Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1976 Dec;40(4):803–846. doi: 10.1128/br.40.4.803-846.1976

Microbial water stress.

A D Brown
PMCID: PMC413986  PMID: 1008746

Full text

PDF
803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aitken D. M., Brown A. D. Properties of halophil nicotinamide-adenine dinucleotide phosphate-specific isocitrate dehydrogenase. True Michaelis constants, reaction mechanisms and molecular weights. Biochem J. 1972 Dec;130(3):645–662. doi: 10.1042/bj1300645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aitken D. M., Wicken A. J., Brown A. D. Properties of a halophil nicotinamide--adenine dinucleotide phosphate-specific isocitrate dehydrogenase. Preliminary studies of the salt relations and kinetics of the crude enzyme. Biochem J. 1970 Jan;116(1):125–134. doi: 10.1042/bj1160125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BAXTER R. M. An interpretation of the effects of salts on the lactic dehydrogenase of Halobacterium salinarium. Can J Microbiol. 1959 Feb;5(1):47–57. doi: 10.1139/m59-006. [DOI] [PubMed] [Google Scholar]
  4. BRITTEN R. J., McCLURE F. T. The amino acid pool in Escherichia coli. Bacteriol Rev. 1962 Sep;26:292–335. doi: 10.1128/br.26.3.292-335.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BROWN A. D. ASPECTS OF BACTERIAL RESPONSE TO THE IONIC ENVIRONMENT. Bacteriol Rev. 1964 Sep;28:296–329. doi: 10.1128/br.28.3.296-329.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. BROWN A. D. HYDROGEN ION TITRATIONS OF INTACT AND DISSOLVED LIPOPROTEIN MEMBRANES. J Mol Biol. 1965 Jun;12:491–508. doi: 10.1016/s0022-2836(65)80272-8. [DOI] [PubMed] [Google Scholar]
  7. BROWN A. D., SHOREY C. D. THE CELL ENVELOPES OF TWO EXTREMELY HALOPHILIC BACTERIA. J Cell Biol. 1963 Sep;18:681–689. doi: 10.1083/jcb.18.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. BROWN A. D. THE DEVELOPMENT OF HALOPHILIC PROPERTIES IN BACTERIAL MEMBRANES BY ACYLATION. Biochim Biophys Acta. 1964 Oct 9;93:136–142. doi: 10.1016/0304-4165(64)90267-3. [DOI] [PubMed] [Google Scholar]
  9. BROWN A. D. THE PERIPHERAL STRUCTURES OF GRAM-NEGATIVE BACTERIA.IV. THE CATION-SENSITIVE DISSOLUTION OF THE CELL MEMBRANE OF THE HALOPHILIC BACTERIUM, HALOBACTERIUM HALOBIUM. Biochim Biophys Acta. 1963 Nov 29;75:425–435. doi: 10.1016/0006-3002(63)90630-9. [DOI] [PubMed] [Google Scholar]
  10. Ben-Amotz A., Avron M. NADP specific dihydroxyacetone reductase from Dunaliella parva. FEBS Lett. 1973 Jan 15;29(2):153–155. doi: 10.1016/0014-5793(73)80548-4. [DOI] [PubMed] [Google Scholar]
  11. Ben-Amotz A., Avron M. Photosynthetic Activities of the Halophilic Alga Dunaliella parva. Plant Physiol. 1972 Feb;49(2):240–243. doi: 10.1104/pp.49.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ben-Amotz A., Avron M. The Role of Glycerol in the Osmotic Regulation of the Halophilic Alga Dunaliella parva. Plant Physiol. 1973 May;51(5):875–878. doi: 10.1104/pp.51.5.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Borowitzka L. J., Brown A. D. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch Mikrobiol. 1974 Mar 1;96(1):37–52. doi: 10.1007/BF00590161. [DOI] [PubMed] [Google Scholar]
  14. Brown A. D., Cho K. Y. The walls of the extremely halophilic cocci: gram-positive bacteria lacking muramic acid. J Gen Microbiol. 1970 Aug;62(2):267–270. doi: 10.1099/00221287-62-2-267. [DOI] [PubMed] [Google Scholar]
  15. Brown A. D. Microbial water relations. Effects of solute concentration on the respiratory activity of sugar-tolerant and non-tolerant yeasts. J Gen Microbiol. 1975 Feb;86(2):241–249. doi: 10.1099/00221287-86-2-241. [DOI] [PubMed] [Google Scholar]
  16. Brown A. D. Microbial water relations: features of the intracellular composition of sugar-tolerant yeasts. J Bacteriol. 1974 Jun;118(3):769–777. doi: 10.1128/jb.118.3.769-777.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Brown A. D., Netschey A. Sedimentation, viscosity and partial specific volumes of membrane proteins and lipoproteins. Biochem J. 1967 Apr;103(1):24–28. doi: 10.1042/bj1030024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Brown A. D., Pearce R. F. Preliminary fractionation by gel electrophoresis of the membrane proteins and lipoproteins of Halobacterium halobium. Can J Biochem. 1969 Sep;47(9):833–837. doi: 10.1139/o69-131. [DOI] [PubMed] [Google Scholar]
  19. Brown A. D., Shorey C. D., Turner H. P. An alternative method of isolating the membrane of a halophilic bacterium. J Gen Microbiol. 1965 Nov;41(2):225–231. doi: 10.1099/00221287-41-2-225. [DOI] [PubMed] [Google Scholar]
  20. Brown A. D., Simpson J. R. Water relations of sugar-tolerant yeasts: the role of intracellular polyols. J Gen Microbiol. 1972 Oct;72(3):589–591. doi: 10.1099/00221287-72-3-589. [DOI] [PubMed] [Google Scholar]
  21. Bull H. B., Breese K. Water and solute binding by proteins. 1. Electrolytes. Arch Biochem Biophys. 1970 Apr;137(2):299–305. doi: 10.1016/0003-9861(70)90443-1. [DOI] [PubMed] [Google Scholar]
  22. CHRISTIAN J. H., WALTHO J. A. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta. 1962 Dec 17;65:506–508. doi: 10.1016/0006-3002(62)90453-5. [DOI] [PubMed] [Google Scholar]
  23. CHRISTIAN J. H., WALTHO J. A. THE COMPOSITION OF STAPHYLOCOCCUS AUREUS IN RELATION TO THE WATER ACTIVITY OF THE GROWTH MEDIUM. J Gen Microbiol. 1964 May;35:205–213. doi: 10.1099/00221287-35-2-205. [DOI] [PubMed] [Google Scholar]
  24. CHRISTIAN J. H., WALTHO J. A. The sodium and potassium content of non-halophilic bacteria in relation to salt tolerance. J Gen Microbiol. 1961 May;25:97–102. doi: 10.1099/00221287-25-1-97. [DOI] [PubMed] [Google Scholar]
  25. Cheah K. S. The membrane-bound carbon monoxide-reactive hemoproteins in the extreme halophiles. Biochim Biophys Acta. 1970 Jan 13;197(1):84–86. doi: 10.1016/0005-2728(70)90011-3. [DOI] [PubMed] [Google Scholar]
  26. Cho K. Y., Doy C. H., Mercer E. H. Ultrastructure of the obligate halophilic bacterium Halobacterium halobium. J Bacteriol. 1967 Jul;94(1):196–201. doi: 10.1128/jb.94.1.196-201.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Christian J. H., Waltho J. A. Water relations of Salmonella oranienburg; stimulation of respiration by amino acids. J Gen Microbiol. 1966 Jun;43(3):345–355. doi: 10.1099/00221287-43-3-345. [DOI] [PubMed] [Google Scholar]
  28. Contaxis C. C., Reithel F. J. Studies on protein multimers. II. A study of the mechanism of urease dissociation in 1,2-propanediol: comparative studies with ethylene glycol and glycerol. J Biol Chem. 1971 Feb 10;246(3):677–685. [PubMed] [Google Scholar]
  29. Cooke R., Kuntz I. D. The properties of water in biological systems. Annu Rev Biophys Bioeng. 1974;3(0):95–126. doi: 10.1146/annurev.bb.03.060174.000523. [DOI] [PubMed] [Google Scholar]
  30. Danon A., Stoeckenius W. Photophosphorylation in Halobacterium halobium. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1234–1238. doi: 10.1073/pnas.71.4.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
  32. Douzou P. The use of subzero temperatures in biochemistry: slow reactions. Methods Biochem Anal. 1974;22:401–512. doi: 10.1002/9780470110423.ch9. [DOI] [PubMed] [Google Scholar]
  33. Ginzburg M. The unusual membrane permeability of two halophilic unicellular organisms. Biochim Biophys Acta. 1969 Apr;173(3):370–376. doi: 10.1016/0005-2736(69)90002-9. [DOI] [PubMed] [Google Scholar]
  34. Gochnauer M. B., Kushner D. J. Growth and nutrition of extremely halophilic bacteria. Can J Microbiol. 1969 Oct;15(10):1157–1165. doi: 10.1139/m69-211. [DOI] [PubMed] [Google Scholar]
  35. Gochnauer M. B., Leppard G. G., Komaratat P., Kates M., Novitsky T., Kushner D. J. Isolation and characterization of Actinopolyspora halophila, gen. et sp. nov., an extremely halophilic actinomycete. Can J Microbiol. 1975 Oct;21(10):1500–1511. doi: 10.1139/m75-222. [DOI] [PubMed] [Google Scholar]
  36. HOUWINK A. L. Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J Gen Microbiol. 1956 Aug;15(1):146–150. doi: 10.1099/00221287-15-1-146. [DOI] [PubMed] [Google Scholar]
  37. Hellingwerf K. J., Michels P. A., Dorpema J. W., Konings W. N. Transport of amino acids in membrane vesicles of Rhodopseudomonas spheroides energized by respiratory and cyclic electron flow. Eur J Biochem. 1975 Jul 1;55(2):397–406. doi: 10.1111/j.1432-1033.1975.tb02175.x. [DOI] [PubMed] [Google Scholar]
  38. Henderson R., Unwin P. N. Three-dimensional model of purple membrane obtained by electron microscopy. Nature. 1975 Sep 4;257(5521):28–32. doi: 10.1038/257028a0. [DOI] [PubMed] [Google Scholar]
  39. Hescox M. A., Carlberg D. M. Photoreactivation in Halobacterium cutirubrum. Can J Microbiol. 1972 Jul;18(7):981–985. doi: 10.1139/m72-152. [DOI] [PubMed] [Google Scholar]
  40. Hildebrand E., Dencher N. Two photosystems controlling behavioural responses of Halobacterium halobium. Nature. 1975 Sep 4;257(5521):46–48. doi: 10.1038/257046a0. [DOI] [PubMed] [Google Scholar]
  41. JOSHI J. G., GUILD W. R., HANDLER P. The presence of two species of DNA in some halobacteria. J Mol Biol. 1963 Jan;6:34–38. doi: 10.1016/s0022-2836(63)80079-0. [DOI] [PubMed] [Google Scholar]
  42. Johnson M. K., Johnson E. J., MacElroy R. D., Speer H. L., Bruff B. S. Effects of salts on the halophilic alga Dunaliella viridis. J Bacteriol. 1968 Apr;95(4):1461–1468. doi: 10.1128/jb.95.4.1461-1468.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Kaneshiro E. S., Holz G. G., Jr, Dunham P. B. Osmoregulation in a marine ciliate, Miamiensis avidus. II. Regulation of intracellular free amino acids. Biol Bull. 1969 Aug;137(1):161–169. doi: 10.2307/1539939. [DOI] [PubMed] [Google Scholar]
  44. Kauss H. Turnover of galactosylglycerol and osmotic balance in ochromonas. Plant Physiol. 1973 Dec;52(6):613–615. doi: 10.1104/pp.52.6.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Kientz M. L., Bigelow C. C. The effect of ethylene glycol on the structure of beta-lactoglobulin. Biochemistry. 1966 Nov;5(11):3494–3500. doi: 10.1021/bi00875a015. [DOI] [PubMed] [Google Scholar]
  46. Kushner D. J. Halophilic bacteria. Adv Appl Microbiol. 1968;10:73–99. doi: 10.1016/s0065-2164(08)70189-8. [DOI] [PubMed] [Google Scholar]
  47. Langworthy T. A., Mayberry W. R., Smith P. F. Long-chain glycerol diether and polyol dialkyl glycerol triether lipids of Sulfolobus acidocaldarius. J Bacteriol. 1974 Jul;119(1):106–116. doi: 10.1128/jb.119.1.106-116.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Langworthy T. A., Smith P. F., Mayberry W. R. Lipids of Thermoplasma acidophilum. J Bacteriol. 1972 Dec;112(3):1193–1200. doi: 10.1128/jb.112.3.1193-1200.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Lanyi J. K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol Rev. 1974 Sep;38(3):272–290. doi: 10.1128/br.38.3.272-290.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Louis B. G., Fitt P. S. Isolation and properties of highly purified Halobacterium cutirubrum deoxyribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1972 Mar;127(1):69–80. doi: 10.1042/bj1270069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Louis B. G., Fitt P. S. Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum deoxyribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1971 Feb;121(4):621–627. doi: 10.1042/bj1210621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Louis B. G., Fitt P. S. Nucleic acid enzymology of extremely halophilic bacteria. Halobacterium cutirubrum ribonucleic acid-dependent ribonucleic acid polymerase. Biochem J. 1971 Feb;121(4):629–633. doi: 10.1042/bj1210629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Louis B. G., Fitt P. S. Purification and properties of the ribonucleic acid-dependent ribonucleic acid polymerase from Halobacterium cutirubrum. Biochem J. 1972 Jul;128(4):755–762. doi: 10.1042/bj1280755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Louis B. G., Fitt P. S. The role of Halobacterium cutirubrum deoxyribonucleic acid-dependent ribonucleic acid polymerase subunits in initiation and polymerization. Biochem J. 1972 Mar;127(1):81–86. doi: 10.1042/bj1270081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Low P. S., Somero G. N. Activation volumes in enzymic catalysis: their sources and modification by low-molecular-weight solutes. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3014–3018. doi: 10.1073/pnas.72.8.3014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Low P. S., Somero G. N. Protein hydration changes during catalysis: a new mechanism of enzymic rate-enhancement and ion activation/inhibition of catalysis. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3305–3309. doi: 10.1073/pnas.72.9.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. MacDonald R. E., Lanyi L. K. Light-induced leucine transport in Halobacterium halobium envelope vesicles: a chemiosmotic system. Biochemistry. 1975 Jul;14(13):2882–2889. doi: 10.1021/bi00684a014. [DOI] [PubMed] [Google Scholar]
  58. Marshall C. L., Brown A. D. The membrane lipids of Halobacterium halobium. Biochem J. 1968 Dec;110(3):441–448. doi: 10.1042/bj1100441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Marshall C. L., Wicken A. J., Brown A. D. The outer layer of the cell envelope of Halobacterium halobium. Can J Biochem. 1969 Jan;47(1):71–74. doi: 10.1139/o69-013. [DOI] [PubMed] [Google Scholar]
  60. Measures J. C. Role of amino acids in osmoregulation of non-halophilic bacteria. Nature. 1975 Oct 2;257(5525):398–400. doi: 10.1038/257398a0. [DOI] [PubMed] [Google Scholar]
  61. Mescher M. F., Strominger J. L. Bacitracin induces sphere formation in Halobacterium species which lack a wall peptidoglycan. J Gen Microbiol. 1975 Aug;89(2):375–378. doi: 10.1099/00221287-89-2-375. [DOI] [PubMed] [Google Scholar]
  62. Meyer G. H., Morrow M. B., Wyss O., Berg T. E., Littlepage J. L. Antarctica: The Microbiology of an Unfrozen Saline Pond. Science. 1962 Dec 7;138(3545):1103–1104. doi: 10.1126/science.138.3545.1103. [DOI] [PubMed] [Google Scholar]
  63. Moore R. L., McCarthy B. J. Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria. J Bacteriol. 1969 Jul;99(1):248–254. doi: 10.1128/jb.99.1.248-254.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Nakanishi S., Adhya S., Gottesman M., Pastan I. Activation of transcription at specific promoters by glycerol. J Biol Chem. 1974 Jul 10;249(13):4050–4056. [PubMed] [Google Scholar]
  65. Nozaki Y., Tanford C. The solubility of amino acids and related compounds in aqueous thylene glycol solutions. J Biol Chem. 1965 Sep;240(9):3568–3575. [PubMed] [Google Scholar]
  66. OKAMOTO H., SUZUKI Y. INTRACELLULAR CONCENTRATION OF IONS IN A HALOPHILIC STRAIN OF CHLAMYDOMONAS. I. CONCENTRATION OF NA, K AND CL IN THE CELL. Z Allg Mikrobiol. 1964;4:350–357. doi: 10.1002/jobm.3630040503. [DOI] [PubMed] [Google Scholar]
  67. ONISHI H., MCCANCE E., GIBBONS N. E. A SYNTHETIC MEDIUM FOR EXTREMELY HALOPHILIC BACTERIA. Can J Microbiol. 1965 Apr;11:365–373. doi: 10.1139/m65-044. [DOI] [PubMed] [Google Scholar]
  68. ONISHI H. OSMOPHILIC YEASTS. Adv Food Res. 1963;12:53–94. [PubMed] [Google Scholar]
  69. Oesterhelt D., Stoeckenius W. Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol. 1971 Sep 29;233(39):149–152. doi: 10.1038/newbio233149a0. [DOI] [PubMed] [Google Scholar]
  70. Oesterhelt D. The purple membrane of Halobacterium halobium: a new system for light energy conversion. Ciba Found Symp. 1975;(31):147–167. doi: 10.1002/9780470720134.ch9. [DOI] [PubMed] [Google Scholar]
  71. Olivares W., McQuarrie D. A. On the theory of ionic solutions. Biophys J. 1975 Feb;15(2 Pt 1):143–162. doi: 10.1016/s0006-3495(75)85798-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Pitt J. I., Christian J. H. Water relations of xerophilic fungi isolated from prunes. Appl Microbiol. 1968 Dec;16(12):1853–1858. doi: 10.1128/am.16.12.1853-1858.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Postgate J. R. Recent advances in the study of the sulfate-reducing bacteria. Bacteriol Rev. 1965 Dec;29(4):425–441. doi: 10.1128/br.29.4.425-441.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Pugh E. L., Wassef M. K., Kates M. Inhibition of fatty acid synthetase in Halobacterium cutirubrum and Escherichia coli by high salt concentrations. Can J Biochem. 1971 Aug;49(8):953–958. doi: 10.1139/o71-138. [DOI] [PubMed] [Google Scholar]
  75. Racker E., Stoeckenius W. Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem. 1974 Jan 25;249(2):662–663. [PubMed] [Google Scholar]
  76. Raymond J. C., Sistrom W. R. ctothiorhodospira halophila: a new species ofthe genus Ectothiorhodospira. Arch Mikrobiol. 1969;69(2):121–126. doi: 10.1007/BF00409756. [DOI] [PubMed] [Google Scholar]
  77. Reeves H. C., Brehmeyer B. A., Ajl S. J. Multiple forms of bacterial NADP-specific isocitrate dehydrogenase. Science. 1968 Oct 18;162(3851):359–360. doi: 10.1126/science.162.3851.359. [DOI] [PubMed] [Google Scholar]
  78. Rothfield L., Romeo D. Role of lipids in the biosynthesis of the bacterial cell envelope. Bacteriol Rev. 1971 Mar;35(1):14–38. doi: 10.1128/br.35.1.14-38.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Rowe J. J., Reeves H. C. Electrophoretic heterogeneity of bacterial nicotinamide adenine dinucleotide phosphate-specific isocitrate dehydrogenases. J Bacteriol. 1971 Nov;108(2):824–827. doi: 10.1128/jb.108.2.824-827.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. SEHGAL S. N., KATES M., GIBBONS N. E. Lipids of Halobacterium cutirubrum. Can J Biochem Physiol. 1962 Jan;40:69–81. [PubMed] [Google Scholar]
  81. Self C. H., Weitzman P. D. The isocitrate dehydrogenases of Acinetobacter lwoffi. Separation and properties of two nicotinamide-adenine dinucleotide phosphate-linked isoenzymes. Biochem J. 1972 Nov;130(1):211–219. doi: 10.1042/bj1300211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Shkedy-Vinkler C., Avi-Dor Y. Betaine-induced stimulation of respiration at high osmolarities in a halotolerant bacterium. Biochem J. 1975 Aug;150(2):219–226. doi: 10.1042/bj1500219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Smith P. F., Langworth T. A., Mayberry W. R., Houghland A. E. Characterization of the membranes of Thermoplasma acidophilum. J Bacteriol. 1973 Nov;116(2):1019–1028. doi: 10.1128/jb.116.2.1019-1028.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Spencer J. F. Production of polyhydric alcohols by yeasts. Prog Ind Microbiol. 1968;7:1–42. [PubMed] [Google Scholar]
  85. Steber J., Schleifer K. H. Halococcus morrhuae: a sulfated heteropolysaccharide as the structural component of the bacterial cell wall. Arch Microbiol. 1975 Oct 27;105(2):173–177. doi: 10.1007/BF00447133. [DOI] [PubMed] [Google Scholar]
  86. Stoeckenius W., Rowen R. A morphological study of Halobacterium halobium and its lysis in media of low salt concentration. J Cell Biol. 1967 Jul;34(1):365–393. doi: 10.1083/jcb.34.1.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Stoner L. C., Dunham P. B. Regulation of cellular osmolarity and volume in Tetrahymena. J Exp Biol. 1970 Oct;53(2):391–399. doi: 10.1242/jeb.53.2.391. [DOI] [PubMed] [Google Scholar]
  88. Tempest D. W., Meers J. L., Brown C. M. Influence of environment on the content and composition of microbial free amino acid pools. J Gen Microbiol. 1970 Dec;64(2):171–185. doi: 10.1099/00221287-64-2-171. [DOI] [PubMed] [Google Scholar]
  89. Thierry O. C., Cooney J. J. Physicochemical factors influencing growth and pigment synthesis by Micrococcus roseus. Can J Microbiol. 1966 Aug;12(4):691–698. doi: 10.1139/m66-095. [DOI] [PubMed] [Google Scholar]
  90. Torsvik T., Dundas I. D. Bacteriophage of Halobacterium salinarium. Nature. 1974 Apr 19;248(5450):680–681. doi: 10.1038/248680a0. [DOI] [PubMed] [Google Scholar]
  91. WILBRANDT W. Transport through biological membranes. Annu Rev Physiol. 1963;25:601–630. doi: 10.1146/annurev.ph.25.030163.003125. [DOI] [PubMed] [Google Scholar]
  92. Wais A. C., Kon M., MacDonald R. E., Stollar B. D. Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium. Nature. 1975 Jul 24;256(5515):314–315. doi: 10.1038/256314a0. [DOI] [PubMed] [Google Scholar]
  93. Walsby A. E. Structure and function of gas vacuoles. Bacteriol Rev. 1972 Mar;36(1):1–32. doi: 10.1128/br.36.1.1-32.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Wegmann K. Osmotic regulation of photosynthetic glycerol production in Dunaliella. Biochim Biophys Acta. 1971 Jun 15;234(3):317–323. doi: 10.1016/0005-2728(71)90197-6. [DOI] [PubMed] [Google Scholar]
  95. Woodrow G. C., Cheung H. T., Cho K. Y. Phospholipid of an extremely halophilic bacterium, Sarcina morrhuae. Aust J Biol Sci. 1973 Aug;26(4):787–792. doi: 10.1071/bi9730787. [DOI] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES