Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1977 Sep;41(3):595–635. doi: 10.1128/br.41.3.595-635.1977

Genetics of antibiotic production.

D A Hopwood, M J Merrick
PMCID: PMC414018  PMID: 334152

Full text

PDF
595

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALACEVIC M. Interspecific recombination in Streptomyces. Nature. 1963 Mar 30;197:1323–1323. doi: 10.1038/1971323a0. [DOI] [PubMed] [Google Scholar]
  2. ALIKHANIAN S. I., BORISOVA L. N. Recombination in Actinomyces aureofaciens. J Gen Microbiol. 1961 Sep;26:19–28. doi: 10.1099/00221287-26-1-19. [DOI] [PubMed] [Google Scholar]
  3. ALIKHANIAN S. I., ILJINA T. S., LOMOVSKAYA N. D. Transduction in Actionmycetes. Nature. 1960 Oct 15;188:245–246. doi: 10.1038/188245a0. [DOI] [PubMed] [Google Scholar]
  4. ARNSTEIN H. R., MORRIS D., TOMS E. J. Isolation of a tripeptide containing alpha-aminoadipic acid from the mycelium of Penicillium chrysogenum and its possible significance in penicillin biosynthesis. Biochim Biophys Acta. 1959 Oct;35:561–562. doi: 10.1016/0006-3002(59)90417-2. [DOI] [PubMed] [Google Scholar]
  5. Akagawa H., Okanishi M., Umezawa H. A plasmid involved in chloramphenicol production in Streptomyces venezuelae: evidence from genetic mapping. J Gen Microbiol. 1975 Oct;90(2):336–346. doi: 10.1099/00221287-90-2-336. [DOI] [PubMed] [Google Scholar]
  6. Alikhanian S. Applied aspects of microbial genetics. Curr Top Microbiol Immunol. 1970;53:91–148. doi: 10.1007/978-3-642-95180-0_2. [DOI] [PubMed] [Google Scholar]
  7. Anne J., Eyssen H., De Somer P. Somatic hybridisation of Penicillium roquefortii with P. chrysogenum after protoplast fusion. Nature. 1976 Aug 19;262(5570):719–721. doi: 10.1038/262719a0. [DOI] [PubMed] [Google Scholar]
  8. Anné J., Peberdy J. F. Induced fusion of fungal protoplasts following treatment with polyethylene glycol. J Gen Microbiol. 1976 Feb;92(2):413–417. doi: 10.1099/00221287-92-2-413. [DOI] [PubMed] [Google Scholar]
  9. Audit C., Anagnostopoulos C. Genetic studies relating to the production of transformed clones diploid in the tryptophan region of the Bacillus subtilis genome. J Bacteriol. 1973 Apr;114(1):18–27. doi: 10.1128/jb.114.1.18-27.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. BATCHELOR F. R., DOYLE F. P., NAYLER J. H., ROLINSON G. N. Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations. Nature. 1959 Jan 24;183(4656):257–258. doi: 10.1038/183257b0. [DOI] [PubMed] [Google Scholar]
  11. BRADLEY S. G., LEDERBERG J. Heterokaryosis in Streptomyces. J Bacteriol. 1956 Aug;72(2):219–225. doi: 10.1128/jb.72.2.219-225.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. BRAENDLE D. H., SZYBALSKI W. Heterokaryotic compatibility, metabolic cooperation, and genic recombination in Streptomyces. Ann N Y Acad Sci. 1959 Sep 30;81:824–853. doi: 10.1111/j.1749-6632.1959.tb49369.x. [DOI] [PubMed] [Google Scholar]
  13. BU'LOCK J. D. Intermediary metabolism and antibiotic synthesis. Adv Appl Microbiol. 1961;3:293–342. doi: 10.1016/s0065-2164(08)70514-8. [DOI] [PubMed] [Google Scholar]
  14. Bainbridge B. W., Roper J. A. Observations on the effects of a chromosome duplication in Aspergillus nidulans. J Gen Microbiol. 1966 Mar;42(3):417–424. doi: 10.1099/00221287-42-3-417. [DOI] [PubMed] [Google Scholar]
  15. Bal J., Bartnik W., Goryluk B., Pienízek N. J. An easy way of obtaining Aspergillus nidulans haploids in the parasexual cycle using N-glycosyl polifungin. Genet Res. 1975 Jun;25(3):249–252. doi: 10.1017/s0016672300015676. [DOI] [PubMed] [Google Scholar]
  16. Balassa G. Biochemical genetics of bacterial sporulation. I. Unidirectional pleiotropic interactions among genes controlling sporulation in Bacillus subtilis. Mol Gen Genet. 1969;104(1):73–103. [PubMed] [Google Scholar]
  17. Ball C. Haploidization analysis in Penicillium chrysogenum. J Gen Microbiol. 1971 Apr;66(1):63–69. doi: 10.1099/00221287-66-1-63. [DOI] [PubMed] [Google Scholar]
  18. Baumann R., Hütter R., Hopwood D. A. Genetic analysis in a melanin-producing streptomycete, Streptomyces glaucescens. J Gen Microbiol. 1974 Apr;81(2):463–474. doi: 10.1099/00221287-81-2-463. [DOI] [PubMed] [Google Scholar]
  19. Birch A. J. Biosynthesis of polyketides and related compounds. Science. 1967 Apr 14;156(3772):202–206. doi: 10.1126/science.156.3772.202. [DOI] [PubMed] [Google Scholar]
  20. Bradley D. E. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967 Dec;31(4):230–314. doi: 10.1128/br.31.4.230-314.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bu'Lock J. D., Hamilton D., Hulme M. A., Powell A. J., Smalley H. M., Shepherd D., Smith G. N. Metabolic development and secondary biosynthesis in Penicillium urticae. Can J Microbiol. 1965 Oct;11(5):765–778. doi: 10.1139/m65-104. [DOI] [PubMed] [Google Scholar]
  22. Butcher A. C. Non-allelic interactions and genetic isolation in wild populations of Aspergillus nidulans. Heredity (Edinb) 1969 Nov;24(4):621–631. doi: 10.1038/hdy.1969.82. [DOI] [PubMed] [Google Scholar]
  23. Butcher A. C. The relationship between sexual outcrossing and heterokaryon incompatibility in Aspergillus nidulans. Heredity (Edinb) 1968 Aug;23(3):443–452. doi: 10.1038/hdy.1968.55. [DOI] [PubMed] [Google Scholar]
  24. Bérdy J. Recent developments of antibiotic research and classification of antibiotics according to chemical structure. Adv Appl Microbiol. 1974;18(0):309–406. [PubMed] [Google Scholar]
  25. CAGLIOTI M. T., SERMONTI G. A study of the genetics of penicillin-producing capacity in Penicillium chrysogenum. J Gen Microbiol. 1956 Feb;14(1):38–46. doi: 10.1099/00221287-14-1-38. [DOI] [PubMed] [Google Scholar]
  26. CROWDY S. H., GROVE J. F., McCLOSKEY P. The translocation of antibiotics in higher plants. 4. Systemic fungicidal activity and chemical structure in griseofulvin relatives. Biochem J. 1959 Jun;72(2):241–249. doi: 10.1042/bj0720241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Caltrider P. G., Niss H. F. Role of methionine in cephalosporin synthesis. Appl Microbiol. 1966 Sep;14(5):746–753. doi: 10.1128/am.14.5.746-753.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Coats J. H., Roeser J. Genetic recombination in Streptomyces bikiniensis var. zorbonensis. J Bacteriol. 1971 Mar;105(3):880–885. doi: 10.1128/jb.105.3.880-885.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Coronelli C., Tamoni G., Lancini G. C. Gardimycin, a new antibiotic from Actinoplanes. II. Isolation and preliminary characterization. J Antibiot (Tokyo) 1976 May;29(5):507–510. doi: 10.7164/antibiotics.29.507. [DOI] [PubMed] [Google Scholar]
  30. Coronelli C., White R. J., Lancini G. C., Parenti F. Lipiarmycin, a new antibiotic from Actinoplanes. II. Isolation, chemical, biological and biochemical characterization. J Antibiot (Tokyo) 1975 Apr;28(4):253–259. doi: 10.7164/antibiotics.28.253. [DOI] [PubMed] [Google Scholar]
  31. Cross T., Goodfellow M. Taxonomy and classification of the actinomycetes. Soc Appl Bacteriol Symp Ser. 1973 Jan;2:11–112. [PubMed] [Google Scholar]
  32. DEMAIN A. L. Inhibition of penicillin formation by lysine. Arch Biochem Biophys. 1957 Mar;67(1):244–246. doi: 10.1016/0003-9861(57)90265-5. [DOI] [PubMed] [Google Scholar]
  33. Demain A. L. Biochemistry of penicillin and cephalosporin fermentations. Lloydia. 1974 Jun;37(2):147–167. [PubMed] [Google Scholar]
  34. Demain A. L. How do antibiotic-producing microorganisms avoid suicide? Ann N Y Acad Sci. 1974 May 10;235(0):601–612. doi: 10.1111/j.1749-6632.1974.tb43294.x. [DOI] [PubMed] [Google Scholar]
  35. Demain A. L., Inamine E. Biochemistry and regulation of streptomycin and mannosidostreptomycinase (alpha-D-mannosidase) formation. Bacteriol Rev. 1970 Mar;34(1):1–19. doi: 10.1128/br.34.1.1-19.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Demain A. L. Industrial fermentations and their relation to regulatory mechanisms. Adv Appl Microbiol. 1966;8:1–27. doi: 10.1016/s0065-2164(08)70490-8. [DOI] [PubMed] [Google Scholar]
  37. Demain A. L., Masurekar P. S. Lysine inhibition of in vivo homocitrate synthesis in Penicillium chrysogenum. J Gen Microbiol. 1974 May;82(1):143–151. doi: 10.1099/00221287-82-1-143. [DOI] [PubMed] [Google Scholar]
  38. Dennen D. W., Carver D. D. Sulfatase regulation and antibiotic synthesis in Cephalosporium acremonium. Can J Microbiol. 1969 Feb;15(2):175–181. doi: 10.1139/m69-029. [DOI] [PubMed] [Google Scholar]
  39. Dimroth P., Ringelmann E., Lynen F. 6-Methylsalicylic acid synthetase from Penicillium patulum. Some catalytic properties of the enzyme and its relation to fatty acid synthetase. Eur J Biochem. 1976 Sep 15;68(2):591–596. doi: 10.1111/j.1432-1033.1976.tb10847.x. [DOI] [PubMed] [Google Scholar]
  40. Dobrzanski W. T., Osowiecki H. Isolation and some properties of the competence factor from group H Streptococcus strain Challis. J Gen Microbiol. 1967 Aug;48(2):299–304. doi: 10.1099/00221287-48-2-299. [DOI] [PubMed] [Google Scholar]
  41. Drew S. W., Demain A. L. Methionine control of cephalosporin C formation. Biotechnol Bioeng. 1973 Jul;15(4):743–754. doi: 10.1002/bit.260150408. [DOI] [PubMed] [Google Scholar]
  42. Drew S. W., Demain A. L. Production of cephalosporin C by single and double sulfur auxotrophic mutants of Cephalosporium acremonium. Antimicrob Agents Chemother. 1975 Jul;8(1):5–10. doi: 10.1128/aac.8.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. FANTINI A. A. Genetics and antibiotic production of Emericellopsis species. Genetics. 1962 Feb;47:161–177. doi: 10.1093/genetics/47.2.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. FANTINI A. A., OLIVE L. S. Sexual recombination in a homothallic, antibiotic producing fungus. Science. 1960 Dec 2;132(3440):1670–1670. doi: 10.1126/science.132.3440.1670. [DOI] [PubMed] [Google Scholar]
  45. Forrester P. I., Gaucher G. M. Conversion of 6-methylsalicylic acid into patulin by Penicillium urticae. Biochemistry. 1972 Mar 14;11(6):1102–1107. doi: 10.1021/bi00756a025. [DOI] [PubMed] [Google Scholar]
  46. Francis M. M., Cella R., Vining L. C. Genetic recombination in a chloramphenicol-producing strain of Streptomyces species 3022a. Can J Microbiol. 1975 Aug;21(8):1151–1159. doi: 10.1139/m75-172. [DOI] [PubMed] [Google Scholar]
  47. Freeman R. F., Bibb M. J., Hopwood D. A. Chloramphenicol acetylransferase-independent chloramphenicol resistance in Streptomyces coelicolor A3(2). J Gen Microbiol. 1977 Feb;98(2):453–465. doi: 10.1099/00221287-98-2-453. [DOI] [PubMed] [Google Scholar]
  48. Friend E. J., Hopwood D. A. The linkage map of Streptomyces rimosus. J Gen Microbiol. 1971 Oct;68(2):187–197. doi: 10.1099/00221287-68-2-187. [DOI] [PubMed] [Google Scholar]
  49. Fripp Y. J., Caten C. E. Genotype-environmental interactions in Schizophyllum commune. I. Analysis and character. Heredity (Edinb) 1971 Dec;27(3):393–407. doi: 10.1038/hdy.1971.103. [DOI] [PubMed] [Google Scholar]
  50. Froyshov O. Enzyme-bound intermediates in the biosynthesis of bacitracin. Eur J Biochem. 1975 Nov 1;59(1):201–206. doi: 10.1111/j.1432-1033.1975.tb02442.x. [DOI] [PubMed] [Google Scholar]
  51. Fuchs P. G., Zajdel J., Dobrzański W. T. Possible plasmid nature of the determinant for production of the antibiotic nisin in some strains of Streptococcus lactis. J Gen Microbiol. 1975 May;88(1):189–192. doi: 10.1099/00221287-88-1-189. [DOI] [PubMed] [Google Scholar]
  52. Fujisawa Y., Kanzaki T. Occurrence of a new cephalosporoate in a culture broth of a Cephalosporium acremonium mutant. J Antibiot (Tokyo) 1975 May;28(5):372–378. doi: 10.7164/antibiotics.28.372. [DOI] [PubMed] [Google Scholar]
  53. Fujisawa Y., Shirafugi H., Kida M., Nara K., Yoneda M., Kanzaki T. New findings on cephalosporin C biosynthesis. Nat New Biol. 1973 Dec 5;246(153):154–155. doi: 10.1038/newbio246154a0. [DOI] [PubMed] [Google Scholar]
  54. Furumai T., Suzuki M. Studies on the biosynthesis of basic 16-membered macrolide antibiotic, platenomycins. I. Selection of and cosynthesis by non-platenomycin-producing mutants. J Antibiot (Tokyo) 1975 Oct;28(10):770–774. doi: 10.7164/antibiotics.28.770. [DOI] [PubMed] [Google Scholar]
  55. Furumai T., Takeda K., Suzuki M. Studies on the biosynthesis of basic 16-membered macrolide antibiotics, platenomycins. IV. Biosynthesis of platenomycins. J Antibiot (Tokyo) 1975 Oct;28(10):789–797. doi: 10.7164/antibiotics.28.789. [DOI] [PubMed] [Google Scholar]
  56. GODTFREDSEN W. O., JAHNSEN S., LORCK H., ROHOLT K., TYBRING L. Fusidic acid: a new antibiotic. Nature. 1962 Mar 10;193:987–987. doi: 10.1038/193987a0. [DOI] [PubMed] [Google Scholar]
  57. GREGORY K. F., HUANG J. C. TYROSINASE INHERITANCE IN STREPTOMYCES SCABIES. I. GENETIC RECOMBINATION. J Bacteriol. 1964 Jun;87:1281–1286. doi: 10.1128/jb.87.6.1281-1286.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. GREGORY K. F., HUANG J. C. TYROSINASE INHERITANCE IN STREPTOMYCES SCABIES. II. INDUCTION OF TYROSINASE DEFICIENCY BY ACRIDINE DYES. J Bacteriol. 1964 Jun;87:1287–1294. doi: 10.1128/jb.87.6.1287-1294.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. GRINDLE M. Heterokaryon compatibility of unrelated strains in the Aspergillus nidulans group. Heredity (Edinb) 1963 May;18:191–204. doi: 10.1038/hdy.1963.21. [DOI] [PubMed] [Google Scholar]
  60. Goulden S. A., Chattaway F. W. End-product control of acetohydroxyacid synthetase by valine in Penicillium chrysogenum Q 176 and a high penicillin-yielding mutant. J Gen Microbiol. 1969 Nov;59(1):111–118. doi: 10.1099/00221287-59-1-111. [DOI] [PubMed] [Google Scholar]
  61. Goulden S. A., Chattaway F. W. Lysine control of alpha-aminoadipate and penicillin synthesis in Penicillium chrysogenum. Biochem J. 1968 Dec;110(4):55P–56P. doi: 10.1042/bj1100055p. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Gross E., Morell J. L. The structure of nisin. J Am Chem Soc. 1971 Sep 8;93(18):4634–4635. doi: 10.1021/ja00747a073. [DOI] [PubMed] [Google Scholar]
  63. HOPWOOD D. A. Linkage and the mechanism of recombination in Streptomyces coelicolor. Ann N Y Acad Sci. 1959 Sep 30;81:887–898. doi: 10.1111/j.1749-6632.1959.tb49374.x. [DOI] [PubMed] [Google Scholar]
  64. HOPWOOD D. A. NEW DATA ON THE LINKAGE MAP OF STREPTOMYCES COELICOLOR. Genet Res. 1965 Jul;6:248–262. doi: 10.1017/s0016672300004134. [DOI] [PubMed] [Google Scholar]
  65. Haavik H. I., Froyshov O. Function of peptide antibiotics in producer organisms. Nature. 1975 Mar 6;254(5495):79–82. doi: 10.1038/254079a0. [DOI] [PubMed] [Google Scholar]
  66. Haneishi T., Terahara A., Arai M., Hata T., Tamura C. New antibiotics, methylenomycins A and B. II. Structures of methylenomycins A and B. J Antibiot (Tokyo) 1974 Jun;27(6):393–399. doi: 10.7164/antibiotics.27.393. [DOI] [PubMed] [Google Scholar]
  67. Harold R. J., Hopwood D. A. A rapid method for complemenntation testing of ultraviolet-sensitive (UVS) mutants of Streptomyces coelicolor. Mutat Res. 1972 Sep;16(7):27–34. doi: 10.1016/0027-5107(72)90060-7. [DOI] [PubMed] [Google Scholar]
  68. Harold R. J., Hopwood D. A. Ultraviolet-sensitive mutants of Streptomyces coelicolor. II. Genetics. Mutat Res. 1970 Nov;10(5):439–448. doi: 10.1016/0027-5107(70)90004-7. [DOI] [PubMed] [Google Scholar]
  69. Hastie A. C. Benlate-induced instability of Aspergillus diploids. Nature. 1970 May 23;226(5247):771–771. doi: 10.1038/226771a0. [DOI] [PubMed] [Google Scholar]
  70. Higgens C. E., Hamill R. L., Sands T. H., Hoehn M. M., Davis N. E. Letter: The occurrence of deacetoxycephalosporin C in fungi and streptomycetes. J Antibiot (Tokyo) 1974 Apr;27(4):298–300. doi: 10.7164/antibiotics.27.298. [DOI] [PubMed] [Google Scholar]
  71. Hirai K., Nozoe S., Tsuda K., Iitaka Y., Ishibashi K., Shirasaka M. The structure of siccainin. Tetrahedron Lett. 1967 Jun;23:2177–2179. doi: 10.1016/s0040-4039(00)90792-5. [DOI] [PubMed] [Google Scholar]
  72. Hogg R. W., Broquist H. P. Homocitrate formation in Neurospora crassa. Relation to lysine biosynthesis. J Biol Chem. 1968 Apr 25;243(8):1839–1845. [PubMed] [Google Scholar]
  73. Holt G., Macdonald K. D. Isolation of strains with increased penicillin yield after hybridization in Aspergillus nidulans. Nature. 1968 Aug 10;219(5154):636–637. doi: 10.1038/219636a0. [DOI] [PubMed] [Google Scholar]
  74. Holt G., Macdonald K. D. Penicillin production and its mode of inheritance in Aspergillus nidulans. Antonie Van Leeuwenhoek. 1968;34(4):409–416. doi: 10.1007/BF02046463. [DOI] [PubMed] [Google Scholar]
  75. Hopwood D. A., Chater K. F., Dowding J. E., Vivian A. Advances in Streptomyces coelicolor genetics. Bacteriol Rev. 1973 Sep;37(3):371–405. doi: 10.1128/br.37.3.371-405.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Hopwood D. A. Genetic analysis and genome structure in Streptomyces coelicolor. Bacteriol Rev. 1967 Dec;31(4):373–403. doi: 10.1128/br.31.4.373-403.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Hopwood D. A. Genetics of the Actinomycetales. Soc Appl Bacteriol Symp Ser. 1973 Jan;2:131–153. [PubMed] [Google Scholar]
  78. Hopwood D. A. Lack of Constant Genome Ends in STREPTOMYCES COELICOLOR. Genetics. 1966 Nov;54(5):1177–1184. doi: 10.1093/genetics/54.5.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Hopwood D. A., Wright H. M. A plasmid of Streptomyces coelicolor carrying a chromosomal locus and its inter-specific transfer. J Gen Microbiol. 1973 Dec;79(2):331–342. doi: 10.1099/00221287-79-2-331. [DOI] [PubMed] [Google Scholar]
  80. Hopwood D. A., Wright H. M., Bibb M. J., Cohen S. N. Genetic recombination through protoplast fusion in Streptomyces. Nature. 1977 Jul 14;268(5616):171–174. doi: 10.1038/268171a0. [DOI] [PubMed] [Google Scholar]
  81. Hopwood D. A., Wright H. M. Genetic studies on SCP1-prime strains of Streptomyces coelicolor A3(2). J Gen Microbiol. 1976 Jul;95(1):107–120. doi: 10.1099/00221287-95-1-107. [DOI] [PubMed] [Google Scholar]
  82. Houghton J. A. A new class of slow-growing non-perithecial mutants of Aspergillus nidulans. Genet Res. 1970 Dec;16(3):285–292. doi: 10.1017/s0016672300002548. [DOI] [PubMed] [Google Scholar]
  83. Iwaki M., Shimura K., Kanda M., Kaji E., Saito Y. Some mutants of Bacillus brevis deficient in gramicidin S formation. Biochem Biophys Res Commun. 1972 Jul 11;48(1):113–118. doi: 10.1016/0006-291x(72)90351-8. [DOI] [PubMed] [Google Scholar]
  84. JACKSON M., DULANEY E. L., PUTTER I., SHAFER H. M., WOLF F. J., WOODRUFF H. B. Transethylation in antibiotic biosynthesis. II. Production of the 2'-ethoxy analogue of griseofulvin by biosynthesis. Biochim Biophys Acta. 1962 Aug 27;62:616–619. doi: 10.1016/0006-3002(62)90258-5. [DOI] [PubMed] [Google Scholar]
  85. JINKS J. L. Somatic selection in fungi. Nature. 1954 Aug 28;174(4426):409–410. doi: 10.1038/174409b0. [DOI] [PubMed] [Google Scholar]
  86. Jinks J. L., Caten C. E., Simchen G., Croft J. H. Heterokaryon incompatibility and variation in wild populations of Aspergillus nidulans. Heredity (Edinb) 1966 May;21(2):227–239. doi: 10.1038/hdy.1966.20. [DOI] [PubMed] [Google Scholar]
  87. Jinks L. J., Connolly V. Determination of the environmental sensitivity of selection lines by the selection environment. Heredity (Edinb) 1975 Jun;34(3):401–406. doi: 10.1038/hdy.1975.49. [DOI] [PubMed] [Google Scholar]
  88. Jones A., Westlake D. W. Regulation of chloramphenicol synthesis in Streptomyces sp. 3022a. Properties of arylamine synthetase, an enzyme involved in antibiotic biosynthesis. Can J Microbiol. 1974 Nov;20(11):1599–1611. doi: 10.1139/m74-247. [DOI] [PubMed] [Google Scholar]
  89. KAFER E. An 8-chromosome map of Aspergillus nidulans. Adv Genet. 1958;9:105–145. [PubMed] [Google Scholar]
  90. KUTZNER H. J., WAKSMAN S. A. Streptomyces coelicolor Mueller and Streptomyces violaceoruber Waksman and Curtis, two distinctly different organisms. J Bacteriol. 1959 Oct;78:528–538. doi: 10.1128/jb.78.4.528-538.1959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Kambe M., Imae Y., Kurahashi K. Biochemical studies on gramicidin S non-producing mutants of Bacillus brevis ATCC 9999. J Biochem. 1974 Mar;75(3):481–493. doi: 10.1093/oxfordjournals.jbchem.a130417. [DOI] [PubMed] [Google Scholar]
  92. Kanzaki T., Fukita T., Shirafuji H., Fujisawa Y., Kitano K. Letter: Occurrence of a 3-methylthiomethylcephem derivative in a culture broth of Cephalosporium mutant. J Antibiot (Tokyo) 1974 May;27(5):361–362. doi: 10.7164/antibiotics.27.361. [DOI] [PubMed] [Google Scholar]
  93. Kawamoto I., Takasawa S., Okachi R., Koakura M., Takahashi I. A new antibiotic victomycin (XK 49-1-B-2). I. Taxonomy and production of the producing organism. J Antibiot (Tokyo) 1975 May;28(5):358–365. doi: 10.7164/antibiotics.28.358. [DOI] [PubMed] [Google Scholar]
  94. Kirby R., Hopwood D. A. Genetic determination of methylenomycin synthesis by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol. 1977 Jan;98(1):239–252. doi: 10.1099/00221287-98-1-239. [DOI] [PubMed] [Google Scholar]
  95. Kirby R., Wright L. F., Hopwood D. A. Plasmid-determined antibiotic synthesis and resistance in Streptomyces coelicolor. Nature. 1975 Mar 20;254(5497):265–267. doi: 10.1038/254265a0. [DOI] [PubMed] [Google Scholar]
  96. Kohsaka M., Demain A. L. Conversion of penicillin N to cephalosporin(s) by cell-free extracts of Cephalosporium acremonium. Biochem Biophys Res Commun. 1976 May 17;70(2):465–473. doi: 10.1016/0006-291x(76)91069-x. [DOI] [PubMed] [Google Scholar]
  97. Kojima M., Sato A. Letter: Microbial semi-synthesis of aminoglycosidic antibiotics by mutants of S. ribosidificus and S. kanamyceticus. J Antibiot (Tokyo) 1973 Dec;26(12):784–786. doi: 10.7164/antibiotics.26.784. [DOI] [PubMed] [Google Scholar]
  98. Kozar W., Rajchert-Trzpil M., Dobrzański W. T. The effect of proflavin, ethidium bromide and an elevated temperature on the appearance of nisin-negative clones in nisin-producing strains of Streptococcus lactis. J Gen Microbiol. 1974 Aug;83(2):295–302. doi: 10.1099/00221287-83-2-295. [DOI] [PubMed] [Google Scholar]
  99. Käfer E. Origins of translocations in Aspergillus nidulans. Genetics. 1965 Jul;52(1):217–232. doi: 10.1093/genetics/52.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Kähler R., Noack D. Action of acridine orange and ethidium bromide on growth and antibiotic activity of Streptomyces hygroscopicus JA 6599. Z Allg Mikrobiol. 1974;14(6):529–533. doi: 10.1002/jobm.3630140610. [DOI] [PubMed] [Google Scholar]
  101. LHOAS P. Mitotic haploidization by treatment of Aspergillus niger diploids with para-fluorophenylalanine. Nature. 1961 May 20;190:744–744. doi: 10.1038/190744a0. [DOI] [PubMed] [Google Scholar]
  102. Laland S. G., Zimmer T. L. The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by Bacillus brevis. Essays Biochem. 1973;9:31–57. [PubMed] [Google Scholar]
  103. Lemke P. A., Nash C. H. Mutations that affect antibiotic synthesis by Cephalosporium acremonium. Can J Microbiol. 1972 Feb;18(2):255–259. doi: 10.1139/m72-038. [DOI] [PubMed] [Google Scholar]
  104. Lepesant-Kejzlarová J., Lepesant J. A., Walle J., Billault A., Dedonder R. Revision of the linkage map of Bacillus subtilis 168: indications for circularity of the chromosome. J Bacteriol. 1975 Mar;121(3):823–834. doi: 10.1128/jb.121.3.823-834.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Lhoas P. Genetic analysis by means of the parasexual cycle in Aspergillus niger. Genet Res. 1967 Aug;10(1):45–61. doi: 10.1017/s0016672300010752. [DOI] [PubMed] [Google Scholar]
  106. Loder P. B., Abraham E. P. Isolation and nature of intracellular peptides from a cephalosporin C-producing Cephalosporium sp. Biochem J. 1971 Jul;123(3):471–476. doi: 10.1042/bj1230471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Lomovskaya N. D., Voeykova T. A., Mkrtumian N. M. Construction and properties of hybrids obtained in interspecific crosses between Streptomyces coelicolor A3(2) and Streptomyces griseus Kr-15. J Gen Microbiol. 1977 Jan;98(1):187–198. doi: 10.1099/00221287-98-1-187. [DOI] [PubMed] [Google Scholar]
  108. MACDONALD K. D., HUTCHINSON J. M., GILLETT W. A. FORMATION AND SEGREGATION OF HETEROZYGOUS DIPLOIDS BETWEEN A WILD-TYPE STRAIN AND DERIVATIVES OF HIGH PENICILLIN YIELD IN PENICILLIUM CHRYSOGENUM. J Gen Microbiol. 1963 Dec;33:385–394. doi: 10.1099/00221287-33-3-385. [DOI] [PubMed] [Google Scholar]
  109. MACDONALD K. D., HUTCHINSON J. M., GILLETT W. A. HETEROKARYON STUDIES AND THE GENETIC CONTROL OF PENICILLIN AND CHRYSOGENIN PRODUCTION IN PENICILLIUM CHRYSOGENUM. J Gen Microbiol. 1963 Dec;33:375–383. doi: 10.1099/00221287-33-3-375. [DOI] [PubMed] [Google Scholar]
  110. MACDONALD K. D., HUTCHINSON J. M., GILLETT W. A. ISOLATION OF AUXOTROPHS OF PENICILLIUM CHRYSOGENUM AND THEIR PENICILLIN YIELDS. J Gen Microbiol. 1963 Dec;33:365–374. doi: 10.1099/00221287-33-3-365. [DOI] [PubMed] [Google Scholar]
  111. MACDONALD K. D., HUTCHINSON J. M., GILLETT W. A. PROPERTIES OF HETEROZYGOUS DIPLOIDS BETWEEN STAINS OF PENICILLIUM CHRYSOGENUM SELECTED FOR HIGH PENICILLIN YIELD. Antonie Van Leeuwenhoek. 1964;30:209–224. doi: 10.1007/BF02046727. [DOI] [PubMed] [Google Scholar]
  112. MacDonald K. D. Segregants from a heterozygous diploid of Penicillium chrysogenum following different physical and chemical treatments. J Gen Microbiol. 1971 Aug;67(2):247–250. doi: 10.1099/00221287-67-2-247. [DOI] [PubMed] [Google Scholar]
  113. Macdonald K. D. Differences in diploids synthesized between the same parental strains of Penicillium chrysogenum. Antonie Van Leeuwenhoek. 1966;32(4):431–441. doi: 10.1007/BF02097495. [DOI] [PubMed] [Google Scholar]
  114. Macdonald K. D., Holt G. Genetics of biosynthesis and overproduction of penicillin. Sci Prog. 1976 Winter;63(252):547–573. [PubMed] [Google Scholar]
  115. Macdonald K. D., Hutchinson J. M., Gillett W. A. Heterozygous diploids of Penicillium chrysogenum and their segregation patterns. Genetica. 1965;36(4):378–397. doi: 10.1007/BF01557170. [DOI] [PubMed] [Google Scholar]
  116. Macdonald K. D. The persistence of parental genome segregation in Penicillium chrysogenum after nitrogen mustard treatment. Mutat Res. 1968 Mar-Apr;5(2):302–305. doi: 10.1016/0027-5107(68)90029-8. [DOI] [PubMed] [Google Scholar]
  117. Majer J., Martin J. R., Egan R. S., Corcoran J. W. Antibiotic glycosides. 8. Erythromycin D, a new macrolide antibiotic. J Am Chem Soc. 1977 Mar 2;99(5):1620–1622. doi: 10.1021/ja00447a055. [DOI] [PubMed] [Google Scholar]
  118. Maragoudakis M. E., Holmes H., Strassman M. Control of lysine biosynthesis in yeast by a feedback mechanism. J Bacteriol. 1967 May;93(5):1677–1680. doi: 10.1128/jb.93.5.1677-1680.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Martin J. R., Perun T. J., Girolami R. L. Studies on the biosynthesis of the erythromycins. I. Isolation and structure of an intermediate glycoside, 3-alpha-L-mycarosylerythronolide B. Biochemistry. 1966 Sep;5(9):2852–2856. doi: 10.1021/bi00873a011. [DOI] [PubMed] [Google Scholar]
  120. Martin J. R., Perun T. J. Studies on the biosynthesis of the erythromycins. 3. Isolation and structure of 5-deoxy-5-oxoerythronolide B, a shunt metabolite of erythromycin biosynthesis. Biochemistry. 1968 May;7(5):1728–1733. doi: 10.1021/bi00845a016. [DOI] [PubMed] [Google Scholar]
  121. Martin J. R., Rosenbrook W. Studies on the biosynthesis of the erythromycins. II. Isolation and structure of a biosynthetic intermediate, 6-deoxyerythronolide B. Biochemistry. 1967 Feb;6(2):435–440. doi: 10.1021/bi00854a010. [DOI] [PubMed] [Google Scholar]
  122. Masurekar P. S., Demain A. L. Impaired penicillin production in lysine regulatory mutants of Penicillium chrysogenum. Antimicrob Agents Chemother. 1974 Sep;6(3):366–368. doi: 10.1128/aac.6.3.366. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Masurekar P. S., Demain A. L. Insensitivity of homocitrate synthase in extracts of Penicillium chyrosogenum to feedback inhibition by lysine. Appl Microbiol. 1974 Aug;28(2):265–270. doi: 10.1128/am.28.2.265-270.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. McCully K. S., Forbes E. The use of p-fluorophenylalanine with 'master strains' of Aspergillus nidulans for assigning genes to linkage groups. Genet Res. 1965 Nov;6(3):352–359. doi: 10.1017/s0016672300004249. [DOI] [PubMed] [Google Scholar]
  125. Merrick M. J. A morphological and genetic mapping study of bald colony mutants of Streptomyces coelicolor. J Gen Microbiol. 1976 Oct;96(2):299–315. doi: 10.1099/00221287-96-2-299. [DOI] [PubMed] [Google Scholar]
  126. Merrick M. J., Caten C. E. The inheritance of penicillin titre in wild-type isolates of Aspergillus nidulans. J Gen Microbiol. 1975 Feb;86(2):283–293. doi: 10.1099/00221287-86-2-283. [DOI] [PubMed] [Google Scholar]
  127. Merrick M. J. Hybridization and selection for increased penicillin titre in wild-type isolates of Aspergillus nidulans. J Gen Microbiol. 1975 Dec;91(2):278–286. doi: 10.1099/00221287-91-2-278. [DOI] [PubMed] [Google Scholar]
  128. Merrick M. J. The inheritance of penicillin titre in crosses between lines of Aspergillus nidulans selected for increased productivity. J Gen Microbiol. 1975 Dec;91(2):287–294. doi: 10.1099/00221287-91-2-287. [DOI] [PubMed] [Google Scholar]
  129. Murphy G., Lynen F. Patulin biosynthesis: the metabolism of m-hydroxybenzyl alcohol and m-hydroxybenzaldehyde by particulate preparations from Penicillium patulum. Eur J Biochem. 1975 Oct 15;58(2):467–475. doi: 10.1111/j.1432-1033.1975.tb02394.x. [DOI] [PubMed] [Google Scholar]
  130. Musílek V., Cerná J., Sasek V., Semerdzieva M., Vondrácek M. Antifungal antibiotic of the basidiomycete Oudemansiella mucida. I. Isolation and cultivation of a producing strain. Folia Microbiol (Praha) 1969;14(4):377–387. doi: 10.1007/BF02872707. [DOI] [PubMed] [Google Scholar]
  131. Nagaoka K., Demain A. L. Mutational biosynthesis of a new antibiotic, streptomutin A, by an idiotroph of Streptomyces griseus. J Antibiot (Tokyo) 1975 Sep;28(9):627–635. doi: 10.7164/antibiotics.28.627. [DOI] [PubMed] [Google Scholar]
  132. Nagarajan R., Boeck L. D., Gorman M., Hamill R. L., Higgens C. E., Hoehn M. M., Stark W. M., Whitney J. G. Beta-lactam antibiotics from Streptomyces. J Am Chem Soc. 1971 May 5;93(9):2308–2310. doi: 10.1021/ja00738a035. [DOI] [PubMed] [Google Scholar]
  133. Nash C. H., Huber F. M. Antibiotic synthesis and morphological differentiation of Cephalosporium acremonium. Appl Microbiol. 1971 Jul;22(1):6–10. doi: 10.1128/am.22.1.6-10.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. O'Sullivan C. Y., Pirt S. J. Penicillin production by lysine auxotrophs of Penicillium chrysogenum. J Gen Microbiol. 1973 May;76(1):65–75. doi: 10.1099/00221287-76-1-65. [DOI] [PubMed] [Google Scholar]
  135. Okanishi M., Hamana K., Umezawa H. Factors affecting infection of protoplasts with deoxyribonucleic acid of actinophage PK-66. J Virol. 1968 Jul;2(7):686–691. doi: 10.1128/jvi.2.7.686-691.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Okanishi M., Ita T., Umezawa H. Possible control of formation of aerial mycelium and antibiotic production in Streptomyces by episomic factors. J Antibiot (Tokyo) 1970 Jan;23(1):45–47. doi: 10.7164/antibiotics.23.45. [DOI] [PubMed] [Google Scholar]
  137. Okanishi M., Suzuki K., Umezawa H. Formation and reversion of Streptomycete protoplasts: cultural condition and morphological study. J Gen Microbiol. 1974 Feb;80(2):389–400. doi: 10.1099/00221287-80-2-389. [DOI] [PubMed] [Google Scholar]
  138. Okanishi M., Utahara R., Okami Y. Infection of the protoplasts of Streptomyces kanamyceticus with deoxyribonucleic acid preparation from actinophage PK-66. J Bacteriol. 1966 Dec;92(6):1850–1852. doi: 10.1128/jb.92.6.1850-1852.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Omura S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol Rev. 1976 Sep;40(3):681–697. doi: 10.1128/br.40.3.681-697.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. PONTECORVO G., KAFER E. Genetic analysis based on mitotic recombination. Adv Genet. 1958;9:71–104. [PubMed] [Google Scholar]
  141. PONTECORVO G., ROPER J. A., HEMMONS L. M., MACDONALD K. D., BUFTON A. W. J. The genetics of Aspergillus nidulans. Adv Genet. 1953;5:141–238. doi: 10.1016/s0065-2660(08)60408-3. [DOI] [PubMed] [Google Scholar]
  142. PONTECORVO G., SERMONTI G. Para-sexual recombination in Penicillium chrysogenum. J Gen Microbiol. 1954 Aug;11(1):94–104. doi: 10.1099/00221287-11-1-94. [DOI] [PubMed] [Google Scholar]
  143. Peterson E. A., Gillespie D. C., Cook F. D. A wide-spectrum antibiotic produced by a species of Sorangium. Can J Microbiol. 1966 Apr;12(2):221–230. doi: 10.1139/m66-031. [DOI] [PubMed] [Google Scholar]
  144. Pirali G., Somma S., Lancini G. C., Sala F. Inhibition of peptide chain initiation in Escherichia coli by thermorubin. Biochim Biophys Acta. 1974 Oct 28;366(3):310–318. doi: 10.1016/0005-2787(74)90291-3. [DOI] [PubMed] [Google Scholar]
  145. Polsinelli M., Beretta M. Genetic Recombination in Crosses Between Streptomyces aureofaciens and Streptomyces rimosus. J Bacteriol. 1966 Jan;91(1):63–68. doi: 10.1128/jb.91.1.63-68.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Puglia A. M., Spada-Sermonti I., Basile S., Misuraca F., Sermonti G. Infectious transfer of a fertility factor in Streptomyces coelicolor. Genet Res. 1973 Apr;21(2):107–113. doi: 10.1017/s0016672300013288. [DOI] [PubMed] [Google Scholar]
  147. Queener S. W., Capone J. J., Radue A. B., Nagarajan R. Synthesis of deactoxycephalosporin C by a mutant of Cephalosporium acremonium. Antimicrob Agents Chemother. 1974 Sep;6(3):334–337. doi: 10.1128/aac.6.3.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Queener S. W., McDermott J., Radue A. B. Glutamate dehydrogenase specific activity and cephalosporin C synthesis in the M8650 series of Cephalosporium acremonium mutants. Antimicrob Agents Chemother. 1975 May;7(5):646–651. doi: 10.1128/aac.7.5.646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. ROPER J. A. Production of heterozygous diploids in filamentous fungi. Experientia. 1952 Jan 15;8(1):14–15. doi: 10.1007/BF02168881. [DOI] [PubMed] [Google Scholar]
  150. Redshaw P. A., McCann P. A., Sankaran L., Pogell B. M. Control of differentiation in streptomycetes: involvement of extrachromosomal deoxyribonucleic acid and glucose repression in aerial mycelia development. J Bacteriol. 1976 Feb;125(2):698–705. doi: 10.1128/jb.125.2.698-705.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  151. Rickenberg H. V. Cyclic AMP in prokaryotes. Annu Rev Microbiol. 1974;28(0):353–369. doi: 10.1146/annurev.mi.28.100174.002033. [DOI] [PubMed] [Google Scholar]
  152. Rinehart K. L., Jr, Stroshane R. M. Biosynthesis of aminocyclitol antibiotics. J Antibiot (Tokyo) 1976 Apr;29(4):319–353. doi: 10.7164/antibiotics.29.319. [DOI] [PubMed] [Google Scholar]
  153. Roland I., Froyshov O. On the presence of pantothenic acid in the three complementary enzymes of bacitracin synthetase. FEBS Lett. 1975 Dec 15;60(2):305–308. doi: 10.1016/0014-5793(75)80736-8. [DOI] [PubMed] [Google Scholar]
  154. Russi S., Carere A., Fratello B., Khoudokormoff V. Caratterizzazione biochimica di alcuni mutanti di Streptomyces coelicolor richiedenti istidina. Ann Ist Super Sanita. 1966;2(4):506–522. [PubMed] [Google Scholar]
  155. SAITO H., IKEDA Y. Cytogenetic studies on Streptomyces griseoflavus. Ann N Y Acad Sci. 1959 Sep 30;81:862–878. doi: 10.1111/j.1749-6632.1959.tb49372.x. [DOI] [PubMed] [Google Scholar]
  156. SERMONTI G. Complementary genes which affect penicillin yields. J Gen Microbiol. 1956 Dec;15(3):599–608. doi: 10.1099/00221287-15-3-599. [DOI] [PubMed] [Google Scholar]
  157. SERMONTI G. Genetics of penicillin production. Ann N Y Acad Sci. 1959 Sep 30;81:950–973. doi: 10.1111/j.1749-6632.1959.tb49380.x. [DOI] [PubMed] [Google Scholar]
  158. Sankaran L., Pogell B. M. Biosynthesis of puromycin in Streptomyces alboniger: regulation and properties of O-demethylpuromycin O-methyltransferase. Antimicrob Agents Chemother. 1975 Dec;8(6):721–732. doi: 10.1128/aac.8.6.721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Schrempf H., Bujard H., Hopwood D. A., Goebel W. Isolation of covalently closed circular deoxyribonucleic acid from Streptomyces coelicolor A3(2). J Bacteriol. 1975 Feb;121(2):416–421. doi: 10.1128/jb.121.2.416-421.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Schupp T., Hutter R., Hopwood D. A. Genetic recombination in Nocardia mediterranei. J Bacteriol. 1975 Jan;121(1):128–136. doi: 10.1128/jb.121.1.128-136.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  162. Sermonti G., Bandiera M., Spadasermonti I. New approach to the genetics of Streptomyces coelicolor. J Bacteriol. 1966 Jan;91(1):384–392. doi: 10.1128/jb.91.1.384-392.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Sermonti G., Puglia A. M., Ficarra G. The time course of recombinant production in Streptomyces coelicolor. Genet Res. 1971 Oct;18(2):133–145. doi: 10.1017/s0016672300012532. [DOI] [PubMed] [Google Scholar]
  164. Sermonti G, Mancinelli A, Spada-Sermonti I. Heterogeneous Clones ("Heteroclones") in Streptomyces Coelicolor a 3(2). Genetics. 1960 Jun;45(6):669–672. doi: 10.1093/genetics/45.6.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Shier W. T., Ogawa S., Hichens M., Rinehart K. L., Jr Chemistry and biochemistry of the neomycins. XVII. Bioconversion of aminocyclitols to aminocyclitol antibiotics. J Antibiot (Tokyo) 1973 Oct;26(10):551–561. doi: 10.7164/antibiotics.26.551. [DOI] [PubMed] [Google Scholar]
  166. Shier W. T., Rinehart K. L., Jr, Gottlieb D. Preparation of four new antibiotics from a mutant of Streptomyces fradiae. Proc Natl Acad Sci U S A. 1969 May;63(1):198–204. doi: 10.1073/pnas.63.1.198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Shier W. T., Schaefer P. C., Gottlieb D., Rinehart K. L., Jr Use of mutants in the study of aminocyclitol antibiotic biosynthesis and the preparation of the hybrimycin C complex. Biochemistry. 1974 Dec 3;13(25):5073–5078. doi: 10.1021/bi00722a002. [DOI] [PubMed] [Google Scholar]
  168. Smith B., Warren S. C., Newton G. G., Abraham E. P. Biosynthesis of penicillin N and cephalosporin C. Antibiotic production and other features of the metabolism of Cephalosporium sp. Biochem J. 1967 Jun;103(3):877–890. doi: 10.1042/bj1030877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  169. Stapley E. O., Jackson M., Hernandez S., Zimmerman S. B., Currie S. A., Mochales S., Mata J. M., Woodruff H. B., Hendlin D. Cephamycins, a new family of beta-lactam antibiotics. I. Production by actinomycetes, including Streptomyces lactamdurans sp. n. Antimicrob Agents Chemother. 1972 Sep;2(3):122–131. doi: 10.1128/aac.2.3.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Stepanova N. L. Geneticheskii analiz izmenchivosti kol'tsevykh khromosom drozofily. Soobshchenie II. Vliianie vozrasta roditelei. Genetika. 1973 Dec;9(12):69–75. [PubMed] [Google Scholar]
  171. TARDREW P. L., JOHNSON M. J. Sulfate utilization by penicillin-producing mutants of Penicillium chrysogenum. J Bacteriol. 1958 Oct;76(4):400–405. doi: 10.1128/jb.76.4.400-405.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  172. Tagg J. R., Dajani A. S., Wannamaker L. W. Bacteriocins of gram-positive bacteria. Bacteriol Rev. 1976 Sep;40(3):722–756. doi: 10.1128/br.40.3.722-756.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Takasawa S., Kawamoto I., Takahashi I., Koakura M., Okachi R. Platomycins A and B I Taxonomy of the producing strain and production, isolation and biological properties of platomycins. J Antibiot (Tokyo) 1975 Sep;28(9):656–661. doi: 10.7164/antibiotics.28.656. [DOI] [PubMed] [Google Scholar]
  174. Tanaka H., Koyama Y., Nagai T., Marumo H., Omura S. Nanomycins, new antibiotics produced by a strain of Streptomyces. II. Structure and biosynthesis. J Antibiot (Tokyo) 1975 Nov;28(11):868–875. doi: 10.7164/antibiotics.28.868. [DOI] [PubMed] [Google Scholar]
  175. Taylor H. D., Schmitz H. Antibiotics derived from a mutant of Bacillus circulans. J Antibiot (Tokyo) 1976 May;29(5):532–535. doi: 10.7164/antibiotics.29.532. [DOI] [PubMed] [Google Scholar]
  176. Testa R. T., Wagman G. H., Daniels P. J., Weinstein M. J. Mutamicins; biosynthetically created new sisomicin analogues. J Antibiot (Tokyo) 1974 Dec;27(12):917–921. doi: 10.7164/antibiotics.27.917. [DOI] [PubMed] [Google Scholar]
  177. Tokunaga T., Mizuguchi Y., Suga K. Genetic recombination in mycobacteria. J Bacteriol. 1973 Mar;113(3):1104–1111. doi: 10.1128/jb.113.3.1104-1111.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Traxler P., Treichler H. J., Nüesch J. Synthesis of N-acetyldeacetoxy-cephalosporin C by a mutant of Cephalosporium acremonium. J Antibiot (Tokyo) 1975 Aug;28(8):605–606. doi: 10.7164/antibiotics.28.605. [DOI] [PubMed] [Google Scholar]
  179. Upshall A., Käfer E. Detection and identification of translocations by increased specific nondisjunction in Aspergillus nidulans. Genetics. 1974 Jan;76(1):19–31. doi: 10.1093/genetics/76.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  180. VANDERHAEGHE H., VANDIJCK P., DESOMER P. IDENTITY OF RAMYCIN WITH FUSIDIC ACID. Nature. 1965 Feb 13;205:710–711. doi: 10.1038/205710a0. [DOI] [PubMed] [Google Scholar]
  181. Vaks B., Zuckerberg A., Rosenberg E. Purification and partial characterization of an antibiotic produced by Myxococcus xanthus. Can J Microbiol. 1974 Feb;20(2):155–161. doi: 10.1139/m74-025. [DOI] [PubMed] [Google Scholar]
  182. Walker J. B. Enzymatic reactions involved in streptomycin biosynthesis and metabolism. Lloydia. 1971 Dec;34(4):363–371. [PubMed] [Google Scholar]
  183. Wheelis L. The genetics of dissimilarity pathways in Pseudomonas. Annu Rev Microbiol. 1975;29:505–524. doi: 10.1146/annurev.mi.29.100175.002445. [DOI] [PubMed] [Google Scholar]
  184. White R. J., Martinelli E., Gallo G. G., Lancini G., Beynon P. Rifamycin biosynthesis studied with 13C enriched precursors and carbon magnetic resonance. Nature. 1973 Jun 1;243(5405):273–277. doi: 10.1038/243273a0. [DOI] [PubMed] [Google Scholar]
  185. White R. J., Martinelli E., Lancini G. Ansamycin biogenesis: studies on a novel rifamycin isolated from a mutant strain of Nocardia mediterranei. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3260–3264. doi: 10.1073/pnas.71.8.3260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Wildermuth H. Surface structure of streptomycete spores as revealed by negative staining and freeze-etching. J Bacteriol. 1970 Jan;101(1):318–322. doi: 10.1128/jb.101.1.318-322.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Williams S. T., Khan M. R. Antibiotics--a soil microbiologist's viewpoint. Postepy Hig Med Dosw. 1974 Jul-Aug;28(4):395–408. [PubMed] [Google Scholar]
  188. Williams S. T., Sharples G. P., Bradshaw R. M. The fine structure of the Actinomycetales. Soc Appl Bacteriol Symp Ser. 1973 Jan;2:113–130. [PubMed] [Google Scholar]
  189. Wright L. F., Hopwood D. A. Actinorhodin is a chromosomally-determined antibiotic in Streptomyces coelicolar A3(2). J Gen Microbiol. 1976 Oct;96(2):289–297. doi: 10.1099/00221287-96-2-289. [DOI] [PubMed] [Google Scholar]
  190. Wright L. F., Hopwood D. A. Identification of the antibiotic determined by the SCP1 plasmid of Streptomyces coelicolor A3(2). J Gen Microbiol. 1976 Jul;95(1):96–106. doi: 10.1099/00221287-95-1-96. [DOI] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES