Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1977 Jun;41(2):391–418. doi: 10.1128/br.41.2.391-418.1977

Fatty acids of the genus Bacillus: an example of branched-chain preference.

T Kaneda
PMCID: PMC414006  PMID: 329832

Full text

PDF
391

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLISON M. J., BRYANT M. P. Biosynthesis of branched-chain amino acids from branched-chain fatty acids by rumen bacteria. Arch Biochem Biophys. 1963 May;101:269–277. doi: 10.1016/s0003-9861(63)80012-0. [DOI] [PubMed] [Google Scholar]
  2. Ailhaud G. P., Vagelos P. R. Palmityl-acyl carrier protein as acyl donor for complex lipid biosynthesis in Escherichia coli. J Biol Chem. 1966 Aug 25;241(16):3866–3869. [PubMed] [Google Scholar]
  3. Allen W. V., Ponnamperuma C. A possible prebiotic synthesis of monocarboxylic acids. Curr Mod Biol. 1967 Mar;1(1):24–28. doi: 10.1016/0303-2647(67)90017-2. [DOI] [PubMed] [Google Scholar]
  4. Andersson B. A., Holman R. T. Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids. 1974 Mar;9(3):185–190. doi: 10.1007/BF02532690. [DOI] [PubMed] [Google Scholar]
  5. Asselineau C., Montrozier H., Promé J. C. Présence d'acides polyinsaturés dans une bactérie: isolement, à partir des lipides de Mycobacterium phlei, d'acide hexatriacontapentaène-4,8,12, 16, 20-oïque et d'acides analogues. Eur J Biochem. 1969 Oct;10(3):580–584. doi: 10.1111/j.1432-1033.1969.tb00728.x. [DOI] [PubMed] [Google Scholar]
  6. BRESSLER R., WAKIL S. J. Studies on the mechanism of fatty acid synthesis. XI. The product of the reaction and the role of sulfhydryl groups in the synthesis of fatty acids. J Biol Chem. 1962 May;237:1441–1448. [PubMed] [Google Scholar]
  7. Bandyapadhyay G. K., Dutta J. Separation of methyl esters of polyunsaturated fatty acids by argentation thin-layer chromatography. J Chromatogr. 1975 Nov 12;114(1):280–282. doi: 10.1016/s0021-9673(00)85279-6. [DOI] [PubMed] [Google Scholar]
  8. Barnes E. M., Jr, Wakil S. J. Studies on the mechanism of fatty acid synthesis. XIX. Preparation and general properties of palmityl thioesterase. J Biol Chem. 1968 Jun 10;243(11):2955–2962. [PubMed] [Google Scholar]
  9. Bauman A. J., Simmonds P. G. Fatty acids and polar lipids of extremely thermophilic filamentous bacterial masses from two Yellowstone hot springs. J Bacteriol. 1969 May;98(2):528–531. doi: 10.1128/jb.98.2.528-531.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Beebe J. L. Isolation and characterization of a phosphatidylethanolamine-deficient mutnt of Bacillus subtilis. J Bacteriol. 1971 Sep;107(3):704–711. doi: 10.1128/jb.107.3.704-711.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bertsch L. L., Bonsen P. P., Kornberg A. Biochemical studies of bacterial sporulation and germination. XIV. Phospholipids in Bacillus megaterium. J Bacteriol. 1969 Apr;98(1):75–81. doi: 10.1128/jb.98.1.75-81.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bishop D. G., Rutberg L., Samuelsson B. The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur J Biochem. 1967 Nov;2(4):448–453. doi: 10.1111/j.1432-1033.1967.tb00158.x. [DOI] [PubMed] [Google Scholar]
  13. Blough H. A., Tiffany J. M. Incorporation of branched-chain fatty acids into myxoviruses. Proc Natl Acad Sci U S A. 1969 Jan;62(1):242–247. doi: 10.1073/pnas.62.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Borch R. F. Separation of long chain fatty acids as phenacyl esters by high pressure liquid chromatography. Anal Chem. 1975 Dec;47(14):2437–2439. doi: 10.1021/ac60364a037. [DOI] [PubMed] [Google Scholar]
