Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1977 Sep;41(3):711–753. doi: 10.1128/br.41.3.711-753.1977

Extracellular enzyme synthesis in the genus Bacillus.

F G Priest
PMCID: PMC414021  PMID: 334155

Full text

PDF
711

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acevedo F., Cooney C. L. Pencillin amidase production by Bacillus megaterium. Biotechnol Bioeng. 1973 May;15(3):493–503. doi: 10.1002/bit.260150306. [DOI] [PubMed] [Google Scholar]
  2. Ambler R. P., Meadway R. J. Chemical structure of bacterial penicillinases. Nature. 1969 Apr 5;222(5188):24–26. doi: 10.1038/222024a0. [DOI] [PubMed] [Google Scholar]
  3. Aronson A. I., Angelo N., Holt S. C. Regulation of extracellular protease production in Bacillus cereus T: characterization of mutants producing altered amounts of protease. J Bacteriol. 1971 Jun;106(3):1016–1025. doi: 10.1128/jb.106.3.1016-1025.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Artman M., Werthamer S. Effect of cyclic guanosine 3,5-monophosphate on the synthesis of enzymes sensitive to caatabolite repression in intact cells of Escherichia coli. J Bacteriol. 1974 Nov;120(2):980–983. doi: 10.1128/jb.120.2.980-983.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aten R. F., Day R. A. Penicillin-binding component of Bacillus cereus. J Bacteriol. 1973 May;114(2):537–542. doi: 10.1128/jb.114.2.537-542.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ayad S. R., Shimmin E. R. Properties of the competence-inducing factor of Bacillus subtilis 168I-. Biochem Genet. 1974 Jun;11(6):455–474. doi: 10.1007/BF00486078. [DOI] [PubMed] [Google Scholar]
  7. Ayusawa D., Yoneda Y., Yamane K., Maruo B. Pleiotropic phenomena in autolytic enzyme(s) content, flagellation, and simultaneous hyperproduction of extracellular alpha-amylase and protease in a Bacillus subtilis mutant. J Bacteriol. 1975 Oct;124(1):459–469. doi: 10.1128/jb.124.1.459-469.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. BERNLOHR R. W. POSTLOGARITHMIC PHASE METABOLISM OF SPORULATING MICROORGANISMS. I. PROTEASE OF BACILLUS LICHENIFORMIS. J Biol Chem. 1964 Feb;239:538–543. [PubMed] [Google Scholar]
  9. Berkeley R. C., Brewer S. J., Ortiz J. M., Gillespie J. B. An exo- -N-acetylglucosaminidase from Bacillus subtilis B; characterization. Biochim Biophys Acta. 1973 May 5;309(1):157–168. doi: 10.1016/0005-2744(73)90327-6. [DOI] [PubMed] [Google Scholar]
  10. Bernlohr R. W., Clark V. Characterization and regulation of protease synthesis and activity in Bacillus licheniformis. J Bacteriol. 1971 Jan;105(1):276–283. doi: 10.1128/jb.105.1.276-283.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Bernlohr R. W., Haddox M. K., Goldberg N. D. Cyclic guanosine 3':5'-monophosphate in Escherichia coli and Bacillus lichenformis. J Biol Chem. 1974 Jul 10;249(13):4329–4331. [PubMed] [Google Scholar]
  12. Bettinger G. E., Lampen J. O. Further evidence for a partially folded intermediate in penicillinase secretion by Bacillus licheniformis. J Bacteriol. 1975 Jan;121(1):83–90. doi: 10.1128/jb.121.1.83-90.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Birnboim H. C. Cellular site in Bacillus subtilis of a nuclease which preferentially degrades single-stranded nucleic acids. J Bacteriol. 1966 Mar;91(3):1004–1011. doi: 10.1128/jb.91.3.1004-1011.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bliesmer B. O., Hartman P. A. Differential heat stabilities of Bacillus amylase. J Bacteriol. 1973 Jan;113(1):526–528. doi: 10.1128/jb.113.1.526-528.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Blobel G., Dobberstein B. Transfer of proteins across membranes. I. Presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma. J Cell Biol. 1975 Dec;67(3):835–851. doi: 10.1083/jcb.67.3.835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Boethling R. S. Regulation of extracellular protease secretion in Pseudomonas maltophilia. J Bacteriol. 1975 Sep;123(3):954–961. doi: 10.1128/jb.123.3.954-961.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bonamy C., Hirschbein L., Szulmajster J. Synthesis of ribosomal ribonucleic acid during sporulation of Bacillus subtilis. J Bacteriol. 1973 Mar;113(3):1296–1306. doi: 10.1128/jb.113.3.1296-1306.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Both G. W., McInnes J. L., Hanlon J. E., May B. K., Elliott W. H. Evidence for an accumulation of messenger RNA specific for extracellular protease and its relevance to the mechanism of enzyme secretion in bacteria. J Mol Biol. 1972 Jun 20;67(2):199–217. doi: 10.1016/0022-2836(72)90236-7. [DOI] [PubMed] [Google Scholar]
  19. Boyer E. W., Ingle M. B. Extracellular alkaline amylase from a Bacillus species. J Bacteriol. 1972 Jun;110(3):992–1000. doi: 10.1128/jb.110.3.992-1000.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Brehm S. P., Staal S. P., Hoch J. A. Phenotypes of pleiotropic-negative sporulation mutants of Bacillus subtilis. J Bacteriol. 1973 Sep;115(3):1063–1070. doi: 10.1128/jb.115.3.1063-1070.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Brevet J., Sonenshein A. L. Template specificity of ribonucleic acid polymerase in asporogenous mutants of Bacillus subtilis. J Bacteriol. 1972 Dec;112(3):1270–1274. doi: 10.1128/jb.112.3.1270-1274.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Brewer S. J., Berkeley R. C. Control of the production of exo-beta-N-acetylglucosaminidase by Bacillus subtilis B. Biochem J. 1973 May;134(1):271–281. doi: 10.1042/bj1340271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Brown S., Coleman G. Messenger ribonucleic acid content of Bacillus amyloliquefaciens throughout its growth cycle compared with Bacillus subtilis 168. J Mol Biol. 1975 Aug 5;96(2):345–352. doi: 10.1016/0022-2836(75)90353-8. [DOI] [PubMed] [Google Scholar]
  24. Brown S., Coleman G. Stability of rapidly labelled messenger ribonucleic acid in Bacillus amyloliquefaciens during the phases of minimum and maximum extracellular enzyme formation. J Mol Biol. 1975 Aug 5;96(2):335–344. doi: 10.1016/0022-2836(75)90352-6. [DOI] [PubMed] [Google Scholar]
  25. Brown W. C., Wilson C. R., Lukehart S., Young F. E., Shiflett M. A. Analysis of autolysins in temperature-sensitive morphological mutants of Bacillus subtilis. J Bacteriol. 1976 Jan;125(1):166–173. doi: 10.1128/jb.125.1.166-173.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Brown W. C., Young F. E. Dynamic interactions between cell wall polymers, extracellular proteases and autolytic enzymes. Biochem Biophys Res Commun. 1970 Feb 20;38(4):564–568. doi: 10.1016/0006-291x(70)90618-2. [DOI] [PubMed] [Google Scholar]
  27. Buettner M. J., Spitz E., Rickenberg H. V. Cyclic adenosine 3',5'-monophosphate in Escherichia coli. J Bacteriol. 1973 Jun;114(3):1068–1073. doi: 10.1128/jb.114.3.1068-1073.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. COLEMAN G., ELLIOTT W. H. Studies on alpha-amylase formation by Bacillus subtilis. Biochem J. 1962 May;83:256–263. doi: 10.1042/bj0830256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Cancedda R., Schlesinger M. J. Localization of polyribosomes containing alkaline phosphatase nascent polypeptides on membranes of Escherichia coli. J Bacteriol. 1974 Jan;117(1):290–301. doi: 10.1128/jb.117.1.290-301.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Cashel M., Freese E. Excretion of alkaline phosphatase of Bacillus subtilis. Biochem Biophys Res Commun. 1964 Aug 11;16(6):541–544. doi: 10.1016/0006-291x(64)90189-5. [DOI] [PubMed] [Google Scholar]
  31. Cercignani G., Serra M. C., Fini C., Natalini P., Palmerini C. A., Magni G., Ipata P. L. Properties of 5'-nucleotidase from Bacillus cereus obtained by washing intact cells with water. Biochemistry. 1974 Aug 13;13(17):3628–3634. doi: 10.1021/bi00714a035. [DOI] [PubMed] [Google Scholar]
  32. Chaloupka J., Krecková P. Regulation of the formation of protease in Bacillus megaterium. I. The influence of amino acids on the enzyme formation. Folia Microbiol (Praha) 1966;11(2):82–88. doi: 10.1007/BF02878835. [DOI] [PubMed] [Google Scholar]
  33. Chevallier M. R., Bernardi G. Residual transforming activity of denatured Haemophilus influenzae DNA. J Mol Biol. 1968 Mar 14;32(2):437–451. doi: 10.1016/0022-2836(68)90020-x. [DOI] [PubMed] [Google Scholar]
  34. Chiang C., Bennett R. E. Purification and properties of penicillin amidase from Bacillus megaterium. J Bacteriol. 1967 Jan;93(1):302–308. doi: 10.1128/jb.93.1.302-308.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Coleman C., Brown S. Relationship between exoprotease secretion and the synthesis of ribonucleic acid and protein in Bacillus amyloliquefaciens. Antimicrob Agents Chemother. 1975 Jun;7(6):840–844. doi: 10.1128/aac.7.6.840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Coleman G., Brown S., Stormonth D. A. A model for the regulation of bacterial extracellular enzyme and toxin biosynthesis. J Theor Biol. 1975 Jul;52(1):143–148. doi: 10.1016/0022-5193(75)90045-4. [DOI] [PubMed] [Google Scholar]
  37. Coleman G. Effect of potassium ions on the attachment of polyribosomes to the membranes in lysates of exponential-phase cells of Bacillus amyloliquefaciens. Biochem J. 1969 May;112(4):533–539. doi: 10.1042/bj1120533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Coleman G., Grant M. A. Characteristics of alpha-amylase formation by Bacillus subtilis. Nature. 1966 Jul 16;211(5046):306–307. doi: 10.1038/211306a0. [DOI] [PubMed] [Google Scholar]
  39. Coleman G., Stormonth D. A. Stimulation of the differential rate of exoenzyme formation in Bacillus amyloliquefaciens by streptolydigin, an inhibitor of RNA chain elongation. J Gen Microbiol. 1975 Jan;86(1):194–196. doi: 10.1099/00221287-86-1-194. [DOI] [PubMed] [Google Scholar]
  40. Coleman G. The distribution of alpha-amylase-forming ability between the membrane and soluble fractions of a cell-free preparation of Bacillus amyloliquefaciens. Biochem J. 1970 Feb;116(4):763–765. doi: 10.1042/bj1160763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Coote J. G. Comparative studies on induction of sporulation and synthesis of inducible enzymes in Bacillus subtilis. J Bacteriol. 1974 Dec;120(3):1102–1108. doi: 10.1128/jb.120.3.1102-1108.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Coote J. G., Wood D. A., Mandelstam J. Lethal effect of rifampicin in Bacillus subtilis as a complicating factor in the assessment of the lifetime of messenger ribonucleic acid. Biochem J. 1973 May;134(1):263–270. doi: 10.1042/bj1340263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Crane L. J., Bettinger G. E., Lampen J. O. Affinity chromatography purification of penicillinase of Bacillus licheniformis 749-C and its use to measure tuurnover of the cell bound enzyme. Biochem Biophys Res Commun. 1973 Jan 23;50(2):220–227. doi: 10.1016/0006-291x(73)90829-2. [DOI] [PubMed] [Google Scholar]
  44. Crane L. J., Lampen J. O. Bacillus licheniformis 749-C plasma membrane penicillinase, a hydrophobic polar protein. Arch Biochem Biophys. 1974 Feb;160(2):655–666. doi: 10.1016/0003-9861(74)90443-3. [DOI] [PubMed] [Google Scholar]
  45. Dancer B. N., Mandelstam J. Criteria for categorizing early biochemical events occurring during sporulation of Bacillus subtilis. J Bacteriol. 1975 Feb;121(2):411–415. doi: 10.1128/jb.121.2.411-415.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Dancer B. N., Mandelstam J. Production and possible function of serine protease during sporulation of Bacillus subtilis. J Bacteriol. 1975 Feb;121(2):406–410. doi: 10.1128/jb.121.2.406-410.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Davies R. B., Abraham E. P. Metal cofactor requirements of beta-lactamase II. Biochem J. 1974 Oct;143(1):129–135. doi: 10.1042/bj1430129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Davies R. B., Abraham E. P. Separation, purification and properties of beta-lactamase I and beta-lactamase II from Bacillus cereus 569/H/9. Biochem J. 1974 Oct;143(1):115–127. doi: 10.1042/bj1430115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Davé B. A., Vaughn R. H., Patel I. B. Preparation, separation and degradation of oligouronides produced by the polygalacturonic acid transeliminase of Bacillus pumilus. J Chromatogr. 1976 Jan 21;116(2):395–405. doi: 10.1016/s0021-9673(00)89909-4. [DOI] [PubMed] [Google Scholar]
  50. DePinto J. A., Campbell L. L. Purification and properties of the amylase of Bacillus macerans. Biochemistry. 1968 Jan;7(1):114–120. doi: 10.1021/bi00841a015. [DOI] [PubMed] [Google Scholar]
  51. Del Rio L. A., Berkeley R. C., Brewer S. J., Roberts S. E. An enzyme from Bacillus subtilis B with exo-beta-N-acetylmuramidase activity. FEBS Lett. 1973 Nov 15;37(1):7–9. doi: 10.1016/0014-5793(73)80414-4. [DOI] [PubMed] [Google Scholar]
  52. Devillers-Thiery A., Kindt T., Scheele G., Blobel G. Homology in amino-terminal sequence of precursors to pancreatic secretory proteins. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5016–5020. doi: 10.1073/pnas.72.12.5016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Douthit H. A., Airth R. L. Thiaminase I of Bacillus thiaminolyticus. Arch Biochem Biophys. 1966 Feb;113(2):331–337. doi: 10.1016/0003-9861(66)90194-9. [DOI] [PubMed] [Google Scholar]
  54. Dubnau D. A., Pollock M. R. The genetics of Bacillus licheniformis penicillinase: a preliminary analysis from studies on mutation and inter-strain and intra-strain transformations. J Gen Microbiol. 1965 Oct;41(1):7–21. doi: 10.1099/00221287-41-1-7. [DOI] [PubMed] [Google Scholar]
  55. Ebisu S., Kato K., Kotani S., Misaki A. Isolation and purification of Flavobacterium alpha-1,3-glucanase-hydrolyzing, insoluble, sticky glucan of Streptococcus mutans. J Bacteriol. 1975 Dec;124(3):1489–1501. doi: 10.1128/jb.124.3.1489-1501.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Emmer M., deCrombrugghe B., Pastan I., Perlman R. Cyclic AMP receptor protein of E. coli: its role in the synthesis of inducible enzymes. Proc Natl Acad Sci U S A. 1970 Jun;66(2):480–487. doi: 10.1073/pnas.66.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Feder J., Keay L., Garrett L. R., Cirulis N., Moseley M. H., Wildi B. S. Bacillus cereus neutral protease. Biochim Biophys Acta. 1971 Oct;251(1):74–78. doi: 10.1016/0005-2795(71)90061-4. [DOI] [PubMed] [Google Scholar]
  58. Fernández-Rivera Río L., Arroyo-Begovich A. Evidence for the presence of alpha amylase in the cell membrane of Bacillus amyloliquefaciens. Biochem Biophys Res Commun. 1975 Jul 8;65(1):161–169. doi: 10.1016/s0006-291x(75)80074-x. [DOI] [PubMed] [Google Scholar]
  59. Finkelstein D. B., Butow R. A. DNA-binding proteins related to the dosage of specific yeast chromosomes. Biochem Biophys Res Commun. 1975 Oct 27;66(4):1365–1372. doi: 10.1016/0006-291x(75)90510-0. [DOI] [PubMed] [Google Scholar]
  60. Forsberg C. W., Rogers H. J. Characterization of Bacillus licheniformis 6346 mutants which have altered lytic enzyme activities. J Bacteriol. 1974 May;118(2):358–368. doi: 10.1128/jb.118.2.358-368.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. GREEN D. M., COLARUSSO L. J. THE PHYSICAL AND GENETIC CHARACTERIZATION OF A TRANSFORMABLE ENZYME: BACILLUS SUBTILIS ALPHA-AMYLASE. Biochim Biophys Acta. 1964 Aug 26;89:277–290. doi: 10.1016/0926-6569(64)90216-0. [DOI] [PubMed] [Google Scholar]
  62. Gang D. M., Shaikh K. Regulation of penicillin acylase in Escherichia coli by cyclic AMP. Biochim Biophys Acta. 1976 Feb 18;425(1):110–114. doi: 10.1016/0005-2787(76)90220-3. [DOI] [PubMed] [Google Scholar]
  63. Ganoza M. C., Williams C. A. In vitro synthesis of different categories of specific protein by membrane-bound and free ribosomes. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1370–1376. doi: 10.1073/pnas.63.4.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Ghosh B. K., Wouters J. T., Lampen J. O. Distribution of the sites of alkaline phosphatase(s) activity in vegetative cells of Bacillus subtilis. J Bacteriol. 1971 Nov;108(2):928–937. doi: 10.1128/jb.108.2.928-937.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Glaser L. Bacterial cell surface polysaccharides. Annu Rev Biochem. 1973;42:91–112. doi: 10.1146/annurev.bi.42.070173.000515. [DOI] [PubMed] [Google Scholar]
  66. Glenn A. R., Both G. W., McInnes J. L., May B. K., Elliott W. H. Dynamic state of the messenger RNA pool specific for extracellular protease in Bacillus amyloliquefaciens: its relevance to the mechanism of enzyme secretion. J Mol Biol. 1973 Jan 10;73(2):221–230. doi: 10.1016/0022-2836(73)90325-2. [DOI] [PubMed] [Google Scholar]
  67. Gonzy-Treboul G., Chambert R., Dedonder R. Levansucrase of Bacillus subtilis : reexamination of some physical and chemical properties. Biochimie. 1975;57(1):17–28. doi: 10.1016/s0300-9084(75)80105-2. [DOI] [PubMed] [Google Scholar]
  68. Gould A. R., May B. K., Elliott W. H. Accumulation of messenger RNA for extracellular enzymes as a general phenomenon in Bacillus amyloiquefaciens. J Mol Biol. 1973 Jan 10;73(2):213–219. doi: 10.1016/0022-2836(73)90324-0. [DOI] [PubMed] [Google Scholar]
  69. Gould A. R., May B. K., Elliott W. H. Release of extracellular enzymes from Bacillus amyloliquefaciens. J Bacteriol. 1975 Apr;122(1):34–40. doi: 10.1128/jb.122.1.34-40.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Gray W. J., Midgley J. E. The control of ribonucleic acid synthesis in bacteria. Steady-state content of messenger ribonucleic acid in Escherichia coli M.R.E. 600. Biochem J. 1970 Nov;120(2):279–288. doi: 10.1042/bj1200279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Greenawalt J. W., Whiteside T. L. Mesosomes: membranous bacterial organelles. Bacteriol Rev. 1975 Dec;39(4):405–463. doi: 10.1128/br.39.4.405-463.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Greenleaf A. L., Losick R. Appearance of a ribonucleic acid polymerase-binding protein in asporogenous mutants of Bacillus subtilis. J Bacteriol. 1973 Oct;116(1):290–294. doi: 10.1128/jb.116.1.290-294.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Griffin P. J., Fogarty W. M. Physiochemical properties of the native, zinc- and manganese-prepared metalloprotease of Bacillus polymyxa. Appl Microbiol. 1973 Aug;26(2):191–195. doi: 10.1128/am.26.2.191-195.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Grootegoed J. A., Lauwers A. M., Heinen W. Separation and partial purification of extracellular amylase and protease from Bacillus caldolyticus. Arch Mikrobiol. 1973;90(3):223–232. doi: 10.1007/BF00424974. [DOI] [PubMed] [Google Scholar]
  75. Hageman J. H., Carlton B. C. An enzymatic and immunological comparison of two proteases from a transformable Bacillus subtilis with the "subtilisins". Arch Biochem Biophys. 1970 Jul;139(1):67–79. doi: 10.1016/0003-9861(70)90045-7. [DOI] [PubMed] [Google Scholar]
  76. Hageman J. H., Carlton B. C. Effects of mutational loss of specific intracellular proteases on the sporulation of Bacillus subtilis. J Bacteriol. 1973 May;114(2):612–617. doi: 10.1128/jb.114.2.612-617.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Hall F. F., Kunkel H. O., Prescott J. M. Multiple proteolytic enzymes of Bacillus licheniformis. Arch Biochem Biophys. 1966 Apr;114(1):145–153. doi: 10.1016/0003-9861(66)90315-8. [DOI] [PubMed] [Google Scholar]
  78. Harford N. Bidirectional chromosome replication in Bacillus subtilis 168. J Bacteriol. 1975 Mar;121(3):835–847. doi: 10.1128/jb.121.3.835-847.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Hartley R. W., Smeaton J. R. On the reaction between the extracellular ribonuclease of Bacillus amyloliquefaciens (barnase) and its intracellular inhibitor (barstar). J Biol Chem. 1973 Aug 25;248(16):5624–5626. [PubMed] [Google Scholar]
  80. Haseltine F. P., Fox M. S. Bacterial inactivation of transforming deoxyribonucleate. J Bacteriol. 1971 Sep;107(3):889–899. doi: 10.1128/jb.107.3.889-899.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Heineken F. G., O'Connor R. J. Continuous culture studies on the biosynthesis of alkaline protease, neutral protease and -amylase by Bacillus subtilis NRRL-B3411. J Gen Microbiol. 1972 Nov;73(1):35–44. doi: 10.1099/00221287-73-1-35. [DOI] [PubMed] [Google Scholar]
  82. Heinen U. J., Heinen W. Characteristics and properties of a caldo-active bacterium producing extracellular enzymes and two related strains. Arch Mikrobiol. 1972;82(1):1–23. doi: 10.1007/BF00424925. [DOI] [PubMed] [Google Scholar]
  83. Higerd T. B., Hoch J. A., Spizizen J. Hyperprotease-producing mutants of Bacillus subtilis. J Bacteriol. 1972 Nov;112(2):1026–1028. doi: 10.1128/jb.112.2.1026-1028.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Higgins M. L., Shockman G. D. Procaryotic cell division with respect to wall and membranes. CRC Crit Rev Microbiol. 1971 May;1(1):29–72. doi: 10.3109/10408417109104477. [DOI] [PubMed] [Google Scholar]
  85. Hoch J. A. Genetics of bacterial sporulation. Adv Genet. 1976;18:69–98. doi: 10.1016/s0065-2660(08)60437-x. [DOI] [PubMed] [Google Scholar]
  86. Hoch J. A., Mathews J. L. Chromosomal location of pleiotropic negative sporulation mutations in Bacillus subtilis. Genetics. 1973 Feb;73(2):215–228. doi: 10.1093/genetics/73.2.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Hsu E. J., Vaughn R. H. Production and catabolite repression of the constitutive polygalacturonic acid trans-eliminase of Aeromonas liquefaciens. J Bacteriol. 1969 Apr;98(1):172–181. doi: 10.1128/jb.98.1.172-181.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Hussey C., Losick R., Sonenshein A. L. Ribosomal RNA synthesis is turned off during sporulation of Bacillus subtilis. J Mol Biol. 1971 Apr 14;57(1):59–70. doi: 10.1016/0022-2836(71)90119-7. [DOI] [PubMed] [Google Scholar]
  89. Hussey C., Pero J., Shorenstein R. G., Losick R. In vitro synthesis of ribosomal RNA by Bacillus subtilis RNA polymerase. Proc Natl Acad Sci U S A. 1972 Feb;69(2):407–411. doi: 10.1073/pnas.69.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Hutchison K. W., Hanson R. S. Adenine nucleotide changes associated with the initiation of sporulation in Bacillus subtilis. J Bacteriol. 1974 Jul;119(1):70–75. doi: 10.1128/jb.119.1.70-75.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Imsande J., Gillin F. D., Tanis R. J., Atherly A. G. Properties of penicillinase from Bacillus cereus 569. J Biol Chem. 1970 May 10;245(9):2205–2212. [PubMed] [Google Scholar]
  92. Imsande J. Regulation of penicillinase synthesis: evidence for a unified model. J Bacteriol. 1970 Jan;101(1):173–180. doi: 10.1128/jb.101.1.173-180.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Ionesco H., Michel J., Cami B., Schaeffer P. Symposium on bacterial spores: II. Genetics of sporulation in Bacillus subtilis Marburg. J Appl Bacteriol. 1970 Mar;33(1):13–24. doi: 10.1111/j.1365-2672.1970.tb05230.x. [DOI] [PubMed] [Google Scholar]
  94. Jacobsen G. B., Rodwell V. W. A Bacillus ribonucleic acid phosphodiesterase with associated 5'-nucleotidase activity. J Biol Chem. 1972 Sep 25;247(18):5811–5817. [PubMed] [Google Scholar]
  95. