Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alberts A. W., Bell R. M., Vagelos P. R. Acyl carrier protein. XV. Studies of -ketoacyl-acyl carrier protein synthetase. J Biol Chem. 1972 May 25;247(10):3190–3198. [PubMed] [Google Scholar]
- Arison B. H., Omura S. Revised structure of cerulenin. J Antibiot (Tokyo) 1974 Jan;27(1):28–30. doi: 10.7164/antibiotics.27.28. [DOI] [PubMed] [Google Scholar]
- Awaya J., Kesado T., Omura S. Preparation of 13C- and 3H-labeled cerulenin and biosynthesis with 13C-NMR. J Antibiot (Tokyo) 1975 Oct;28(10):824–827. doi: 10.7164/antibiotics.28.824. [DOI] [PubMed] [Google Scholar]
- Awaya J., Ohno T., Ohno H., Omura S. Substitution of cellular fatty acids in yeast cells by the antibiotic cerulenin and exogenous fatty acids. Biochim Biophys Acta. 1975 Dec 17;409(3):267–273. doi: 10.1016/0005-2760(75)90022-3. [DOI] [PubMed] [Google Scholar]
- Boldur I., Sompolinsky D. Antigen specific for bacteria resistant to tetracycline. Antimicrob Agents Chemother. 1974 Aug;6(2):117–120. doi: 10.1128/aac.6.2.117. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chopra I. Induction of tetracycline resistance in Staphylococcus aureus in the absence of lipid synthesis. J Gen Microbiol. 1975 Dec;91(2):433–436. doi: 10.1099/00221287-91-2-433. [DOI] [PubMed] [Google Scholar]
- Cronan J. E., Jr, Gelmann E. P. Physical properties of membrane lipids: biological relevance and regulation. Bacteriol Rev. 1975 Sep;39(3):232–256. doi: 10.1128/br.39.3.232-256.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cronan J. E., Jr Regulation of the fatty acid composition of the membrane phospholipids of Escherichia coli. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3758–3762. doi: 10.1073/pnas.71.9.3758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cronan J. E., Jr Thermal regulation of the membrane lipid composition of Escherichia coli. Evidence for the direct control of fatty acid synthesis. J Biol Chem. 1975 Sep 10;250(17):7074–7077. [PubMed] [Google Scholar]
- Cronan J. E., Vagelos P. R. Metabolism and function of the membrane phospholipids of Escherichia coli. Biochim Biophys Acta. 1972 Feb 14;265(1):25–60. doi: 10.1016/0304-4157(72)90018-4. [DOI] [PubMed] [Google Scholar]
- D'Agnolo G., Rosenfeld I. S., Awaya J., Omura S., Vagelos P. R. Inhibition of fatty acid synthesis by the antibiotic cerulenin. Specific inactivation of beta-ketoacyl-acyl carrier protein synthetase. Biochim Biophys Acta. 1973 Nov 29;326(2):155–156. doi: 10.1016/0005-2760(73)90241-5. [DOI] [PubMed] [Google Scholar]
- Delo J., Ernst-Fonberg M. L., Bloch K. Fatty acid synthetases from Euglena gracilis. Arch Biochem Biophys. 1971 Apr;143(2):384–391. doi: 10.1016/0003-9861(71)90225-6. [DOI] [PubMed] [Google Scholar]
- Esposito M. S., Esposito R. E., Arnaud M., Halvorson H. O. Acetate utilization and macromolecular synthesis during sporulation of yeast. J Bacteriol. 1969 Oct;100(1):180–186. doi: 10.1128/jb.100.1.180-186.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowell R. R. Factors controlling the sporulation of yeasts. II. The sporulation phase. J Appl Bacteriol. 1967 Dec;30(3):450–474. doi: 10.1111/j.1365-2672.1967.tb00323.x. [DOI] [PubMed] [Google Scholar]
- Goldberg I., Walker J. R., Bloch K. Inhibition of lipid synthesis in Escherichia coli cells by the antibiotic cerulenin. Antimicrob Agents Chemother. 1973 May;3(5):549–554. doi: 10.1128/aac.3.5.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Golden N. G., Powell G. L. Stringent and relaxed control of phospholipid metabolism in Escherichia coli. J Biol Chem. 1972 Oct 25;247(20):6651–6658. [PubMed] [Google Scholar]
- Greenspan M. D., Alberts A. W., Vagelos P. R. Acyl carrier protein. 13. Beta-ketoacyl acyl carrier protein synthetase from Escherichia coli. J Biol Chem. 1969 Dec 10;244(23):6477–6485. [PubMed] [Google Scholar]
- Haber J. E., Halvorson H. O. Regulation of sporulation in yeast. Curr Top Dev Biol. 1972;7:61–83. doi: 10.1016/s0070-2153(08)60069-1. [DOI] [PubMed] [Google Scholar]
- Harder M. E., Beacham I. R., Cronan J. E., Jr, Beacham K., Honegger J. L., Silbert D. F. Temperature-sensitive mutants of Escherichia coli requiring saturated and unsaturated fatty acids for growth: isolation and properties. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3105–3109. doi: 10.1073/pnas.69.11.3105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harder M. E., Ladenson R. C., Schimmel S. D., Silbert D. F. Mutants of Escherichia coli with temperature-sensitive malonyl coenzyme A-acyl carrier protein transacylase. J Biol Chem. 1974 Dec 10;249(23):7468–7475. [PubMed] [Google Scholar]
- Hawrot E., Kennedy E. P. Biogenesis of membrane lipids: mutants of Escherichia coli with temperature-sensitive phosphatidylserine decarboxylase. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1112–1116. doi: 10.1073/pnas.72.3.1112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henry S. A., Halvorson H. O. Lipid synthesis during sporulation of Saccharomyces cerevisiae. J Bacteriol. 1973 Jun;114(3):1158–1163. doi: 10.1128/jb.114.3.1158-1163.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Illingworth R. F., Rose A. H., Beckett A. Changes in the lipid composition and fine structure of Saccharomyces cerevisiae during ascus formation. J Bacteriol. 1973 Jan;113(1):373–386. doi: 10.1128/jb.113.1.373-386.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Itai A., Nozoe S., Tsuda K., Okuda S., Iitaka Y. The structure of cephalonic acid, a pentaprenyl terpenoid. Tetrahedron Lett. 1967 Oct;42:4111–4112. doi: 10.1016/s0040-4039(01)89701-x. [DOI] [PubMed] [Google Scholar]
- Jaworski J. G., Goldschmidt E. E., Stumpf P. K. Fat metabolism in higher plants. Properties of the palmityl acyl carrier protein: stearyl acyl carrier protein elongation system in maturing safflower seed extracts. Arch Biochem Biophys. 1974 Aug;163(2):769–776. doi: 10.1016/0003-9861(74)90539-6. [DOI] [PubMed] [Google Scholar]
- Kamiryo T., Parthasarathy S., Numa S. Evidence that acyl coenzyme A synthetase activity is required for repression of yeast acetyl coenzyme A carboxylase by exogenous fatty acids. Proc Natl Acad Sci U S A. 1976 Feb;73(2):386–390. doi: 10.1073/pnas.73.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kass L. R., Bloch K. On the enzymatic synthesis of unsaturated fatty acids in Escherichia coli. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1168–1173. doi: 10.1073/pnas.58.3.1168. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kass L. R. The antibacterial activity of 3-decynoyl-n-acetylcysteamine. Inhibition in vivo of beta-hydroxydecanoyl thioester dehydrase. J Biol Chem. 1968 Jun 25;243(12):3223–3228. [PubMed] [Google Scholar]
- Kreuzaler F., Hahlbrock K. Enzymic synthesis of an aromatic ring from acetate units. Partial purification and some properties of flavanone synthase from cell-suspension cultures of Petroselinum hortense. Eur J Biochem. 1975 Aug 1;56(1):205–213. doi: 10.1111/j.1432-1033.1975.tb02223.x. [DOI] [PubMed] [Google Scholar]
- Levy S. B., McMurry L. Detection of an inducible membrane protein associated with R-factor-mediated tetracycline resistance. Biochem Biophys Res Commun. 1974 Feb 27;56(4):1060–1068. doi: 10.1016/s0006-291x(74)80296-2. [DOI] [PubMed] [Google Scholar]
- Linke H. A., Mechlinski W., Schaffner C. P. Production of amphotericin B-14C by Streptomyces nodosus fermentation, and preparation of the amphotericin B-14C-methyl-ester. J Antibiot (Tokyo) 1974 Mar;27(3):155–160. doi: 10.7164/antibiotics.27.155. [DOI] [PubMed] [Google Scholar]
- MATSUMAE A., KAMIO Y., HATA T. STUDIES ON CERULENIN. I. STUDIES ON CERULENIN PRODUCING STRAIN. J Antibiot (Tokyo) 1963 Nov;16:236–238. [PubMed] [Google Scholar]
- MATSUMAE A., NOMURA S., HATA T. STUDIES ON CERULENIN. II. BIOLOGICAL ASSAY AND FERMENTATION OF CERULENIN. J Antibiot (Tokyo) 1963 Nov;16:239–243. [PubMed] [Google Scholar]
- MATSUMAE A., NOMURA S., HATA T. STUDIES ON CERULENIN. IV. BIOLOGICAL CHARACTERISTICS OF CERULENIN. J Antibiot (Tokyo) 1964 Jan;17:1–7. [PubMed] [Google Scholar]
- Manwaring D. G., Rickards R. W., Gaudiano G., Nicolella V. The biosynthesis of the macrolide antibiotic lucensomycin. J Antibiot (Tokyo) 1969 Nov;22(11):545–550. doi: 10.7164/antibiotics.22.545. [DOI] [PubMed] [Google Scholar]
- Marr A. G., Ingraham J. L. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI. J Bacteriol. 1962 Dec;84(6):1260–1267. doi: 10.1128/jb.84.6.1260-1267.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin J. F., Mcdaniel L. E. Specific inhibition of candicidin biosynthesis by the lipogenic inhibitor cerulenin. Biochim Biophys Acta. 1975 Dec 5;411(2):186–194. doi: 10.1016/0304-4165(75)90298-6. [DOI] [PubMed] [Google Scholar]
- Merlie J. P., Pizer L. I. Regulation of phospholipid synthesis in Escherichia coli by guanosine tetraphosphate. J Bacteriol. 1973 Oct;116(1):355–366. doi: 10.1128/jb.116.1.355-366.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mindich L. Induction of Staphylococcus aureus Lactose Permease in the Absence of Glycerolipid Synthesis. Proc Natl Acad Sci U S A. 1971 Feb;68(2):420–424. doi: 10.1073/pnas.68.2.420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nomura S., Horiuchi T., Hata T., Omura S. Inhibition of sterol and fatty acid biosyntheses by cerulenin in cell-free systems of yeast. J Antibiot (Tokyo) 1972 Jun;25(6):365–368. doi: 10.7164/antibiotics.25.365. [DOI] [PubMed] [Google Scholar]
- Nomura S., Horiuchi T., Omura S., Hata T. The action mechanism of cerulenin. I. Effect of cerulenin on sterol and fatty acid biosynthesis in yeast. J Biochem. 1972 May;71(5):783–796. doi: 10.1093/oxfordjournals.jbchem.a129827. [DOI] [PubMed] [Google Scholar]
- Nunn W. D., Cronan J. E., Jr rel Gene control of lipid synthesis in Escherichia coli. Evidence for eliminating fatty acid synthesis as the sole regulatory site. J Biol Chem. 1974 Jun 25;249(12):3994–3996. [PubMed] [Google Scholar]
- OKUDA S., IWASAKI S., TSUDA K., SANO Y., HATA T., UDAGAWA S., NAKAYAMA Y., YAMAGUCHI H. THE STRUCTURE OF HELVOLIC ACID. Chem Pharm Bull (Tokyo) 1964 Jan;12:121–124. doi: 10.1248/cpb.12.121. [DOI] [PubMed] [Google Scholar]
- Ohno H., Ohno T., Awaya J., Omura S. Inhibition of 6-methylsalicyclic acid synthesis by the antibiotic cerulenin. J Biochem. 1975 Dec;78(6):1149–1152. doi: 10.1093/oxfordjournals.jbchem.a131010. [DOI] [PubMed] [Google Scholar]
- Ohno T., Awaya J., Omura S. Inhibition of sporulation by cerulenin and its reversion by exogenous fatty acids in Saccharomyces cerevisiae. Antimicrob Agents Chemother. 1976 Jan;9(1):42–48. doi: 10.1128/aac.9.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okuda S., Nakayama Y., Tsuda K. Studies on microbial products. I. Helvolic acid and related compounds. I. 7-desacetoxyhelvolic acid and helvolinic acid. Chem Pharm Bull (Tokyo) 1966 Apr;14(4):436–441. doi: 10.1248/cpb.14.436. [DOI] [PubMed] [Google Scholar]
- Omura S., Katagiri M., Atsumi K., Hata T., Jakubowski A. A., Springs E. B., Tishler M. Structure of prumycin. J Chem Soc Perkin 1. 1974;0(14):1627–1631. doi: 10.1039/p19740001627. [DOI] [PubMed] [Google Scholar]
- Omura S., Katagiri M., Awaya J., Furukawa T., Umezawa I., Oi N., Mizoguchi M., Aoki B., Shindo M. Relationship between the structures of fatty acid amide derivatives and their antimicrobial activities. Antimicrob Agents Chemother. 1974 Aug;6(2):207–215. doi: 10.1128/aac.6.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Omura S., Katagiri M., Nakagawa A., Sano Y., Nomura S. Studies on cerulenin. V. Structure of cerulenin. J Antibiot (Tokyo) 1967 Nov;20(6):349–354. [PubMed] [Google Scholar]
- Omura S., Nakagawa A., Sekikawa K., Otani M., Hata T. Studies on cerulenin. VI. Some spectroscopic features of cerulenin. Chem Pharm Bull (Tokyo) 1969 Nov;17(11):2361–2363. doi: 10.1248/cpb.17.2361. [DOI] [PubMed] [Google Scholar]
- Omura S., Nakagawa A., Takeshima H., Atusmi K., Miyazawa J., Piriou F., Lukacs G. Letter: Biosynthetic studies using 13C enriched precursors on the 16-membered macrolide antibiotic leucomycin A3. J Am Chem Soc. 1975 Oct 29;97(22):6600–6602. doi: 10.1021/ja00855a065. [DOI] [PubMed] [Google Scholar]
- Omura S., Takeshima H. Inhibition of the biosynthesis of leucomycin, a macrolide antibiotic, by cerulenin. J Biochem. 1974 Jan;75(1):193–195. doi: 10.1093/oxfordjournals.jbchem.a130375. [DOI] [PubMed] [Google Scholar]
- Ono T., Kesado T., Awaya J., Omura S. Target of inhibition by the anti-lipogenic antibiotic cerulenin of sterol synthesis in yeast. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1119–1124. doi: 10.1016/0006-291x(74)90812-2. [DOI] [PubMed] [Google Scholar]
- Polakis S. E., Guchhait R. B., Lane M. D. Stringent control of fatty acid synthesis in Escherichia coli. Possible regulation of acetyl coenzyme A carboxylase by ppGpp. J Biol Chem. 1973 Nov 25;248(22):7957–7966. [PubMed] [Google Scholar]
- Prescott D. J., Vagelos P. R. Acyl carrier protein. XIV. Further studies on beta-ketoacyl acyl carrier protein synthetase from Escherichia coli. J Biol Chem. 1970 Oct 25;245(20):5484–5490. [PubMed] [Google Scholar]
- Randall L. L. Insertion of a minor protein into the outer membrane of Escherichia coli during inhibition of lipid synthesis. J Bacteriol. 1975 May;122(2):347–351. doi: 10.1128/jb.122.2.347-351.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosenfeld I. S., D'Agnolo G., Vagelos P. R. Synthesis of unsaturated fatty acids and the lesion in fab B mutants. J Biol Chem. 1973 Apr 10;248(7):2452–2460. [PubMed] [Google Scholar]
- Sato Y., Nomura S., Kamio Y., Omura S., Hata T. Studies on cerulenin, 3. Isolation and physico-chemical properties of cerulenin. J Antibiot (Tokyo) 1967 Nov;20(6):344–348. [PubMed] [Google Scholar]
- Schweizer E., Bolling H. A Saccharomyces cerevisiae mutant defective in saturated fatty acid biosynthesis. Proc Natl Acad Sci U S A. 1970 Oct;67(2):660–666. doi: 10.1073/pnas.67.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silbert D. F., Vagelos P. R. Fatty acid mutant of E. coli lacking a beta-hydroxydecanoyl thioester dehydrase. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1579–1586. doi: 10.1073/pnas.58.4.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sinensky M. Temperature control of phospholipid biosynthesis in Escherichia coli. J Bacteriol. 1971 May;106(2):449–455. doi: 10.1128/jb.106.2.449-455.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sokawa Y., Nakao-Sato E., Kaziro Y. RC gene control in Escherichia coli is not restricted to RNA synthesis. Biochim Biophys Acta. 1970 Jan 21;199(1):256–264. doi: 10.1016/0005-2787(70)90714-8. [DOI] [PubMed] [Google Scholar]
- Stewart P. R., Rudney H. The biosynthesis of beta-hydroxy-beta-methylglutaryl coenzyme A in yeast. 3. Purification and properties of the condensing enzyme thiolase system. J Biol Chem. 1966 Mar 10;241(5):1212–1221. [PubMed] [Google Scholar]
- Vance D., Goldberg I., Mitsuhashi O., Bloch K. Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem Biophys Res Commun. 1972 Aug 7;48(3):649–656. doi: 10.1016/0006-291x(72)90397-x. [DOI] [PubMed] [Google Scholar]
- Wille W., Eisenstadt E., Willecke K. Inhibition of de novo fatty acid synthesis by the antibiotic cerulenin in Bacillus subtilis: effects on citrate-Mg2+ transport and synthesis of macromolecules. Antimicrob Agents Chemother. 1975 Sep;8(3):231–237. doi: 10.1128/aac.8.3.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willecke K., Mindich L. Induction of citrate transport in Bacillus subtilis during the absence of phospholipid synthesis. J Bacteriol. 1971 May;106(2):514–518. doi: 10.1128/jb.106.2.514-518.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Daehne W., Lorch H., Godtfredsen W. O. Microbiological transformations of fusidane-type antibiotics. A correlation between fusidic acid and helvolic acid. Tetrahedron Lett. 1968 Sep;(47):4843–4846. doi: 10.1016/s0040-4039(00)72771-7. [DOI] [PubMed] [Google Scholar]