  15. Brock D. J., Kass L. R., Bloch K. Beta-hydroxydecanoyl thioester dehydrase. II. Mode of action. J Biol Chem. 1967 Oct 10;242(19):4432–4440. [PubMed] [Google Scholar]
  16. Bulla L. A., Bennett G. A., Shotwell O. L. Physiology of Sporeforming Bacteria Associated with Insects II. Lipids of Vegetative Cells. J Bacteriol. 1970 Dec;104(3):1246–1253. doi: 10.1128/jb.104.3.1246-1253.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bunn C. R., McNeill J. J., Elkan G. H. Effect of biotin on fatty acids and phospholipids of biotin-sensitive strains of Rhizobium japonicum. J Bacteriol. 1970 Apr;102(1):24–29. doi: 10.1128/jb.102.1.24-29.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Bureau G. Effet du relentissement de la croissance sur le métabolisme des acides gras de Bacillus subtilis var. niger. C R Acad Sci Hebd Seances Acad Sci D. 1972 Jan 17;274(3):468–471. [PubMed] [Google Scholar]
  19. Butterworth P. H., Bloch K. Comparative aspects of fatty acid synthesis in Bacillus subtilis and Escherichia coli. Eur J Biochem. 1970 Feb;12(3):496–501. doi: 10.1111/j.1432-1033.1970.tb00878.x. [DOI] [PubMed] [Google Scholar]
  20. Carroll K. K., Cutts J. H., Murray E. G. The lipids of Listeria monocytogenes. Can J Biochem. 1968 Aug;46(8):899–904. doi: 10.1139/o68-134. [DOI] [PubMed] [Google Scholar]
  21. Carter J. R., Jr Cytidine triphosphate: phosphatidic acid cytidyltransferase in Escherichia coli. J Lipid Res. 1968 Nov;9(6):748–754. [PubMed] [Google Scholar]
  22. Chang N. C., Fulco A. J. The effects of temperature and fatty acid structure on lipid metabolism in Bacillus licheniformis. Biochim Biophys Acta. 1973 Feb 14;296(2):287–299. doi: 10.1016/0005-2760(73)90087-8. [DOI] [PubMed] [Google Scholar]
  23. Chang Y. Y., Kennedy E. P. Phosphatidyl glycerophosphate phosphatase. J Lipid Res. 1967 Sep;8(5):456–462. [PubMed] [Google Scholar]
  24. Cooper M. J., Anders M. W. Determination of long chain fatty acids as 2-naphthacyl esters by high pressure liquid chromatography and mass spectrometry. Anal Chem. 1974 Oct;46(12):1849–1852. doi: 10.1021/ac60348a035. [DOI] [PubMed] [Google Scholar]
  25. Cooper M. J., Anders M. W. High pressure liquid chromatography of fatty acids and lipids. J Chromatogr Sci. 1975 Sep;13(9):407–411. doi: 10.1093/chromsci/13.9.407. [DOI] [PubMed] [Google Scholar]
  26. Daron H. H. Nutritional alteration of the fatty acid composition of a thermophilic Bacillus species. J Bacteriol. 1973 Dec;116(3):1096–1099. doi: 10.1128/jb.116.3.1096-1099.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Daron H. H. The position of the double bond in unsaturated fatty acids of a thermophilic Bacillus species. Biochem Biophys Res Commun. 1970 Oct 23;41(2):334–338. doi: 10.1016/0006-291x(70)90508-5. [DOI] [PubMed] [Google Scholar]
  28. De Rosa M., Gambacorta A., Bu'lock J. D. Effects of pH and temperature on the fatty acid composition of bacillus acidocaldarius. J Bacteriol. 1974 Jan;117(1):212–214. doi: 10.1128/jb.117.1.212-214.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. De Rosa M., Gambacorta A., Minale L., Bu'lock J. D. The formation of -cyclohexyl-fatty acids from shikimate in an acidophilic thermophilic bacillus. A new biosynthetic pathway. Biochem J. 1972 Jul;128(4):751–754. doi: 10.1042/bj1280751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Dreher R., Poralla K., König W. A. Synthesis of omega-alicyclic fatty acids from cyclic precursors in Bacillus subtilis. J Bacteriol. 1976 Sep;127(3):1136–1140. doi: 10.1128/jb.127.3.1136-1140.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Durst H. D., Milano M., Kikta E. J., Jr, Connelly S. A., Grushka E. Phenacyl esters of fatty acids via crown ether catalysts for enhanced ultraviolet detection in liquid chromatography. Anal Chem. 1975 Sep;47(11):1797–1801. doi: 10.1021/ac60361a025. [DOI] [PubMed] [Google Scholar]
  32. ERWIN J., BLOCH K. BIOSYNTHESIS OF UNSATURATED FATTY ACIDS IN MICROORGANISMS. Science. 1964 Mar 6;143(3610):1006–1012. doi: 10.1126/science.143.3610.1006. [DOI] [PubMed] [Google Scholar]
  33. Egami F. Inorganic types of fermentation and anaerobic respirations in the evolution of energy-yielding metabolism. Orig Life. 1974 Jul-Oct;5(3):405–413. [PubMed] [Google Scholar]
  34. FULCO A. J., LEVY R., BLOCH K. THE BIOSYNTHESIS OF DELTA-9 AND DELTA-5-MONOSATURATED FATTY ACIDS BY BACTERIA. J Biol Chem. 1964 Apr;239:998–1003. [PubMed] [Google Scholar]
  35. FULCO A. J., MEAD J. F. Metabolism of essential fatty acids. VIII. Origin of 5,8,11-eicosatrienoic acid in the fat-deficient rat. J Biol Chem. 1959 Jun;234(6):1411–1416. [PubMed] [Google Scholar]
  36. Fox C. F. A lipid requirement for induction of lactose transport in Escherichia coli. Proc Natl Acad Sci U S A. 1969 Jul;63(3):850–855. doi: 10.1073/pnas.63.3.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Fulco A. J. Bacterial biosynthesis of polyunsaturated fatty acids. Biochim Biophys Acta. 1969 Jul 29;187(1):169–171. doi: 10.1016/0005-2760(69)90149-0. [DOI] [PubMed] [Google Scholar]
  38. Fulco A. J. Metabolic alterations of fatty acids. Annu Rev Biochem. 1974;43(0):215–241. doi: 10.1146/annurev.bi.43.070174.001243. [DOI] [PubMed] [Google Scholar]
  39. Fulco A. J. The effect of temperature on the formation of delta 5-unsaturated fatty acids by bacilli. Biochim Biophys Acta. 1967 Dec 5;144(3):701–703. doi: 10.1016/0005-2760(67)90065-3. [DOI] [PubMed] [Google Scholar]
  40. Gerson T., Patel J. J. Neutral Lipids and Phospholipids of Free-Living and Bacteroid Forms of Two Strains of Rhizobium Infective on Lotus pedunculatus. Appl Microbiol. 1975 Aug;30(2):193–198. doi: 10.1128/am.30.2.193-198.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Gerson T., Patel J. J., Nixon L. N. Some unusual fatty acids of Rhizobium. Lipids. 1975 Mar;10(3):134–139. doi: 10.1007/BF02534150. [DOI] [PubMed] [Google Scholar]
  42. Goldfine H., Ailhaud G. P., Vagelos P. R. Involvement of acyl carrier protein in acylation of glycerol 3-phosphate in Clostridium butyricum. II. Evidence for the participation of acyl thioesters of acyl carrier protein. J Biol Chem. 1967 Oct 10;242(19):4466–4475. [PubMed] [Google Scholar]
  43. Goldfine H. Comparative aspects of bacterial lipids. Adv Microb Physiol. 1972;8:1–58. doi: 10.1016/s0065-2911(08)60187-3. [DOI] [PubMed] [Google Scholar]
  44. Gould R. M., Lennarz W. J. Biosynthesis of aminoacyl derivatives of phosphatidylglycerol. Biochem Biophys Res Commun. 1967 Feb 21;26(4):512–515. doi: 10.1016/0006-291x(67)90578-5. [DOI] [PubMed] [Google Scholar]
  45. Greenspan M. D., Alberts A. W., Vagelos P. R. Acyl carrier protein. 13. Beta-ketoacyl acyl carrier protein synthetase from Escherichia coli. J Biol Chem. 1969 Dec 10;244(23):6477–6485. [PubMed] [Google Scholar]
  46. Gurr M. I., Bonsen P. P., Kamp J. A., van Deenen L. L. The chemical synthesis of glucosaminylphosphatidylglycerol. Comparison with a new phospholipid isolated from Bacillus megaterium. Biochem J. 1968 Jun;108(2):211–219. doi: 10.1042/bj1080211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. HOFHEINZ W., GRISEBACH H. DIE FETTSAEUREN VON STREPTOMYCES ERYTHREUS UND STREPTOMYCES HALSTEDII. Z Naturforsch B. 1965 Jan;20:43–53. [PubMed] [Google Scholar]
  48. HORNING M. G., MARTIN D. B., KARMEN A., VAGELOS P. R. Fatty acid synthesis in adipose tissue. II. Enzymatic synthesis of branched chain and odd-numbered fatty acids. J Biol Chem. 1961 Mar;236:669–672. [PubMed] [Google Scholar]
  49. HOUTSMULLER U. M., van DEENEN L. Identification of a bacterial phospholipid as an O-ornithine ester of phosphatidyl glycerol. Biochim Biophys Acta. 1963 Apr 23;70:211–213. doi: 10.1016/0006-3002(63)90743-1. [DOI] [PubMed] [Google Scholar]
  50. Hall J. B. Evolution of the prokaryotes. J Theor Biol. 1971 Mar;30(3):429–454. doi: 10.1016/0022-5193(71)90001-4. [DOI] [PubMed] [Google Scholar]
  51. Hojnacki J. L., Smith S. C. Separation of six lipid classes on one thin-layer chromatogram. J Chromatogr. 1974 Apr 10;90(2):364–367. doi: 10.1016/s0021-9673(00)92542-1. [DOI] [PubMed] [Google Scholar]
  52. Hradec J., Dusek Z., Mach O. Influence of cholesteryl 14-methylhexadecanoate on some ribosomal functions required for peptide elongation. Biochem J. 1974 Feb;138(2):147–154. doi: 10.1042/bj1380147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hradec J. Intermediate reactions in the binding of aminoacyl-transfer ribonucleic acid to rat liver ribosomes. the interaction of cholesteryl 14-methylhexadecanoate. Biochem J. 1972 Mar;126(5):1225–1229. doi: 10.1042/bj1261225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Hradec J., Sommerau J. Effect of cholesteryl esters with different saturated fatty acids on aminoacyl-tRNA synthesis in rat liver. FEBS Lett. 1970 Sep 6;9(3):161–162. doi: 10.1016/0014-5793(70)80343-x. [DOI] [PubMed] [Google Scholar]
  55. Hubbard J. S., Hall A. N. Effects of biotin on glutamate production and fatty acid composition in Bacillus cereus 14B22. Can J Microbiol. 1968 Oct;14(10):1039–1048. doi: 10.1139/m68-175. [DOI] [PubMed] [Google Scholar]
  56. Hubmann F. H. Two-step, two-dimensional development thin-layer chromatography of lipids on a micro-scale. J Chromatogr. 1973 Nov 7;86(1):197–199. doi: 10.1016/s0021-9673(01)81253-x. [DOI] [PubMed] [Google Scholar]
  57. Ifkovits R. W., Ragheb H. S. Cellular fatty acid composition and identification of rumen bacteria. Appl Microbiol. 1968 Sep;16(9):1406–1413. doi: 10.1128/am.16.9.1406-1413.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Ikawa M. Bacterial phosphatides and natural relationships. Bacteriol Rev. 1967 Mar;31(1):54–64. doi: 10.1128/br.31.1.54-64.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. JAMES A. T., WHEATLEY V. R. Studies of sebum. 6. The determination of the component fatty acids of human forearm sebum by gas-liquid chromatography. Biochem J. 1956 Jun;63(2):269–273. doi: 10.1042/bj0630269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. KANFER J., KENNEDY E. P. METABOLISM AND FUNCTION OF BACTERIAL LIPIDS. II. BIOSYNTHESIS OF PHOSPHOLIPIDS IN ESCHERICHIA COLI. J Biol Chem. 1964 Jun;239:1720–1726. [PubMed] [Google Scholar]
  61. Kaneda T. Biosynthesis of branched long-chain fatty acids from the related short-chain -keto acid substrates by a cell-free system of Bacillus subtilis. Can J Microbiol. 1973 Jan;19(1):87–96. doi: 10.1139/m73-013. [DOI] [PubMed] [Google Scholar]
  62. Kaneda T. Biosynthesis of branched-chain fatty acids. IV. Factors affecting relative abundance of fatty acids produced by Bacillus subtilis. Can J Microbiol. 1966 Jun;12(3):501–514. doi: 10.1139/m66-073. [DOI] [PubMed] [Google Scholar]
  63. Kaneda T. Biosynthesis of branched-chain fatty acids. V. Microbial stereospecific syntheses of D-12-methyltetradecanoic and D-14-methylhexadecanoic acids. Biochim Biophys Acta. 1966 Aug 3;125(1):43–54. doi: 10.1016/0005-2760(66)90142-1. [DOI] [PubMed] [Google Scholar]
  64. Kaneda T. Biosynthesis of long-chain hydrocarbons. I. Incorporation of L-valine, L-threonine, L-isoleucine, and L-leucine into specific branched-chain hydrocarbons in tobacco. Biochemistry. 1967 Jul;6(7):2023–2032. doi: 10.1021/bi00859a021. [DOI] [PubMed] [Google Scholar]
  65. Kaneda T. Biosynthesis of long-chain hydrocarbons. II. Studies on the biosynthetic pathway in tobacco. Biochemistry. 1968 Mar;7(3):1194–1202. doi: 10.1021/bi00843a041. [DOI] [PubMed] [Google Scholar]
  66. Kaneda T. Factors affecting the relative ratio of fatty acids in Bacillus cereus. Can J Microbiol. 1971 Feb;17(2):269–275. doi: 10.1139/m71-045. [DOI] [PubMed] [Google Scholar]
  67. Kaneda T. Fatty acids in Bacillus larvae, Bacillus lentimorbus, and Bacillus popilliae. J Bacteriol. 1969 Apr;98(1):143–146. doi: 10.1128/jb.98.1.143-146.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Kaneda T. Fatty acids in the genus Bacillus. I. Iso- and anteiso-fatty acids as characteristic constituents of lipids in 10 species. J Bacteriol. 1967 Mar;93(3):894–903. doi: 10.1128/jb.93.3.894-903.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Kaneda T. Fatty acids in the genus Bacillus. II. Similarity in the fatty acid compositions of Bacillus thuringiensis, Bacillus anthracis, and Bacillus cereus. J Bacteriol. 1968 Jun;95(6):2210–2216. doi: 10.1128/jb.95.6.2210-2216.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Kaneda T. Incorporation of branched-chain C6-fatty acid isomers into the related long-chain fatty acids by growing cells of Bacillus subtilis. Biochemistry. 1971 Jan 19;10(2):340–347. doi: 10.1021/bi00778a022. [DOI] [PubMed] [Google Scholar]
  71. Kaneda T. Major occurrence of cis-delta 5 fatty acids in three psychrophilic species of Bacillus. Biochem Biophys Res Commun. 1971 Apr 16;43(2):298–302. doi: 10.1016/0006-291x(71)90752-2. [DOI] [PubMed] [Google Scholar]
  72. Kaneda T. Positional distribution of fatty acids in phospholipids from Bacillus subtilis. Biochim Biophys Acta. 1972 May 23;270(1):32–39. doi: 10.1016/0005-2760(72)90174-9. [DOI] [PubMed] [Google Scholar]
  73. Kaneda T. Positional preference of fatty acids in phospholipids of Bacillus cereus and its relation to growth temperature. Biochim Biophys Acta. 1972 Oct 5;280(2):297–305. doi: 10.1016/0005-2760(72)90097-5. [DOI] [PubMed] [Google Scholar]
  74. Kates M. Bacterial lipids. Adv Lipid Res. 1964;2:17–90. [PubMed] [Google Scholar]
  75. Kepler C. R., Tove S. B. Induction of biohydrogenation of oleic acid in Bacillus cereus by increase in temperature. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1434–1439. doi: 10.1016/0006-291x(73)90661-x. [DOI] [PubMed] [Google Scholar]
  76. Kito M., Pizer L. I. Phosphatidic acid synthesis in Escherichia coli. J Bacteriol. 1969 Mar;97(3):1321–1327. doi: 10.1128/jb.97.3.1321-1327.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Kunsman J. E. Characterization of the lipids of six strains of Bacteroides ruminicola. J Bacteriol. 1973 Mar;113(3):1121–1126. doi: 10.1128/jb.113.3.1121-1126.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. LENNARZ W. J. The role of isoleucine in the biosynthesis of branched-chain fatty acids by Micrococcus lysodeikticus. Biochem Biophys Res Commun. 1961 Nov 1;6:112–116. doi: 10.1016/0006-291x(61)90395-3. [DOI] [PubMed] [Google Scholar]
  79. Lennarz W. J. Lipid metabolism in the bacteria. Adv Lipid Res. 1966;4:175–225. doi: 10.1016/b978-1-4831-9940-5.50012-0. [DOI] [PubMed] [Google Scholar]
  80. Lillich T. T., White D. C. Phospholipid metabolism in the absence of net phospholipid synthesis in a glycerol-requiring mutant of Bacillus subtilis. J Bacteriol. 1971 Sep;107(3):790–797. doi: 10.1128/jb.107.3.790-797.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. MASSARO E. J., LENNARZ W. J. THE PARTIAL PURIFICATION AND CHARACTERIZATION OF A BACTERIAL FATTY ACYL COENZYME A SYNTHETASE. Biochemistry. 1965 Jan;4:85–90. doi: 10.1021/bi00877a015. [DOI] [PubMed] [Google Scholar]
  82. McElhaney R. N. The effect of alterations in the physical state of the membrane lipids on the ability of Acholeplasma laidlawii B to grow at various temperatures. J Mol Biol. 1974 Mar 25;84(1):145–157. doi: 10.1016/0022-2836(74)90218-6. [DOI] [PubMed] [Google Scholar]
  83. Mindich L. Control of fatty acid synthesis in bacteria. J Bacteriol. 1972 Apr;110(1):96–102. doi: 10.1128/jb.110.1.96-102.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Mindich L. Membrane synthesis in Bacillus subtilis. I. Isolation and properties of strains bearing mutations in glycerol metabolism. J Mol Biol. 1970 Apr 28;49(2):415–432. doi: 10.1016/0022-2836(70)90254-8. [DOI] [PubMed] [Google Scholar]
  85. Mindich L. Membrane synthesis in Bacillus subtilis. II. Integration of membrane proteins in the absence of lipid synthesis. J Mol Biol. 1970 Apr 28;49(2):433–439. doi: 10.1016/0022-2836(70)90255-x. [DOI] [PubMed] [Google Scholar]
  86. Minnikin D. E., Abley P., McQuillin F. J. Location of double bonds in long chain esters by methoxymercuration-demercuration followed by mass spectroscopy. Lipids. 1974 Mar;9(3):135–140. doi: 10.1007/BF02532684. [DOI] [PubMed] [Google Scholar]
  87. Moss C. W., Cherry W. B. Characterization of the C15 branched-chain fatty acids of Corynebacterium acnes by gas chromatography. J Bacteriol. 1968 Jan;95(1):241–242. doi: 10.1128/jb.95.1.241-242.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Moss C. W., Dees S. B. Identification of microorganisms by gas chromatographic-mass spectrometric analysis of cellular fatty acids. J Chromatogr. 1975 Oct 29;112:594–604. doi: 10.1016/s0021-9673(00)99988-6. [DOI] [PubMed] [Google Scholar]
  89. Moss C. W., Dowell V. R., Jr, Farshtchi D., Raines L. J., Cherry W. B. Cultural characteristics and fatty acid composition of propionibacteria. J Bacteriol. 1969 Feb;97(2):561–570. doi: 10.1128/jb.97.2.561-570.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Naik D. N., Kaneda T. Biosynthesis of branched long-chain fatty acids by species of Bacillus: relative activity of three alpha-keto acid substrates and factors affecting chain length. Can J Microbiol. 1974 Dec;20(12):1701–1708. doi: 10.1139/m74-263. [DOI] [PubMed] [Google Scholar]
  91. Namba Y., Yoshizawa K., Ejima A., Hayashi T., Kaneda T. Coenzyme A- and nicotinamide adenine dinucleotide-dependent branched chain alpha-keto acid dehydrogenase. I. Purification and properties of the enzyme from Bacillus subtilis. J Biol Chem. 1969 Aug 25;244(16):4437–4447. [PubMed] [Google Scholar]
  92. Nickerson K. W., Bulla L. A., Jr, Mounts T. L. Lipid metabolism during bacterial growth, sporulation, and germination: differential synthesis of individual branched- and normal-chain fatty acids during spore germination and outgrowth of Bacillus thuringiensis. J Bacteriol. 1975 Dec;124(3):1256–1262. doi: 10.1128/jb.124.3.1256-1262.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Nicolosi R. J., Smith S. C., Santerre R. F. Simultaneous fluorometric analysis of five lipid classes on thin-layer chromatograms. J Chromatogr. 1971 Aug 5;60(1):111–117. [PubMed] [Google Scholar]
  94. O'leary W. M. THE FATTY ACIDS OF BACTERIA. Bacteriol Rev. 1962 Dec;26(4):421–447. doi: 10.1128/br.26.4.421-447.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Oo K. C., Lee Y. H. The phospholipids of a faculatively thermophilic strain of Bacillus stearothermophilus. J Biochem. 1972 Jun;71(6):1081–1084. doi: 10.1093/oxfordjournals.jbchem.a129858. [DOI] [PubMed] [Google Scholar]
  96. Oshima M., Ariga T. Omega-cyclohexyl fatty acids in acidophilic thermophilic bacteria. Studies on their presence, structure, and biosynthesis using precursors labeled with stable isotopes and radioisotopes. J Biol Chem. 1975 Sep 10;250(17):6963–6968. [PubMed] [Google Scholar]
  97. Patterson P. H., Lennarz W. J. Studies on the membranes of bacilli. I. Phospholipid biosynthesis. J Biol Chem. 1971 Feb 25;246(4):1062–1072. [PubMed] [Google Scholar]
  98. Pei P. T., Henly R. S., Ramachandran S. New application of high pressure reversed-phase liquid chromatography in lipids. Lipids. 1975 Mar;10(3):152–156. doi: 10.1007/BF02534153. [DOI] [PubMed] [Google Scholar]
  99. Perkins E. G., Argoudelis C. J. Determination of double bond position in polyunsaturated fatty acids using combination gas chromatography mass spectrometry. Lipids. 1969 Nov;4(6):619–621. doi: 10.1007/BF02531051. [DOI] [PubMed] [Google Scholar]
  100. Pieringer R. A., Bonner H., Jr, Kunnes R. S. Biosynthesis of phosphatidic acid, lysophosphatidic acid, diglyceride, and triglyceride by fatty acyltransferase pathways in Escherichia coli. J Biol Chem. 1967 Jun 10;242(11):2719–2724. [PubMed] [Google Scholar]
  101. Plate C. A., Joshi V. C., Sedgwick B., Wakil S. J. Studies on the mechanism of fatty acid synthesis. XXI. The role of fructose 1,6-diphosphate in the stimulation of the fatty acid synthetase from pigeon liver. J Biol Chem. 1968 Oct 25;243(20):5439–5445. [PubMed] [Google Scholar]
  102. Poralla K. The induction of a dehydrogenase activity for branched chain amino acids in Bacillus subtilis. Arch Mikrobiol. 1971;77(4):339–343. doi: 10.1007/BF00425036. [DOI] [PubMed] [Google Scholar]
  103. Rizza V., Tucker A. N., White D. C. Lipids of Bacteroides melaninogenicus. J Bacteriol. 1970 Jan;101(1):84–91. doi: 10.1128/jb.101.1.84-91.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. SEHGAL S. N., KATES M., GIBBONS N. E. Lipids of Halobacterium cutirubrum. Can J Biochem Physiol. 1962 Jan;40:69–81. [PubMed] [Google Scholar]
  105. Scholfield C. R. High performance liquid chromatography of fatty methyl esters: preparative separations. Anal Chem. 1975 Jul;47(8):1417–1420. doi: 10.1021/ac60358a063. [DOI] [PubMed] [Google Scholar]
  106. Shaw N. Lipid composition as a guide to the classification of bacteria. Adv Appl Microbiol. 1974;17(0):63–108. doi: 10.1016/s0065-2164(08)70555-0. [DOI] [PubMed] [Google Scholar]
  107. Speck E. L., Freese E. Control of metabolite secretion in Bacillus subtilis. J Gen Microbiol. 1973 Oct;78(2):261–275. doi: 10.1099/00221287-78-2-261. [DOI] [PubMed] [Google Scholar]
  108. Stumpf P. K. Metabolism of fatty acids. Annu Rev Biochem. 1969;38:159–212. doi: 10.1146/annurev.bi.38.070169.001111. [DOI] [PubMed] [Google Scholar]
  109. Teichman R. J., Takei G. H., Cummins J. M. Detection of fatty acids, fatty aldehydes, phospholipids, glycolipids and cholesterol on thin-layer chromatograms stained with malachite green. J Chromatogr. 1974 Jan 30;88(2):425–427. doi: 10.1016/s0021-9673(00)83178-7. [DOI] [PubMed] [Google Scholar]
  110. Tinoco J., Miljanich P. G. A rapid procedure for locating double bonds in unsaturated fatty acids. Anal Biochem. 1965 Jun;11(3):548–554. doi: 10.1016/0003-2697(65)90072-2. [DOI] [PubMed] [Google Scholar]
  111. Tornabene T. G., Gelpi E., Oró J. Identification of fatty acids and aliphatic hydrocarbons in Sarcina lutea by gas chromatography and combined gas chromatography-mass spectrometry. J Bacteriol. 1967 Aug;94(2):333–343. doi: 10.1128/jb.94.2.333-343.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Tyrrell D. The fatty acid composition of some entomophthoraceae : II. The occurrence of branched-chain fatty acids inConidiobolus denaesporus Drechsl. Lipids. 1968 Jul;3(4):368–372. doi: 10.1007/BF02530941. [DOI] [PubMed] [Google Scholar]
  113. Urakami C., Umetani K. Compositions of phosphatides from Bacillus natto at various growth phases. Biochim Biophys Acta. 1968 Sep 2;164(1):64–71. [PubMed] [Google Scholar]
  114. Vaskovsky V. E., Svetashev V. I. Phospholipid spray reagents. J Chromatogr. 1972 Feb 23;65(2):451–453. doi: 10.1016/s0021-9673(00)92571-8. [DOI] [PubMed] [Google Scholar]
  115. Volpe J. J., Vagelos P. R. Saturated fatty acid biosynthesis and its regulation. Annu Rev Biochem. 1973;42:21–60. doi: 10.1146/annurev.bi.42.070173.000321. [DOI] [PubMed] [Google Scholar]
  116. Ware J. C., Dworkin M. Fatty acids of Myxococcus xanthus. J Bacteriol. 1973 Jul;115(1):253–261. doi: 10.1128/jb.115.1.253-261.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Weerkamp A., Heinen W. Effect of temperature on the fatty acid composition of the extreme thermophiles, Bacillus caldolyticus and Bacillus caldotenax. J Bacteriol. 1972 Jan;109(1):443–446. doi: 10.1128/jb.109.1.443-446.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. White D. C., Frerman F. E. Fatty acid composition of the complex lipids of Staphylococcus aureus during the formation of the membrane-bound electron transport system. J Bacteriol. 1968 Jun;95(6):2198–2209. doi: 10.1128/jb.95.6.2198-2209.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Willecke K., Mindich L. Induction of citrate transport in Bacillus subtilis during the absence of phospholipid synthesis. J Bacteriol. 1971 May;106(2):514–518. doi: 10.1128/jb.106.2.514-518.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Willecke K., Pardee A. B. Fatty acid-requiring mutant of bacillus subtilis defective in branched chain alpha-keto acid dehydrogenase. J Biol Chem. 1971 Sep 10;246(17):5264–5272. [PubMed] [Google Scholar]
  121. Yao M., Walker H. W., Lillard D. A. Fatty acids from vegetative cells and spores of Bacillus stearothermophilus. J Bacteriol. 1970 Jun;102(3):877–878. doi: 10.1128/jb.102.3.877-878.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. den Kamp JA O. P., van Iterson W., van Deenen L. L. Studies of the phospholipids and morphology of protoplasts of Bacillus megaterium. Biochim Biophys Acta. 1967;135(5):862–884. doi: 10.1016/0005-2736(67)90056-9. [DOI] [PubMed] [Google Scholar]
  123. den Kamp J. A., Redai I., van Deenen L. L. Phospholipid composition of Bacillus subtilis. J Bacteriol. 1969 Jul;99(1):298–303. doi: 10.1128/jb.99.1.298-303.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES