Schizosaccharomyces pombe. Exp Cell Res. 1972 Feb;70(2):381–389. doi: 10.1016/0014-4827(72)90150-4. [DOI] [PubMed] [Google Scholar]
- Stebbing N. Growth and changes in pool and macromolecular components of Schizosaccharomyces pombe during the cell cycle. J Cell Sci. 1971 Nov;9(3):701–717. doi: 10.1242/jcs.9.3.701. [DOI] [PubMed] [Google Scholar]
- Szybalski W., Bovre K., Fiandt M., Guha A., Hradecna Z., Kumar S., Lozeron H. A., Sr, Maher V. M., Nijkamp H. J., Summers W. C. Transcriptional controls in developing bacteriophages. J Cell Physiol. 1969 Oct;74(2 Suppl):33–70. doi: 10.1002/jcp.1040740405. [DOI] [PubMed] [Google Scholar]
- TAKETA K., POGELL B. M. ALLOSTERIC INHIBITION OF RAT LIVER FRUCTOSE 1,6-DIPHOSPHATASE BY ADENOSINE 5'-MONOPHOSPHATE. J Biol Chem. 1965 Feb;240:651–662. [PubMed] [Google Scholar]
- Tabor H., Tabor C. W. Partial separation of two pools of arginine in Escherichia coli; preferential use of exogenous rather than endogenous arginine for the biosynthesis of 1,4-diaminobutane. J Biol Chem. 1969 Dec 10;244(23):6383–6387. [PubMed] [Google Scholar]
- Threlfall C. J., Heath D. F. Compartmentation between glycolysis and gluconeogenesis in rat liver. Biochem J. 1968 Nov;110(2):303–312. doi: 10.1042/bj1100303. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Travers A. Control of transcription in bacteria. Nat New Biol. 1971 Jan 20;229(3):69–74. doi: 10.1038/newbio229069a0. [DOI] [PubMed] [Google Scholar]
- Tristram H. Control of amino acid biosynthesis in microorganisms. Sci Prog. 1968 Winter;56(224):449–477. [PubMed] [Google Scholar]
- UMBARGER H. E. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science. 1956 May 11;123(3202):848–848. doi: 10.1126/science.123.3202.848. [DOI] [PubMed] [Google Scholar]
- Umbarger H. E. Regulation of amino acid metabolism. Annu Rev Biochem. 1969;38:323–370. doi: 10.1146/annurev.bi.38.070169.001543. [DOI] [PubMed] [Google Scholar]
- Van den Berg C. J., Krzalić L., Mela P., Waelsch H. Compartmentation of glutamate metabolism in brain. Evidence for the existence of two different tricarboxylic acid cycles in brain. Biochem J. 1969 Jun;113(2):281–290. doi: 10.1042/bj1130281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu R. S., Soeiro R. Turnover of nuclear RNA in HeLa cells: evidence for a single ribonucleotide pool. J Mol Biol. 1971 Jun 14;58(2):481–487. doi: 10.1016/0022-2836(71)90365-2. [DOI] [PubMed] [Google Scholar]
- ZALOKAR M. Kinetics of amino acid uptake and protein synthesis in Neurospora. Biochim Biophys Acta. 1961 Jan 29;46:423–432. doi: 10.1016/0006-3002(61)90573-x. [DOI] [PubMed] [Google Scholar]
- Zamenhof S., Eichhorn H. H. Study of microbial evolution through loss of biosynthetic functions: establishment of "defective" mutants. Nature. 1967 Nov 4;216(5114):456–458. doi: 10.1038/216456a0. [DOI] [PubMed] [Google Scholar]
- Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]