Full text
PDF




























Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackrell B. A., Jones C. W. The respiratory system of Azotobacter vinelandii. 1. Properties of phosphorylating respiratory membranes. Eur J Biochem. 1971 May 11;20(1):22–28. doi: 10.1111/j.1432-1033.1971.tb01357.x. [DOI] [PubMed] [Google Scholar]
- Akopyan T. N., Braunstein A. E., Goryachenkova E. V. Beta-cyanoalanine synthase: purification and characterization. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1617–1621. doi: 10.1073/pnas.72.4.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alemohammad M. M., Knowles C. J. Osmotically induced volume and turbidity changes of Escherichia coli due to salts, sucrose and glycerol, with particular reference to the rapid permeation of glycerol into the cell. J Gen Microbiol. 1974 May;82(1):125–142. doi: 10.1099/00221287-82-1-125. [DOI] [PubMed] [Google Scholar]
- Allen J., Strobel G. A. The assimilation of H14CN by a variety of fungi. Can J Microbiol. 1966 Apr;12(2):414–416. doi: 10.1139/m66-056. [DOI] [PubMed] [Google Scholar]
- Arima K., Oka T. Cyanide Resistance in Achromobacter I. Induced Formation of Cytochrome a(2) and Its Role in Cyanide-Resistant Respiration. J Bacteriol. 1965 Sep;90(3):734–743. doi: 10.1128/jb.90.3.734-743.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ashcroft J. R., Haddock B. A. Synthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of potassium cyanide. Biochem J. 1975 May;148(2):349–352. doi: 10.1042/bj1480349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Atkinson A., Evans C. G., Yeo R. G. Behaviour of Bacillus stearothermophilus grown in different media. J Appl Bacteriol. 1975 Jun;38(3):301–304. doi: 10.1111/j.1365-2672.1975.tb00533.x. [DOI] [PubMed] [Google Scholar]
- BECKER W., BENTHIN U., ESCHENHOF E., PFEIL E. [On the knowledge of cyanhydrin synthesis. II. Purification and properties of hydroxynitrilase from bitter almonds (Prunus communis Stokes)]. Biochem Z. 1963;337:156–166. [PubMed] [Google Scholar]
- BUTLER G. W., CONN E. E. BIOSYNTHESIS OF THE CYANOGENIC GLUCOSIDES LINAMARIN AND LOTAUSTRALIN. I. LABELING STUDIES IN VIVO WITH LINUM USITATISSIMUM. J Biol Chem. 1964 Jun;239:1674–1679. [PubMed] [Google Scholar]
- Blumenthal S. G., Hendrickson H. R., Abrol Y. P., Conn E. E. Cyanide metabolism in higher plants. 3. The biosynthesis of beta-cyanolanine. J Biol Chem. 1968 Oct 25;243(20):5302–5307. [PubMed] [Google Scholar]
- Brysk M. M., Corpe W. A., Hankes L. V. Beta-cyanoalanine formation by Chromobacterium violaceum. J Bacteriol. 1969 Jan;97(1):322–327. doi: 10.1128/jb.97.1.322-327.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brysk M. M., Lauinger C., Ressler C. Biosynthesis of cyanide from [2-14C-15N]glycine in Chromobacterium violaceum. Biochim Biophys Acta. 1969 Sep 2;184(3):583–588. doi: 10.1016/0304-4165(69)90272-4. [DOI] [PubMed] [Google Scholar]
- Brysk M. M., Ressler C. Gamma-cyano-alpha-aminobutyric acid. A new product of cyanide fixation in Chromobacterium violaceum. J Biol Chem. 1970 Mar 10;245(5):1156–1160. [PubMed] [Google Scholar]
- Burton C. P., Akagi J. M. Observations on the rhodanese activity of Desulfotomaculum nigrificans. J Bacteriol. 1971 Jul;107(1):375–376. doi: 10.1128/jb.107.1.375-376.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CASTOR L. N., CHANCE B. Photochemical action spectra of carbon monoxide-inhibited respiration. J Biol Chem. 1955 Nov;217(1):453–465. [PubMed] [Google Scholar]
- CASTOR L. N., CHANCE B. Photochemical determinations of the oxidases of bacteria. J Biol Chem. 1959 Jun;234(6):1587–1592. [PubMed] [Google Scholar]
- Castric P. A., Conn E. E. Formation of -cyanoalanine by O-acetylserine sulfhydrylase. J Bacteriol. 1971 Oct;108(1):132–136. doi: 10.1128/jb.108.1.132-136.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Castric P. A. Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol. 1975 May;21(5):613–618. doi: 10.1139/m75-088. [DOI] [PubMed] [Google Scholar]
- Castric P. A., Strobel G. A. Cyanide metabolism by Bacillus megaterium. J Biol Chem. 1969 Aug 10;244(15):4089–4094. [PubMed] [Google Scholar]
- Charles A. M. Mechanism of thiosulfate oxidation by Thiobacillus intermedius. Arch Biochem Biophys. 1969 Jan;129(1):124–130. doi: 10.1016/0003-9861(69)90158-1. [DOI] [PubMed] [Google Scholar]
- Dunnill P. M., Fowden L. Enzymatic formation of beta-cyanoalanine from cyanide by Escherichia coli extracts. Nature. 1965 Dec 18;208(5016):1206–1207. doi: 10.1038/2081206a0. [DOI] [PubMed] [Google Scholar]
- Eyjólfsson R. Recent advances in the chemistry of cyanogenic glycosides. Fortschr Chem Org Naturst. 1970;28:74–108. doi: 10.1007/978-3-7091-7123-3_2. [DOI] [PubMed] [Google Scholar]
- Floss H. G., Hadwiger L., Conn E. E. Enzymatic formation of beta-cyanoalanine from cyanide. Nature. 1965 Dec 18;208(5016):1207–1208. doi: 10.1038/2081207a0. [DOI] [PubMed] [Google Scholar]
- Freeman L. R., Angelini P., Silverman G. J., Merritt C., Jr Production of hydrogen cyanide by Pseudomonas fluorescens. Appl Microbiol. 1975 Apr;29(4):560–561. doi: 10.1128/am.29.4.560-561.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fry W. E., Millar R. L. Cyanide degradion by an enzyme from Stemphylium loti. Arch Biochem Biophys. 1972 Aug;151(2):468–474. doi: 10.1016/0003-9861(72)90523-1. [DOI] [PubMed] [Google Scholar]
- GERSHMAN M. Use of a tetrazolium salt for an easily discernible KCN reaction. Can J Microbiol. 1961 Apr;7:286–286. doi: 10.1139/m61-034. [DOI] [PubMed] [Google Scholar]
- Gewitz H. S., Lorimer G. H., Solomonson L. P., Vennesland B. Presence of HCN in chlorella vulgaris and its possible role in controlling the reduction of nitrate. Nature. 1974 May 3;249(452):79–81. doi: 10.1038/249079a0. [DOI] [PubMed] [Google Scholar]
- HAPPOLD F. C., JOHNSTONE K. I., ROGERS H. J. An examination of Bacterium thiocyanoxidans. Nature. 1952 Feb 23;169(4295):332–332. doi: 10.1038/169332a0. [DOI] [PubMed] [Google Scholar]
- HAPPOLD F. C., JOHNSTONE K. I., ROGERS H. J., YOUATT J. B. The isolation and characteristics of an organism oxidizing thiocyanate. J Gen Microbiol. 1954 Apr;10(2):261–266. doi: 10.1099/00221287-10-2-261. [DOI] [PubMed] [Google Scholar]
- HOWE R. H. BIO-DESTRUCTION OF CYANIDE WASTES--ADVANTAGES AND DISADVANTAGES. Air Water Pollut. 1965 Aug;9:463–478. [PubMed] [Google Scholar]
- Haddock B. A., Garland P. B. Effect of sulphate-limited growth on mitochondrial electron transfer and energy conservation between reduced nicotinamide-adenine dinucleotide and the cytochromes in Torulopsis utilis. Biochem J. 1971 Aug;124(1):155–170. doi: 10.1042/bj1240155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haddock B. A., Schairer H. U. Electron-transport chains of Escherichia coli. Reconstitution of respiration in a 5-aminolaevulinic acid-requiring mutant. Eur J Biochem. 1973 May;35(1):34–45. doi: 10.1111/j.1432-1033.1973.tb02806.x. [DOI] [PubMed] [Google Scholar]
- Hafner E. W., Wellner D. Demonstration of imino acids as products of the reactions catalyzed by D- and L-amino acid oxidases. Proc Natl Acad Sci U S A. 1971 May;68(5):987–991. doi: 10.1073/pnas.68.5.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Happold F. C., Key A. The bacterial purification of gas-works liquors: The biological oxidation of ammonium thiocyanate. Biochem J. 1937 Aug;31(8):1323–1329. doi: 10.1042/bj0311323. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hardy R. W., Knight E., Jr ATP-dependent reduction of azide and HCN by N2-fixing enzymes of Azotobacter vinelandii and Clostridium pasteurianum. Biochim Biophys Acta. 1967 May 16;139(1):69–90. doi: 10.1016/0005-2744(67)90114-3. [DOI] [PubMed] [Google Scholar]
- Harold F. M. Conservation and transformation of energy by bacterial membranes. Bacteriol Rev. 1972 Jun;36(2):172–230. doi: 10.1128/br.36.2.172-230.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hendrickson H. R., Conn E. E. Cyanide metabolism in higher plants. IV. Purification and properties of the beta-cyanolanine synthase of blue lupine. J Biol Chem. 1969 May 25;244(10):2632–2640. [PubMed] [Google Scholar]
- Henry M. F., Nyns E. D. Cyanide-insensitive respiration. An alternative mitochondrial pathway. Subcell Biochem. 1975 Mar;4(1):1–65. [PubMed] [Google Scholar]
- Hill G. C., Cross G. A. Cyanide-resistant respiration and a branched cytochrome system in Kinetoplastidae. Biochim Biophys Acta. 1973 Jun 28;305(3):590–596. doi: 10.1016/0005-2728(73)90078-9. [DOI] [PubMed] [Google Scholar]
- Hutchinson M., Johnstone K. I., White D. Taxonomy of the genus Thiobacillus: the outcome of numerical taxonomy applied to the group as a whole. J Gen Microbiol. 1969 Aug;57(3):397–410. doi: 10.1099/00221287-57-3-397. [DOI] [PubMed] [Google Scholar]
- Jones C. W., Redfearn E. R. The cytochrome system of Azotobacter vinelandii. Biochim Biophys Acta. 1967 Sep 6;143(2):340–353. doi: 10.1016/0005-2728(67)90088-6. [DOI] [PubMed] [Google Scholar]
- Lambowitz A. M., Slayman C. W. Cyanide-resistant respiration in Neurospora crassa. J Bacteriol. 1971 Dec;108(3):1087–1096. doi: 10.1128/jb.108.3.1087-1096.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lauinger C., Ressler C. Beta-cyanoalanine as a substrate for asparaginase. Stoichiometry, kinetics, and inhibition. Biochim Biophys Acta. 1970 Feb 11;198(2):316–323. doi: 10.1016/0005-2744(70)90064-1. [DOI] [PubMed] [Google Scholar]
- Léjohn H. B., Van Caeseele L., Lees H. Catabolite repression in the facultative chemoautotroph Thiobacillus novellus. J Bacteriol. 1967 Nov;94(5):1484–1491. doi: 10.1128/jb.94.5.1484-1491.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MCCASHLAND B. W., MARSH W. R., KRONSCHNABEL J. M. Variations in the inhibitory effect of potassium cyanide upon growth and respiration in seven strains of Tetrahymena. Growth. 1957 Mar;21(1):21–27. [PubMed] [Google Scholar]
- MCCASHLAND B. W., PACE D. M. The influence of potassium cyanide on growth and respiration in Tetrahymena geleii-Furgason. Growth. 1952 Jun;16(2):75–83. [PubMed] [Google Scholar]
- MCCASHLAND B. W., STEINACHER R. H. Metabolism changes in Tetrahymena pyriformis W adapted to potassium cyanide. Proc Soc Exp Biol Med. 1962 Dec;111:789–793. doi: 10.3181/00379727-111-27924. [DOI] [PubMed] [Google Scholar]
- MICHAELS R., CORPE W. A. CYANIDE FORMATION BY CHROMOBACTERIUM VIOLACEUM. J Bacteriol. 1965 Jan;89:106–112. doi: 10.1128/jb.89.1.106-112.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MILLER S. L. A production of amino acids under possible primitive earth conditions. Science. 1953 May 15;117(3046):528–529. doi: 10.1126/science.117.3046.528. [DOI] [PubMed] [Google Scholar]
- MacFarlane I. J., Lees E. M., Conn E. E. The in vitro biosynthesis of dhurrin, the cyanogenic glycoside of Sorghum bicolor. J Biol Chem. 1975 Jun 25;250(12):4708–4713. [PubMed] [Google Scholar]
- McCHESNEY C. A. Occurrence of rhodanese in a species of Thiobacillus. Nature. 1958 Feb 1;181(4605):347–348. doi: 10.1038/181347a0. [DOI] [PubMed] [Google Scholar]
- McFeters G. A., Wilson D. F., Strobel G. A. Cytochromes in a cyanide-resistant strain of Bacillus cereus. Can J Microbiol. 1970 Dec;16(12):1221–1226. doi: 10.1139/m70-205. [DOI] [PubMed] [Google Scholar]
- Michaels R., Hankes L. V., Corpe W. A. Cyanide formation from glycine by nonproliferating cells of Chromobacterium violaceum. Arch Biochem Biophys. 1965 Jul;111(1):121–125. doi: 10.1016/0003-9861(65)90329-2. [DOI] [PubMed] [Google Scholar]
- Mundy B. P., Liu F. H., Strobel G. A. Alpha-aminobutyronitrile as an intermediate in cyanide fixation by Rhizoctonia solani. Can J Biochem. 1973 Oct;51(10):1440–1442. doi: 10.1139/o73-189. [DOI] [PubMed] [Google Scholar]
- Munson T. E. Improved KCN medium. Appl Microbiol. 1974 Jan;27(1):262–263. doi: 10.1128/am.27.1.262-263.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MØLLER V. Diagnostic use of the Braun KCN test within the Enterobacteriaceae. Acta Pathol Microbiol Scand. 1954;34(2):115–126. doi: 10.1111/j.1699-0463.1954.tb00809.x. [DOI] [PubMed] [Google Scholar]
- NEIMS A. H., HELLERMAN L. Specificity of the D-amino acid oxidase in relation to glycine oxidase activity. J Biol Chem. 1962 Mar;237:PC976–PC978. [PubMed] [Google Scholar]
- Niven D. F., Collins P. A., Knowles C. J. The respiratory system of Chromobacterium violaceum grown under conditions of high and low cyanide evolution. J Gen Microbiol. 1975 Oct;90(2):271–285. doi: 10.1099/00221287-90-2-271. [DOI] [PubMed] [Google Scholar]
- ORO J., KAMAT S. S. Amino-acid synthesis from hydrogen cyanide under possible primitive earth conditions. Nature. 1961 Apr 29;190:442–443. doi: 10.1038/190442a0. [DOI] [PubMed] [Google Scholar]
- ORO J., KIMBALL A. P. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch Biochem Biophys. 1961 Aug;94:217–227. doi: 10.1016/0003-9861(61)90033-9. [DOI] [PubMed] [Google Scholar]
- Oka T., Arima K. Cyanide Resistance in Achromobacter II. Mechanism of Cyanide Resistance. J Bacteriol. 1965 Sep;90(3):744–747. doi: 10.1128/jb.90.3.744-747.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pudek M. R., Bragg P. D. Inhibition by cyanide of the respiratory chain oxidases of Escherichia coli. Arch Biochem Biophys. 1974 Oct;164(2):682–693. doi: 10.1016/0003-9861(74)90081-2. [DOI] [PubMed] [Google Scholar]
- Pudek M. R., Bragg P. D. Reaction of cyanide with cytochrome d in respiratory particles from exponential phase Escherichia coli. FEBS Lett. 1975 Feb 1;50(2):111–113. doi: 10.1016/0014-5793(75)80468-6. [DOI] [PubMed] [Google Scholar]
- ROBINSON W. G., HOOK R. H. RICININE NITRILASE. I. REACTION PRODUCT AND SUBSTRATE SPECIFICITY. J Biol Chem. 1964 Dec;239:4257–4262. [PubMed] [Google Scholar]
- Ressler C., Abe O., Kondo Y., Cottrell B., Abe K. Purification and characterization from Chromobacterium violaceum of an enzyme catalyzing the synthesis of gamma-cyano-alpha-aminobutyric acid and thiocyanate. Biochemistry. 1973 Dec 18;12(26):5369–5377. doi: 10.1021/bi00750a021. [DOI] [PubMed] [Google Scholar]
- Rucinsky T. E., Cota-Robles E. H. Mesosome structure in Chromobacterium violaceum. J Bacteriol. 1974 May;118(2):717–724. doi: 10.1128/jb.118.2.717-724.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SNEATH P. H. Cultural and biochemical characteristics of the genus Chromobacterium. J Gen Microbiol. 1956 Aug;15(1):70–98. doi: 10.1099/00221287-15-1-70. [DOI] [PubMed] [Google Scholar]
- STEARNS R. N. Respiration, rhodanese, and growth in Escherichia coli. J Cell Physiol. 1953 Feb;41(1):163–170. doi: 10.1002/jcp.1030410112. [DOI] [PubMed] [Google Scholar]
- STROBEL G. A. HYDROCYANIC ACID ASSIMILATION BY A PSYCHROPHILIC BASIDIOMYCETE. Can J Biochem. 1964 Nov;42:1637–1639. doi: 10.1139/o64-174. [DOI] [PubMed] [Google Scholar]
- Sargeant K., Buck P. W., Ford J. W., Yeo R. G. Anaerobic Production of Thiobacillus denitrificans for the Enzyme Rhodanese. Appl Microbiol. 1966 Nov;14(6):998–1003. doi: 10.1128/am.14.6.998-1003.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sauer B. L., Colvin H. J., Munkres K. D. The effects of nitrogen source upon respiration of Neurospora crassa. Biochem Biophys Res Commun. 1973 Nov 16;55(2):389–395. doi: 10.1016/0006-291x(73)91099-1. [DOI] [PubMed] [Google Scholar]
- Schievelbein H., Baumeister R., Vogel R. Comparative investigations on the activity of thiosulphate-sulphur transferase. Naturwissenschaften. 1969 Aug;56(8):416–417. doi: 10.1007/BF00593627. [DOI] [PubMed] [Google Scholar]
- Schwab A. J. Mitochondrial protein synthesis and cyanide-resistant respiration in copper-depleted, cytochrome oxidase-deficient Neurospora crassa. FEBS Lett. 1973 Sep 1;35(1):63–66. doi: 10.1016/0014-5793(73)80577-0. [DOI] [PubMed] [Google Scholar]
- Seely M. K., Criddle R. S., Conn E. E. The metabolism of aromatic compounds in higher plants. 8. On the requirement of hydroxynitrile lyase for flavin. J Biol Chem. 1966 Oct 10;241(19):4457–4462. [PubMed] [Google Scholar]
- Silver W. S., Postgate J. R. Evolution of asymbiotic nitrogen fixation. J Theor Biol. 1973 Jul;40(1):1–10. doi: 10.1016/0022-5193(73)90160-4. [DOI] [PubMed] [Google Scholar]
- Skowronski B., Strobel G. A. Cyanide resistance and cyanide utilization by a strain of Bacillus pumilus. Can J Microbiol. 1969 Jan;15(1):93–98. doi: 10.1139/m69-014. [DOI] [PubMed] [Google Scholar]
- Slayman C. W., Rees D. C., Orchard P. P., Slayman C. L. Generation of adenosine triphosphate in cytochrome-deficient mutants of Neurospora. J Biol Chem. 1975 Jan 25;250(2):396–408. [PubMed] [Google Scholar]
- Smith A. J., Lascelles J. Thiosulphate metabolism and rhodanese in Chromatium sp. strain D. J Gen Microbiol. 1966 Mar;42(3):357–370. doi: 10.1099/00221287-42-3-357. [DOI] [PubMed] [Google Scholar]
- Smith S. E. Plating and cyanide wastes. J Water Pollut Control Fed. 1972 Jun;44(6):1100–1104. [PubMed] [Google Scholar]
- Stafford D. A., Callely A. G. The utilization of thiocyanate by a heterotrophic bacterium. J Gen Microbiol. 1969 Feb;55(2):285–289. doi: 10.1099/00221287-55-2-285. [DOI] [PubMed] [Google Scholar]
- Stevens D. L., Strobel G. A. Origin of cyanide in cultures of a psychrophilic basidiomycete. J Bacteriol. 1968 Mar;95(3):1094–1102. doi: 10.1128/jb.95.3.1094-1102.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strobel G. A. 4-amino-4-cyanobutyric acid as an intermediate in glutamate biosynthesis. J Biol Chem. 1967 Jul 25;242(14):3265–3269. [PubMed] [Google Scholar]
- Strobel G. A. The fixation of hydrocyanic acid by a psychrophilic basidiomycete. J Biol Chem. 1966 Jun 10;241(11):2618–2621. [PubMed] [Google Scholar]
- THIMANN K. V., MAHADEVAN S. NITRILASE. I. OCCURRENCE, PREPARATION, AND GENERAL PROPERTIES OF THE ENZYME. Arch Biochem Biophys. 1964 Apr;105:133–141. doi: 10.1016/0003-9861(64)90244-9. [DOI] [PubMed] [Google Scholar]
- Tabita R., Silver M., Lundgren D. G. The rhodanese enzyme of Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans). Can J Biochem. 1969 Dec;47(12):1141–1145. doi: 10.1139/o69-184. [DOI] [PubMed] [Google Scholar]
- Tapper B. A., Macdonald M. A. Cyanogenic compounds in cultures of a psychrophilic basidiomycete (snow mold). Can J Microbiol. 1974 Apr;20(4):563–566. doi: 10.1139/m74-086. [DOI] [PubMed] [Google Scholar]
- Taylor B. F. Oxidation of elemental sulfur by an enzyme system from Thiobacillus neapolitanus. Biochim Biophys Acta. 1968 Nov 12;170(1):112–122. doi: 10.1016/0304-4165(68)90165-7. [DOI] [PubMed] [Google Scholar]
- Tonge G. M., Harrison D. E., Knowles C. J., Higgins I. J. Properties and partial purification of the methane-oxidising enzyme system from Methylosinus trichosporium. FEBS Lett. 1975 Oct 15;58(1):293–299. doi: 10.1016/0014-5793(75)80282-1. [DOI] [PubMed] [Google Scholar]
- VILLAREJO M., WESTLEY J. MECHANISM OF RHODANESE CATALYSIS OF THIOSULFATE-LIPOATE OXIDATION-REDUCTION. J Biol Chem. 1963 Dec;238:4016–4020. [PubMed] [Google Scholar]
- Vachek H., Wood J. L. Purification and properties of mercaptopyruvate sulfur transferase of Escherichia coli. Biochim Biophys Acta. 1972 Jan 20;258(1):133–146. doi: 10.1016/0005-2744(72)90973-4. [DOI] [PubMed] [Google Scholar]
- Villarejo M., Westley J. Sulfur metabolism of Bacillus subtilis. Biochim Biophys Acta. 1966 Mar 28;117(1):209–216. doi: 10.1016/0304-4165(66)90168-1. [DOI] [PubMed] [Google Scholar]
- WARE G. C., PAINTER H. A. Bacterial utilization of cyanide. Nature. 1955 May 21;175(4464):900–900. doi: 10.1038/175900a0. [DOI] [PubMed] [Google Scholar]
- Ward E. W., Thorn G. D., Starratt A. N. The amino acid source of HCN in cultures of a psychrophilic basidiomycete. Can J Microbiol. 1971 Aug;17(8):1061–1066. doi: 10.1139/m71-168. [DOI] [PubMed] [Google Scholar]
- Westley J. Rhodanese. Adv Enzymol Relat Areas Mol Biol. 1973;39:327–368. doi: 10.1002/9780470122846.ch5. [DOI] [PubMed] [Google Scholar]
- Weston J. A., Collins P. A., Knowles C. J. The respiratory system of the marine bacterium Beneckea natriegens. II. Terminal branching of respiration to oxygen and resistance to inhibition by cyanide. Biochim Biophys Acta. 1974 Nov 19;368(2):148–157. doi: 10.1016/0005-2728(74)90145-5. [DOI] [PubMed] [Google Scholar]
- Wissing F. Cyanide formation from oxidation of glycine of Pseudomonas species. J Bacteriol. 1974 Mar;117(3):1289–1294. doi: 10.1128/jb.117.3.1289-1294.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wissing F. Cyanide production from glycine by a homogenate from a Pseudomonas species. J Bacteriol. 1975 Feb;121(2):695–699. doi: 10.1128/jb.121.2.695-699.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- YOUATT J. B. Studies on the metabolism of Thiobacillus thiocyanoxidans. J Gen Microbiol. 1954 Oct;11(2):139–149. doi: 10.1099/00221287-11-2-139. [DOI] [PubMed] [Google Scholar]
- Yoch D. C., Lindstrom E. S. Survey of the photosynthetic bacteria for rhodanese (thiosulfate: cyanide sulfur transferase) activity. J Bacteriol. 1971 May;106(2):700–701. doi: 10.1128/jb.106.2.700-701.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Jagow G., Klingenberg M. Pathways of hydrogen in mitochondria of Saccharomyces carlsbergensis. Eur J Biochem. 1970 Feb;12(3):583–592. doi: 10.1111/j.1432-1033.1970.tb00890.x. [DOI] [PubMed] [Google Scholar]
