Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Aug 1;92(16):7595–7599. doi: 10.1073/pnas.92.16.7595

Disruption of cellular signaling pathways by daunomycin through destabilization of nonlamellar membrane structures.

P V Escribá 1, M Sastre 1, J A García-Sevilla 1
PMCID: PMC41386  PMID: 7638236

Abstract

Albeit anthracyclines are widely used in the treatment of solid tumors and leukemias, their mechanism of action has not been elucidated. The present study gives relevant information about the role of nonlamellar membrane structures in signaling pathways, which could explain how anthracyclines can exert their cytocidal action without entering the cell [Tritton, T. R. & Yee, G. (1982) Science 217, 248-250]. The anthracycline daunomycin reduced the formation of the nonlamellar hexagonal (HII) phase (i.e., the hexagonal phase propensity), stabilizing the bilayer structure of the plasma membrane by a direct interaction with membrane phospholipids. As a consequence, various cellular events involved in signal transduction, such as membrane fusion and membrane association of peripheral proteins [e.g., guanine nucleotide-binding regulatory proteins (G proteins and protein kinase C-alpha beta)], where nonlamellar structures (negative intrinsic monolayer curvature strain) are required, were altered by the presence of daunomycin. Functionally, daunomycin also impaired the expression of the high-affinity state of a G protein-coupled receptor (ternary complex for the alpha 2-adrenergic receptor) due to G-protein dissociation from the plasma membrane. In vivo, daunomycin also decreased the levels of membrane-associated G proteins and protein kinase C-alpha beta in the heart. The occurrence of such nonlamellar structures favors the association of these peripheral proteins with the plasma membrane and prevents daunomycin-induced dissociation. These results reveal an important role of the lipid component of the cell membrane in signal transduction and its alteration by anthracyclines.

Full text

PDF
7595

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arcangeli A., Carlà M., Del Bene M. R., Becchetti A., Wanke E., Olivotto M. Polar/apolar compounds induce leukemia cell differentiation by modulating cell-surface potential. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5858–5862. doi: 10.1073/pnas.90.12.5858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barceló F., Escribá P. V., Miralles F. A scanning calorimetric study of natural DNA and antitumoral anthracycline antibiotic-DNA complexes. Chem Biol Interact. 1990;74(3):315–324. doi: 10.1016/0009-2797(90)90048-r. [DOI] [PubMed] [Google Scholar]
  3. Burke T. G., Tritton T. R. Structural basis of anthracycline selectivity for unilamellar phosphatidylcholine vesicles: an equilibrium binding study. Biochemistry. 1985 Mar 26;24(7):1768–1776. doi: 10.1021/bi00328a030. [DOI] [PubMed] [Google Scholar]
  4. Chaires J. B., Dattagupta N., Crothers D. M. Kinetics of the daunomycin--DNA interaction. Biochemistry. 1985 Jan 15;24(2):260–267. doi: 10.1021/bi00323a004. [DOI] [PubMed] [Google Scholar]
  5. Chauhan A., Chauhan V. P., Brockerhoff H. Effect of cholesterol on Ca2+-induced aggregation of liposomes and calcium diphosphatidate membrane traversal. Biochemistry. 1986 Apr 8;25(7):1569–1573. doi: 10.1021/bi00355a017. [DOI] [PubMed] [Google Scholar]
  6. Constantinides P. P., Inouchi N., Tritton T. R., Sartorelli A. C., Sturtevant J. M. A scanning calorimetric study of the interaction of anthracyclines with neutral and acidic phospholipids alone and in binary mixtures. J Biol Chem. 1986 Aug 5;261(22):10196–10203. [PubMed] [Google Scholar]
  7. Cullis P. R., Hope M. J., Tilcock C. P. Lipid polymorphism and the roles of lipids in membranes. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):127–144. doi: 10.1016/0009-3084(86)90067-8. [DOI] [PubMed] [Google Scholar]
  8. De Lean A., Stadel J. M., Lefkowitz R. J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem. 1980 Aug 10;255(15):7108–7117. [PubMed] [Google Scholar]
  9. Epand R. M., Stafford A., Wang J., Epand R. F. Zwitterionic amphiphiles that raise the bilayer to hexagonal phase transition temperature inhibit protein kinase C. The exception that proves the rule. FEBS Lett. 1992 Jun 15;304(2-3):245–248. doi: 10.1016/0014-5793(92)80629-u. [DOI] [PubMed] [Google Scholar]
  10. Epand R. M. The relationship between the effects of drugs on bilayer stability and on protein kinase C activity. Chem Biol Interact. 1987;63(3):239–247. doi: 10.1016/0009-2797(87)90044-5. [DOI] [PubMed] [Google Scholar]
  11. Escriba P. V., Ferrer-Montiel A. V., Ferragut J. A., Gonzalez-Ros J. M. Role of membrane lipids in the interaction of daunomycin with plasma membranes from tumor cells: implications in drug-resistance phenomena. Biochemistry. 1990 Aug 7;29(31):7275–7282. doi: 10.1021/bi00483a017. [DOI] [PubMed] [Google Scholar]
  12. Escriba P. V., Sastre M., Garcia-Sevilla J. A. Increased density of guanine nucleotide-binding proteins in the postmortem brains of heroin addicts. Arch Gen Psychiatry. 1994 Jun;51(6):494–501. doi: 10.1001/archpsyc.1994.03950060058006. [DOI] [PubMed] [Google Scholar]
  13. Gollapudi S., Patel K., Jain V., Gupta S. Protein kinase C isoforms in multidrug resistant P388/ADR cells: a possible role in daunorubicin transport. Cancer Lett. 1992 Feb 14;62(1):69–75. doi: 10.1016/0304-3835(92)90200-f. [DOI] [PubMed] [Google Scholar]
  14. González-Ros J. M., Ferrer-Montiel A. V., Soto F., Escriba P. V., Ferragut J. A. Interaction of anthracyclines with plasma membranes from tumour cells: implications on drug resistance. Biochem Soc Trans. 1989 Dec;17(6):964–965. doi: 10.1042/bst0170964. [DOI] [PubMed] [Google Scholar]
  15. Goormaghtigh E., Huart P., Brasseur R., Ruysschaert J. M. Mechanism of inhibition of mitochondrial enzymatic complex I-III by adriamycin derivatives. Biochim Biophys Acta. 1986 Sep 25;861(1):83–94. doi: 10.1016/0005-2736(86)90374-3. [DOI] [PubMed] [Google Scholar]
  16. Gruner S. M. Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. Proc Natl Acad Sci U S A. 1985 Jun;82(11):3665–3669. doi: 10.1073/pnas.82.11.3665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartmann E., Rapoport T. A., Lodish H. F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5786–5790. doi: 10.1073/pnas.86.15.5786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hoffman B. B., Mullikin-Kilpatrick D., Lefkowitz R. J. Heterogeneity of radioligand binding to alpha-adrenergic receptors. Analysis of guanine nucleotide regulation of agonist binding in relation to receptor subtypes. J Biol Chem. 1980 May 25;255(10):4645–4652. [PubMed] [Google Scholar]
  19. Israel M., Modest E. J., Frei E., 3rd N-trifluoroacetyladriamycin-14-valerate, an analog with greater experimental antitumor activity and less toxicity than adriamycin. Cancer Res. 1975 May;35(5):1365–1368. [PubMed] [Google Scholar]
  20. Ito M., Oguri M., Naruse A., Ito H., Suzuki Y., Satake N., Shibata S. Impaired endothelium-dependent relaxation in isolated thoracic aorta of rats with daunomycin-induced nephrosis. J Pharmacol Exp Ther. 1991 Jul 1;258(1):388–395. [PubMed] [Google Scholar]
  21. Lanzi C., Banfi P., Ravagnani F., Gambetta R. A. Diversity of effects of two antitumor anthracycline analogs on the pathway of activation of PKC in intact human platelets. Biochem Pharmacol. 1988 Sep 15;37(18):3497–3504. doi: 10.1016/0006-2952(88)90702-2. [DOI] [PubMed] [Google Scholar]
  22. Lanzi C., Gambetta R. A., Perego P., Banfi P., Franzi A., Guazzoni L., Zunino F. Protein kinase C activation by anthracyclines in Swiss 3T3 cells. Int J Cancer. 1991 Jan 2;47(1):136–142. doi: 10.1002/ijc.2910470124. [DOI] [PubMed] [Google Scholar]
  23. Lewis J. M., Woolkalis M. J., Gerton G. L., Smith R. M., Jarett L., Manning D. R. Subcellular distribution of the alpha subunit(s) of Gi: visualization by immunofluorescent and immunogold labeling. Cell Regul. 1991 Dec;2(12):1097–1113. doi: 10.1091/mbc.2.12.1097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lyman G. H., Preisler H. D., Papahadjopoulos D. Membrane action of DMSO and other chemical inducers of Friend leukaemic cell differentiation. Nature. 1976 Jul 29;262(5567):361–363. doi: 10.1038/262360a0. [DOI] [PubMed] [Google Scholar]
  25. Marsh D. Lipid-protein interactions in membranes. FEBS Lett. 1990 Aug 1;268(2):371–375. doi: 10.1016/0014-5793(90)81288-y. [DOI] [PubMed] [Google Scholar]
  26. McPherson G. A. Analysis of radioligand binding experiments. A collection of computer programs for the IBM PC. J Pharmacol Methods. 1985 Nov;14(3):213–228. doi: 10.1016/0160-5402(85)90034-8. [DOI] [PubMed] [Google Scholar]
  27. Melloni E., Pontremoli S., Michetti M., Sacco O., Sparatore B., Horecker B. L. The involvement of calpain in the activation of protein kinase C in neutrophils stimulated by phorbol myristic acid. J Biol Chem. 1986 Mar 25;261(9):4101–4105. [PubMed] [Google Scholar]
  28. Michaeli J., Busquets X., Orlow I., Younes A., Colomer D., Marks P. A., Rifkind R. A., Kolesnick R. N. A rise and fall in 1,2-diacylglycerol content signal hexamethylene bisacetamide-induced erythropoiesis. J Biol Chem. 1992 Nov 25;267(33):23463–23466. [PubMed] [Google Scholar]
  29. Michel T., Hoffman B. B., Lefkowitz R. J. Differential regulation of the alpha 2-adrenergic receptor by Na+ and guanine nucleotides. Nature. 1980 Dec 25;288(5792):709–711. doi: 10.1038/288709a0. [DOI] [PubMed] [Google Scholar]
  30. Miralles A., Olmos G., Sastre M., Barturen F., Martin I., Garcia-Sevilla J. A. Discrimination and pharmacological characterization of I2-imidazoline sites with [3H]idazoxan and alpha-2 adrenoceptors with [3H]RX821002 (2-methoxy idazoxan) in the human and rat brains. J Pharmacol Exp Ther. 1993 Mar;264(3):1187–1197. [PubMed] [Google Scholar]
  31. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  32. Neer E. J., Clapham D. E. Roles of G protein subunits in transmembrane signalling. Nature. 1988 May 12;333(6169):129–134. doi: 10.1038/333129a0. [DOI] [PubMed] [Google Scholar]
  33. Robison T. W., Giri S. N. Effect of chronic administration of doxorubicin on cardiac adenylate cyclase activity in mice. Biochem Biophys Res Commun. 1986 Apr 29;136(2):745–752. doi: 10.1016/0006-291x(86)90502-4. [DOI] [PubMed] [Google Scholar]
  34. Rocchi P., Ferreri A. M., Simone G., Bagnara G. P., Paolucci G. Neuronal cell differentiation of human neuroblastoma cells by inducing agents in combination. Anticancer Res. 1991 Sep-Oct;11(5):1885–1889. [PubMed] [Google Scholar]
  35. Sastre M., García-Sevilla J. A. Alpha 2-adrenoceptor subtypes identified by [3H]RX821002 binding in the human brain: the agonist guanoxabenz does not discriminate different forms of the predominant alpha 2A subtype. J Neurochem. 1994 Sep;63(3):1077–1085. doi: 10.1046/j.1471-4159.1994.63031077.x. [DOI] [PubMed] [Google Scholar]
  36. Seddon J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990 Feb 28;1031(1):1–69. doi: 10.1016/0304-4157(90)90002-t. [DOI] [PubMed] [Google Scholar]
  37. Senisterra G., Epand R. M. Dual modulation of protein kinase C activity by sphingosine. Biochem Biophys Res Commun. 1992 Sep 16;187(2):635–640. doi: 10.1016/0006-291x(92)91242-i. [DOI] [PubMed] [Google Scholar]
  38. Senisterra G., Epand R. M. Role of membrane defects in the regulation of the activity of protein kinase C. Arch Biochem Biophys. 1993 Jan;300(1):378–383. doi: 10.1006/abbi.1993.1051. [DOI] [PubMed] [Google Scholar]
  39. Triton T. R., Yee G. The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science. 1982 Jul 16;217(4556):248–250. doi: 10.1126/science.7089561. [DOI] [PubMed] [Google Scholar]
  40. Yoshimasa T., Sibley D. R., Bouvier M., Lefkowitz R. J., Caron M. G. Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature. 1987 May 7;327(6117):67–70. doi: 10.1038/327067a0. [DOI] [PubMed] [Google Scholar]
  41. Yu S. S., Lefkowitz R. J., Hausdorff W. P. Beta-adrenergic receptor sequestration. A potential mechanism of receptor resensitization. J Biol Chem. 1993 Jan 5;268(1):337–341. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES