Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1976 Mar;40(1):42–54. doi: 10.1128/br.40.1.42-54.1976

Branched-chain amino acid catabolism in bacteria.

L K Massey, J R Sokatch, R S Conrad
PMCID: PMC413937  PMID: 773366

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmad N., Siddiqi M. Bacterial metabolism of 3-hydroxy-3-methylglutaric acid. J Bacteriol. 1973 Jul;115(1):162–167. doi: 10.1128/jb.115.1.162-167.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bannerjee D., Sanders L. E., Sokatch J. R. Properties of purified methylmalonate semialdehyde dehydrogenase of Pseudomonas aeruginosa. J Biol Chem. 1970 Apr 10;245(7):1828–1835. [PubMed] [Google Scholar]
  3. Bowden J. A., Connelly J. L. Branched chain alpha-keto acid metabolism. II. Evidence for the common identity of alpha-ketoisocaproic acid and alpha-keto-beta-methyl-valeric acid dehydrogenases. J Biol Chem. 1968 Jun 25;243(12):3526–3531. [PubMed] [Google Scholar]
  4. Calhoun D. H., Hatfield G. W. Autoregulation: a role for a biosynthetic enzyme in the control of gene expression. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2757–2761. doi: 10.1073/pnas.70.10.2757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coleman M. S., Armstrong F. B. Branched-chain amino-acid aminotransferase of Salmonella typhimurium. I. Crystallization and preliminary characterization. Biochim Biophys Acta. 1971 Jan 13;227(1):56–66. doi: 10.1016/0005-2744(71)90167-7. [DOI] [PubMed] [Google Scholar]
  6. Coleman M. S., Soucie W. G., Armstrong F. B. Branched chain amino acid aminotransferase of Salmonella typhimurium. II. Kinetic comparison with the enzyme from Salmonella montevideo. J Biol Chem. 1971 Mar 10;246(5):1310–1312. [PubMed] [Google Scholar]
  7. Connelly J. L., Danner D. J., Bowden J. A. Branched chain alpha-keto acid metabolism. I. Isolation, purification, and partial characterization of bovine liver alpha-ketoisocaproic:alpha-keto-beta-methylvaleric acid dehydrogenase. J Biol Chem. 1968 Mar 25;243(6):1198–1203. [PubMed] [Google Scholar]
  8. Conrad R. S., Massey L. K., Sokatch J. R. D- and L-isoleucine metabolism and regulation of their pathways in Pseudomonas putida. J Bacteriol. 1974 Apr;118(1):103–111. doi: 10.1128/jb.118.1.103-111.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coudert M. Charcterization and physiological function of a soluble L-amino acid oxidase in Corynebacterium. Arch Microbiol. 1975;102(2):151–153. doi: 10.1007/BF00428360. [DOI] [PubMed] [Google Scholar]
  10. Duerre J. A., Chakrabarty S. l-amino acid oxidases of Proteus rettgeri. J Bacteriol. 1975 Feb;121(2):656–663. doi: 10.1128/jb.121.2.656-663.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Engel P. C., Massey V. The purification and properties of butyryl-coenzyme A dehydrogenase from Peptostreptococcus elsdenii. Biochem J. 1971 Dec;125(3):879–887. doi: 10.1042/bj1250879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goodhue C. T., Snell E. E. The bacterial degradation of pantothenic acid. 3. Enzymatic formation of aldopantoic acid. Biochemistry. 1966 Feb;5(2):403–408. doi: 10.1021/bi00866a003. [DOI] [PubMed] [Google Scholar]
  13. Goodhue C. T., Snell E. E. The bacterial degradation of pantothenic acid. I. Over-all nature of the reaction. Biochemistry. 1966 Feb;5(2):393–398. doi: 10.1021/bi00866a001. [DOI] [PubMed] [Google Scholar]
  14. HILZ H., KNAPPE J., RINGELMANN E., LYNEN F. Methylglutaconase, eine neue Hydratase, die am Stoffwechsel verzweigter Carbonsäuren beteiligt ist. Biochem Z. 1958;329(6):476–489. [PubMed] [Google Scholar]
  15. HIMES R. H., YOUNG D. L., RINGELMANN E., LYNEN F. The biochemical function of biotin. V. Further studies on beta-methylcrotonyl CoA carboxylase. Biochem Z. 1963;337:48–61. [PubMed] [Google Scholar]
  16. Hill F., Schlegel H. G. Die alpha-Isopropylmalat-Synthetase bei Hydrogenomonas H 16. Arch Mikrobiol. 1969;68(1):1–17. doi: 10.1007/BF00408442. [DOI] [PubMed] [Google Scholar]
  17. Kaneda T. Biosynthesis of branched long-chain fatty acids from the related short-chain -keto acid substrates by a cell-free system of Bacillus subtilis. Can J Microbiol. 1973 Jan;19(1):87–96. doi: 10.1139/m73-013. [DOI] [PubMed] [Google Scholar]
  18. Kates M. Biosynthesis of lipids in microorganisms. Annu Rev Microbiol. 1966;20:13–44. doi: 10.1146/annurev.mi.20.100166.000305. [DOI] [PubMed] [Google Scholar]
  19. Kohlhaw G., Leary T. R., Umbarger H. E. Alpha-isopropylmalate synthase from Salmonella typhimurium. Purification and properties. J Biol Chem. 1969 Apr 25;244(8):2218–2225. [PubMed] [Google Scholar]
  20. Magee P. T., Snell E. E. The bacterial degradation of pantothenic acid. IV. Enzymatic conversion of aldopantoate to alpha-ketoisovalerate. Biochemistry. 1966 Feb;5(2):409–416. doi: 10.1021/bi00866a004. [DOI] [PubMed] [Google Scholar]
  21. Marinus M. G., Loutit J. S. Regulation of isoleucine-valine biosynthesis in Pseudomonas aeruginosa. I. Characterisation and mapping of mutants. Genetics. 1969 Nov;63(3):547–556. doi: 10.1093/genetics/63.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marshall V. D., Sokatch J. R. Regulation of valine catabolism in Pseudomonas putida. J Bacteriol. 1972 Jun;110(3):1073–1081. doi: 10.1128/jb.110.3.1073-1081.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Marshall V. P., Sokatch J. R. Oxidation of D-amino acids by a particulate enzyme from Pseudomonas aeruginosa. J Bacteriol. 1968 Apr;95(4):1419–1424. doi: 10.1128/jb.95.4.1419-1424.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Martin R. R., Marshall V. D., Sokatch J. R., Unger L. Common enzymes of branched-chain amino acid catabolism in Pseudomonas putida. J Bacteriol. 1973 Jul;115(1):198–204. doi: 10.1128/jb.115.1.198-204.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Massey L. K., Conrad R. S., Sokatch J. R. Regulation of leucine catabolism in Pseudomonas putida. J Bacteriol. 1974 Apr;118(1):112–120. doi: 10.1128/jb.118.1.112-120.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mäntsälä P. Product induction in the degradation of pantothenate in Pseudomonas fluorescens P-2. J Gen Microbiol. 1971 Aug;67(2):239–242. doi: 10.1099/00221287-67-2-239. [DOI] [PubMed] [Google Scholar]
  27. Namba Y., Yoshizawa K., Ejima A., Hayashi T., Kaneda T. Coenzyme A- and nicotinamide adenine dinucleotide-dependent branched chain alpha-keto acid dehydrogenase. I. Purification and properties of the enzyme from Bacillus subtilis. J Biol Chem. 1969 Aug 25;244(16):4437–4447. [PubMed] [Google Scholar]
  28. Norton J. E., Sokatch J. R. Purification and partial characterization of the branched chain amino acid transaminase of Pseudomonas aeruginosa. Biochim Biophys Acta. 1970 May 13;206(2):261–269. doi: 10.1016/0005-2744(70)90109-9. [DOI] [PubMed] [Google Scholar]
  29. Norton J. E., Sokath J. R. Oxidation of D- and L-valine by enzymes of Pseudomonas aeruginosa. J Bacteriol. 1966 Jul;92(1):116–120. doi: 10.1128/jb.92.1.116-120.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nurmikko V., Salo E., Hakola H., Mäkinen K., Snell E. E. The bacterial degradation of pantothenic acid. II. Pantothenate hydrolase. Biochemistry. 1966 Feb;5(2):399–402. doi: 10.1021/bi00866a002. [DOI] [PubMed] [Google Scholar]
  31. Ornston L. N. Regulation of catabolic pathways in Pseudomonas. Bacteriol Rev. 1971 Jun;35(2):87–116. doi: 10.1128/br.35.2.87-116.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pauli G., Overath P. ato Operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. Eur J Biochem. 1972 Sep 25;29(3):553–562. doi: 10.1111/j.1432-1033.1972.tb02021.x. [DOI] [PubMed] [Google Scholar]
  33. Puukka M., Laakso S., Nurmikko V. Regulation of valine degradation in Pseudomonas fluorescens UK-1. Induction of methylmalonate semialdehyde dehydrogenase. Acta Chem Scand. 1973;27(2):720–722. doi: 10.3891/acta.chem.scand.27-0720. [DOI] [PubMed] [Google Scholar]
  34. Puukka M., Lönnberg H., Nurmikko V. Regulation of branched chain amino acid transaminase formation during the growth of Pseudomonas fluorescens UK-1. Acta Chem Scand. 1972;26(3):1271–1273. doi: 10.3891/acta.chem.scand.26-1271. [DOI] [PubMed] [Google Scholar]
  35. Puukka M., Mäntsälä P., Lönnberg H., Pajula R., Nurmikko V. Formation of 2-oxoisovalerate dehydrogenase in Pseudomonas fluorescens. Acta Chem Scand. 1972;26(3):1299–1301. doi: 10.3891/acta.chem.scand.26-1299. [DOI] [PubMed] [Google Scholar]
  36. Puukka M. Regulation of valine degradation in Pseudomonas fluorescens UK-1. Induction of enoyl coenzyme A hydratase. Acta Chem Scand. 1973;27(2):718–719. doi: 10.3891/acta.chem.scand.27-0718. [DOI] [PubMed] [Google Scholar]
  37. RILLING H. C., COON M. J. The enzymatic isomerization of alpha-methylvinylacetyl coenzyme A and the specificity of a bacterial alpha-methylcrotonyl coenzyme A carboxylase. J Biol Chem. 1960 Nov;235:3087–3092. [PubMed] [Google Scholar]
  38. ROBINSON W. G., COON M. J. The purification and properties of beta-hydroxyisobutyric dehydrogenase. J Biol Chem. 1957 Mar;225(1):511–521. [PubMed] [Google Scholar]
  39. RUDMAN D., MEISTER A. Transamination in Escherichia coli. J Biol Chem. 1953 Feb;200(2):591–604. [PubMed] [Google Scholar]
  40. Rheinwald J. G., Chakrabarty A. M., Gunsalus I. C. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc Natl Acad Sci U S A. 1973 Mar;70(3):885–889. doi: 10.1073/pnas.70.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rüdiger H. W., Langenbeck U., Goedde H. W. Oxidation of branched chain -ketoacids in Streptococcus faecalis and it's dependence on lipoic acid. Hoppe Seylers Z Physiol Chem. 1972 Jun;353(6):875–882. doi: 10.1515/bchm2.1972.353.1.875. [DOI] [PubMed] [Google Scholar]
  42. SASAKI S. On the decarboxylase operating in the degradative pathway of L-leucine by Proteus vulgaris. J Biochem. 1962 May;51:335–344. [PubMed] [Google Scholar]
  43. SEUBERT W., FASS E. UNTERSUCHUNGEN UEBER DEN BAKTERIELLEN ABBAU VO ISOPRENOIDEN. IV. REINIGUNG UND EIGENSCHAFTEN DER BETA-ISOHEXENYLGLUTACONYL-COA-HYDRATASE UND BETA-HYDROXY-BETA-ISOHEXENYLGLUTARYL-COA-LYASE. Biochem Z. 1964 Dec 7;341:23–34. [PubMed] [Google Scholar]
  44. SEUBERT W., FASS E. UNTERSUCHUNGEN UEBER DEN BAKTERIELLEN ABBAU VON ISOPRENOIDEN. V. DER MECHANISMUS DES ISOPRENOIDABBAUES. Biochem Z. 1964 Dec 7;341:35–44. [PubMed] [Google Scholar]
  45. Sala-Trepat J. M., Murray K., Williams P. A. The metabolic divergence in the meta cleavage of catechols by Pseudomonas putida NCIB 10015. Physiological significance and evolutionary implications. Eur J Biochem. 1972 Jul 24;28(3):347–356. doi: 10.1111/j.1432-1033.1972.tb01920.x. [DOI] [PubMed] [Google Scholar]
  46. Siddiqi M. A., Rodwell V. W. Bacterial metabolism of mevalonic acid. J Bacteriol. 1967 Jan;93(1):207–214. doi: 10.1128/jb.93.1.207-214.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sokatch J. R., Sanders L. E., Marshall V. P. Oxidation of methylmalonate semialdehyde to propionyl coenzyme A in Pseudomonas aeruginosa grown on valine. J Biol Chem. 1968 May 25;243(10):2500–2506. [PubMed] [Google Scholar]
  48. Stanier R. Y., Palleroni N. J., Doudoroff M. The aerobic pseudomonads: a taxonomic study. J Gen Microbiol. 1966 May;43(2):159–271. doi: 10.1099/00221287-43-2-159. [DOI] [PubMed] [Google Scholar]
  49. Tsukada K. D-amino acid dehydrogenases of Pseudomonas fluorescens. J Biol Chem. 1966 Oct 10;241(19):4522–4528. [PubMed] [Google Scholar]
  50. Voellmy R., Leisinger T. Dual role for N-2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol. 1975 Jun;122(3):799–809. doi: 10.1128/jb.122.3.799-809.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Waterson R. M., Castellino F. J., Hass G. M., Hill R. L. Purification and characterization of crotonase from Clostridium acetobutylicum. J Biol Chem. 1972 Aug 25;247(16):5266–5271. [PubMed] [Google Scholar]
  52. Weeks G., Shapiro M., Burns R. O., Wakil S. J. Control of fatty acid metabolism. I. Induction of the enzymes of fatty acid oxidation in Escherichia coli. J Bacteriol. 1969 Feb;97(2):827–836. doi: 10.1128/jb.97.2.827-836.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Willecke K., Pardee A. B. Fatty acid-requiring mutant of bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase. J Biol Chem. 1971 Sep 10;246(17):5264–5272. [PubMed] [Google Scholar]
  54. Winnacker E. L., Barker H. A. Aerobic metabolism of -amino-n-butyric acid by Pseudomonas putida. Biochim Biophys Acta. 1971 May 18;237(2):284–292. doi: 10.1016/0304-4165(71)90319-9. [DOI] [PubMed] [Google Scholar]
  55. YONEYA T., ADAMS E. Hydroxyproline metabolism. V. Inducible allohydroxy-D-proline oxidase of Pseudomonas. J Biol Chem. 1961 Dec;236:3272–3279. [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES