Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1975 Jun;39(2):144–167. doi: 10.1128/br.39.2.144-167.1975

Psychrophilic bacteria.

R Y Morita
PMCID: PMC413900  PMID: 1095004

Full text

PDF
144

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN M. B. The thermophilic aerobic sporeforming bacteria. Bacteriol Rev. 1953 Jun;17(2):125–173. doi: 10.1128/br.17.2.125-173.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albright L. J. Alternate pressurization-depressurization effects on growth and net protein, RNA and DNA synthesis by Escherichia coli and Vibrio marinus. Can J Microbiol. 1969 Oct;15(10):1237–1240. doi: 10.1139/m69-223. [DOI] [PubMed] [Google Scholar]
  3. BOYD W. L., BOYD J. W. Soil microorganisms of the McMurdo Sound area, Antarctica. Appl Microbiol. 1963 Mar;11:116–121. doi: 10.1128/am.11.2.116-121.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BROWN A. D. Some general properties of a psychrophilic pseudomonad: the effects of temperature on some of these properties and the utilization of glucose by this organism and Pscudomonas aeruginosa. J Gen Microbiol. 1957 Dec;17(3):640–648. doi: 10.1099/00221287-17-3-640. [DOI] [PubMed] [Google Scholar]
  5. Baig I. A., Hopton J. W. Psychrophilic properties and the temperature characteristic of growth of bacteria. J Bacteriol. 1969 Oct;100(1):552–553. doi: 10.1128/jb.100.1.552-553.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brock T. D. Life at high temperatures. Evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science. 1967 Nov;158(3804):1012–1019. doi: 10.1126/science.158.3804.1012. [DOI] [PubMed] [Google Scholar]
  7. COLWELL R. R., MORITA R. Y. REISOLATION AND EMENDATION OF DESCRIPTION OF VIBRIO MARINUS (RUSSELL) FORD. J Bacteriol. 1964 Oct;88:831–837. doi: 10.1128/jb.88.4.831-837.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cook D. W., Lofton S. R. Chitinoclastic bacteria associated with shell disease in Penaeus shrimp and the blue crab (Callinectes sapidus). J Wildl Dis. 1973 Apr;9(2):154–159. doi: 10.7589/0090-3558-9.2.154. [DOI] [PubMed] [Google Scholar]
  9. D'Aoust J. Y., Gerber N. N. Isolation and purification of prodigiosin from Vibrio psychroerythrus. J Bacteriol. 1974 May;118(2):756–757. doi: 10.1128/jb.118.2.756-757.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. D'Aoust J. Y., Kushner D. J. Structural changes during lysis of a psychorophilic marine bacterium. J Bacteriol. 1971 Nov;108(2):916–927. doi: 10.1128/jb.108.2.916-927.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. D'Aoust J. Y., Kushner D. J. Vibrio psychroerythrus sp. n.: classification of the psychrophilic marine bacterium, NRC 1004. J Bacteriol. 1972 Aug;111(2):340–342. doi: 10.1128/jb.111.2.340-342.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Darling C. A., Siple P. A. Bacteria of Antarctica. J Bacteriol. 1941 Jul;42(1):83–98. doi: 10.1128/jb.42.1.83-98.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Delisle A. L., Levin R. E. Bacteriophages of psychrophilic pseudomonads. I. Host range of phage pools active against fish spoilage and fish-pathogenic pseudomonads. Antonie Van Leeuwenhoek. 1969;35(3):307–317. doi: 10.1007/BF02219151. [DOI] [PubMed] [Google Scholar]
  14. Delisle A. L., Levin R. E. Bacteriophages of psychrophilic pseudomonads. II. Host range of phage active against Pseudomonas putrefaciens. Antonie Van Leeuwenhoek. 1969;35(3):318–324. doi: 10.1007/BF02219152. [DOI] [PubMed] [Google Scholar]
  15. Drapeau G. R., Matula T. I., MacLeod R. A. Nutrition and metabolism of marine bacteria. XV. Relation of Na+-activated transport to the Na+ requirement of a marine pseudomonad for growth. J Bacteriol. 1966 Jul;92(1):63–71. doi: 10.1128/jb.92.1.63-71.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Druce R. G., Thomas S. B. An ecological study of the psychrotrophic bacteria of soil, water, grass and hay. J Appl Bacteriol. 1970 Jun;33(2):420–435. doi: 10.1111/j.1365-2672.1970.tb02215.x. [DOI] [PubMed] [Google Scholar]
  17. Edwards O. F., Rettger L. F. Relation of Certain Respiratory Enzymes to the Maximum Growth Temperatures of Bacteria. J Bacteriol. 1937 Nov;34(5):489–515. doi: 10.1128/jb.34.5.489-515.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Felter R. A., Colwell R. R., Chapman G. B. Morphology and round body fermation in Vibrio marinus. J Bacteriol. 1969 Jul;99(1):326–335. doi: 10.1128/jb.99.1.326-335.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Finne G., Matches J. R. Low-temperature-growing clostridia from marine sediments. Can J Microbiol. 1974 Dec;20(12):1639–1645. doi: 10.1139/m74-255. [DOI] [PubMed] [Google Scholar]
  20. Frank H. A., Reid A., Santo L. M., Lum N. A., Sandler S. T. Similarity in several properties of psychorophilic bacteria grown at low and moderate temperatures. Appl Microbiol. 1972 Oct;24(4):571–574. doi: 10.1128/am.24.4.571-574.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Griffiths R. P., Haight R. D. Reversible heat injury in the marine psychrophilic bacterium Vibrio marinus MP-1. Can J Microbiol. 1973 May;19(5):557–561. doi: 10.1139/m73-092. [DOI] [PubMed] [Google Scholar]
  22. HAGEN P. O., KUSHNER D. J., GIBBONS N. E. TEMPERATURE-INDUCED DEATH AND LYSIS IN A PSYCHROPHILIC BACTERIUM. Can J Microbiol. 1964 Dec;10:813–822. doi: 10.1139/m64-106. [DOI] [PubMed] [Google Scholar]
  23. HAGEN P. O., ROSE A. H. A psychrophilic Cryptoccus. Can J Microbiol. 1961 Jun;7:287–294. doi: 10.1139/m61-035. [DOI] [PubMed] [Google Scholar]
  24. Haight R. D., Morita R. Y. Thermally induced leakage from Vibrio marinus, an obligately psychrophilic marine bacterium. J Bacteriol. 1966 Nov;92(5):1388–1393. doi: 10.1128/jb.92.5.1388-1393.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hanus F. J., Morita R. Y. Significance of the temperature characteristic of growth. J Bacteriol. 1968 Feb;95(2):736–737. doi: 10.1128/jb.95.2.736-737.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Harder W., Veldkamp H. A continuous culture study of an obligately psychrophilic Pseudomonas species. Arch Mikrobiol. 1967;59(1):123–130. doi: 10.1007/BF00406323. [DOI] [PubMed] [Google Scholar]
  27. Harder W., Veldkamp H. Competition of marine psychrophilic bacteria at low temperatures. Antonie Van Leeuwenhoek. 1971;37(1):51–63. doi: 10.1007/BF02218466. [DOI] [PubMed] [Google Scholar]
  28. INGRAHAM J. L. Growth of psychrophilic bacteria. J Bacteriol. 1958 Jul;76(1):75–80. doi: 10.1128/jb.76.1.75-80.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ingraham J. L., Stokes J. L. PSYCHROPHILIC BACTERIA. Bacteriol Rev. 1959 Sep;23(3):97–108. doi: 10.1128/br.23.3.97-108.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ingram M. Psychophilic and psychrotrophic microorganisms. Ann Inst Pasteur Lille. 1965;16:111–118. [PubMed] [Google Scholar]
  31. KATES M., BAXTER R. M. Lipid composition of mesophilic and psychrophilic yeasts (Candida species) as influenced by environmental temperature. Can J Biochem Physiol. 1962 Sep;40:1213–1227. [PubMed] [Google Scholar]
  32. KATES M., HAGEN P. O. INFLUENCE OF TEMPERATURE ON FATTY ACID COMPOSITION OF PSYCHROPHILIC AND MESOPHILIC SERRATIA SPECIES. Can J Biochem. 1964 Apr;42:481–488. doi: 10.1139/o64-055. [DOI] [PubMed] [Google Scholar]
  33. KOFFLER H., GALE G. O. The relative thermostability of cytoplasmic proteins from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):249–251. doi: 10.1016/0003-9861(57)90267-9. [DOI] [PubMed] [Google Scholar]
  34. KOFFLER H. Protoplasmic differences between mesophiles and thermophiles. Bacteriol Rev. 1957 Dec;21(4):227–240. doi: 10.1128/br.21.4.227-240.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kawasaki T., Miyata I., Esaki K., Nose Y. Thiamine uptake in Escherichia coli. I. General properties of thiamine uptake system in Escherichia coli. Arch Biochem Biophys. 1969 Apr;131(1):223–230. doi: 10.1016/0003-9861(69)90125-8. [DOI] [PubMed] [Google Scholar]
  36. Kenis P. R., Morita R. Y. Thermally induced leakage of cellular material and viability in Vibrio marinus, a psychrophilic marine bacterium. Can J Microbiol. 1968 Nov;14(11):1239–1244. doi: 10.1139/m68-206. [DOI] [PubMed] [Google Scholar]
  37. Korngold R. R., Kushner D. J. Responses of a psychrophilic marine bacterium to changes in its ionic environment. Can J Microbiol. 1968 Mar;14(3):253–263. doi: 10.1139/m68-042. [DOI] [PubMed] [Google Scholar]
  38. Krajewska E., Szer W. Comparative studies of amino acid incorporation in a cell-free system from psychrophilic Pseudomonas sp. 412. Eur J Biochem. 1967 Sep;2(2):250–256. doi: 10.1111/j.1432-1033.1967.tb00132.x. [DOI] [PubMed] [Google Scholar]
  39. Kulpa C. F., Jr, Olsen R. H. Properties of psychrophilic bacteriophage specific for Micrococcus cryophilus. Can J Microbiol. 1971 Feb;17(2):157–160. doi: 10.1139/m71-027. [DOI] [PubMed] [Google Scholar]
  40. Langridge P., Morita R. Y. Thermolability of Malic Dehydrogenase from the Obligate Psychrophile Vibrio marinus. J Bacteriol. 1966 Aug;92(2):418–423. doi: 10.1128/jb.92.2.418-423.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Larkin J. M., Stokes J. L. Growth of psychrophilic microphilic microorganisms at subzero temperatures. Can J Microbiol. 1968 Feb;14(2):97–101. doi: 10.1139/m68-017. [DOI] [PubMed] [Google Scholar]
  42. MACLEOD R. A. THE QUESTION OF THE EXISTENCE OF SPECIFIC MARINE BACTERIA. Bacteriol Rev. 1965 Mar;29:9–24. [PMC free article] [PubMed] [Google Scholar]
  43. MORITA R. Y., ALBRIGHT L. J. CELL YIELDS OF VIBRIO MARINUS, AN OBLIGATE PSYCHROPHILE, AT LOW TEMPERATURE. Can J Microbiol. 1965 Apr;11:221–227. doi: 10.1139/m65-028. [DOI] [PubMed] [Google Scholar]
  44. MORITA R. Y., BURTON S. D. INFLUENCE OF MODERATE TEMPERATURE ON GROWTH AND MALIC DEHYDROGENASE ACTIVITY OF A MARINE PSYCHROPHILE. J Bacteriol. 1963 Nov;86:1025–1029. doi: 10.1128/jb.86.5.1025-1029.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Malcolm N. L. A temperature-induced lesion in amino acid-transfer ribonucleic acid attachment in a psychrophile. Biochim Biophys Acta. 1968 May 21;157(3):493–503. doi: 10.1016/0005-2787(68)90148-2. [DOI] [PubMed] [Google Scholar]
  46. Malcolm N. L. Molecular determinants of obligate psychrophily. Nature. 1969 Mar 15;221(5185):1031–1033. [PubMed] [Google Scholar]
  47. Malcolm N. L. Subunit structure and function of Micrococcus cryophilus glutamyl transfer RNA synthetase. Biochim Biophys Acta. 1969 Oct 22;190(2):347–357. doi: 10.1016/0005-2787(69)90085-9. [DOI] [PubMed] [Google Scholar]
  48. Malcolm N. L. Synthesis of protein and ribonucleic acid in a psychrophile at normal and restrictive growth temperatures. J Bacteriol. 1968 Apr;95(4):1388–1399. doi: 10.1128/jb.95.4.1388-1399.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Marshall B. J., Ohye D. F. Bacillus macquariensis n.sp., a psychrotrophic bacterium from sub-antarctic soil. J Gen Microbiol. 1966 Jul;44(1):41–46. doi: 10.1099/00221287-44-1-41. [DOI] [PubMed] [Google Scholar]
  51. Matula T. I., MacLeod R. A. Mechanism of optical effects in suspensions of a marine pseudomonad. J Bacteriol. 1969 Oct;100(1):403–410. doi: 10.1128/jb.100.1.403-410.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Moiroud A., Gounot A. M. Sur une bactérie psychrophile obligatoire isolée de limons glaciaires. C R Acad Sci Hebd Seances Acad Sci D. 1969 Nov 24;269(21):2150–2152. [PubMed] [Google Scholar]
  53. Morita R. Y., Albright L. J. Moderate temperature effects on protein, ribonucleic acid and deoxyribonucleic acid syntheses by Vibrio marinus, an obligately psychrophilic marine bacterium. Z Allg Mikrobiol. 1968;8(4):269–273. doi: 10.1002/jobm.3630080404. [DOI] [PubMed] [Google Scholar]
  54. Morita R. Y. Microbial contributions to the evolution of the 'steady state' carbon dioxide system. Orig Life. 1975 Jan-Apr;6(1-2):37–44. doi: 10.1007/BF01372388. [DOI] [PubMed] [Google Scholar]
  55. Nunokawa Y., McDonald I. J. Extracellular proteolytic enzymes of psychrophilic bacteria. I. Purification and some properties of enzymes of an obligately psychrophilic red-pigmented bacterium. Can J Microbiol. 1968 Mar;14(3):215–224. doi: 10.1139/m68-037. [DOI] [PubMed] [Google Scholar]
  56. Nunokawa Y., McDonald I. J. Extracellular proteolytic enzymes of psychrophilic bacteria. II. Production and heterogeneity of enzymes of an obligately psychrophilic red-pigmented bacterium and of a white variant. Can J Microbiol. 1968 Mar;14(3):225–231. doi: 10.1139/m68-038. [DOI] [PubMed] [Google Scholar]
  57. OLSEN R. H., JEZESKI J. J. SOME EFFECTS OF CARBON SOURCE, AERATION, AND TEMPERATURE ON GROWTH OF A PSYCHROPHILIC STRAIN OF PSEUDOMONAS FLUORESCENS. J Bacteriol. 1963 Sep;86:429–433. doi: 10.1128/jb.86.3.429-433.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Olsen R. H., Metcalf E. S. Conversion of mesophilic to psychrophilic bacteria. Science. 1968 Dec 13;162(3859):1288–1289. doi: 10.1126/science.162.3859.1288. [DOI] [PubMed] [Google Scholar]
  59. Oró J., Tornabene T. G., Nooner D. W., Gelpi E. Aliphatic hydrocarbons and fatty acids of some marine and freshwater microorganisms. J Bacteriol. 1967 Jun;93(6):1811–1818. doi: 10.1128/jb.93.6.1811-1818.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Pace B., Campbell L. L. Correlation of maximal growth temperature and ribosome heat stability. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1110–1116. doi: 10.1073/pnas.57.4.1110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Pacha R. E. Characteristics of Cytophaga psychrophila (Borg) isolated during outbreaks of bacterial cold-water disease. Appl Microbiol. 1968 Jan;16(1):97–101. doi: 10.1128/am.16.1.97-101.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Paul K. L., Morita R. Y. Effects of hydrostatic pressure and temperature on the uptake and respiration of amino acids by a facultatively psychrophilic marine bacterium. J Bacteriol. 1971 Nov;108(2):835–843. doi: 10.1128/jb.108.2.835-843.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Piperno J. R., Oxender D. L. Amino acid transport systems in Escherichia coli K-12. J Biol Chem. 1968 Nov 25;243(22):5914–5920. [PubMed] [Google Scholar]
  64. RHODES M. E., PAYNE W. J. Further observations on effects of cations on enzyme induction in marine bacteria. Antonie Van Leeuwenhoek. 1962;28:302–314. doi: 10.1007/BF02538743. [DOI] [PubMed] [Google Scholar]
  65. SINCLAIR N. A., STOKES J. L. Role of oxygen in the high cell yields of psychrophiles and mesophiles at low temperatures. J Bacteriol. 1963 Jan;85:164–167. doi: 10.1128/jb.85.1.164-167.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Shaw M. K. Effect of abrupt temperature shift on the growth of mesophilic and psychrophilic yeasts. J Bacteriol. 1967 Apr;93(4):1332–1336. doi: 10.1128/jb.93.4.1332-1336.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Shimizu H., Ozawa H. Studies on aldolases. I. Amino acid composition and subunit structure of rabbit-muscle aldolase. Biochim Biophys Acta. 1967 Feb 21;133(2):195–205. doi: 10.1016/0005-2795(67)90059-1. [DOI] [PubMed] [Google Scholar]
  68. Stanley S. O., Morita R. Y. Salinity effect on the maximal growth temperature of some bacteria isolated from marine enviroments. J Bacteriol. 1968 Jan;95(1):169–173. doi: 10.1128/jb.95.1.169-173.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Straka R. P., Stokes J. L. PSYCHROPHILIC BACTERIA FROM ANTARCTICA. J Bacteriol. 1960 Nov;80(5):622–625. doi: 10.1128/jb.80.5.622-625.1960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Sugimoto S., Noso Y. Thermal properties of fructose-I,6-diphosphate aldolase from thermophilic bacteria. Biochim Biophys Acta. 1971 Apr 14;235(1):210–221. doi: 10.1016/0005-2744(71)90049-0. [DOI] [PubMed] [Google Scholar]
  71. Tai P. C., Jackson H. Mesophilic mutants of an obligate psychrophile, micrococcus cryophilus. Can J Microbiol. 1969 Oct;15(10):1145–1150. doi: 10.1139/m69-209. [DOI] [PubMed] [Google Scholar]
  72. UPADHYAY J., STOKES J. L. Anaerobic growth of psychrophilic bacteria. J Bacteriol. 1962 Feb;83:270–275. doi: 10.1128/jb.83.2.270-275.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. UPADHYAY J., STOKES R. L. Temperature-sensitive formic hydrogenlyase in a psychrophilic bacterium. J Bacteriol. 1963 Jan;85:177–185. doi: 10.1128/jb.85.1.177-185.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Ward J., Cockson A. Studies on a thermophilic bacillus: its isolation, properties, and temperature coefficient of growth. J Bacteriol. 1972 Dec;112(3):1040–1042. doi: 10.1128/jb.112.3.1040-1042.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Wiebe W. J., Hendricks C. W. Simple, reliable cold tray for the recovery and examination of thermosensitive organisms. Appl Microbiol. 1971 Oct;22(4):734–735. doi: 10.1128/am.22.4.734-735.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Wilkins P. O., Bourgeois R., Murray R. G. Psychrotrophic properties of Listeria monocytogenes. Can J Microbiol. 1972 May;18(5):543–551. doi: 10.1139/m72-087. [DOI] [PubMed] [Google Scholar]
  77. Zachariah P., Liston J. Temperature adaptability of psychrotrophic Pseudomonas. Appl Microbiol. 1973 Sep;26(3):437–438. doi: 10.1128/am.26.3.437-438.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Zobell C. E., Conn J. E. Studies on the Thermal Sensitivity of Marine Bacteria. J Bacteriol. 1940 Aug;40(2):223–238. doi: 10.1128/jb.40.2.223-238.1940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Zobell C. E., Rittenberg S. C. THE OCCURRENCE AND CHARACTERISTICS OF CHITINOCLASTIC BACTERIA IN THE SEA. J Bacteriol. 1938 Mar;35(3):275–287. doi: 10.1128/jb.35.3.275-287.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES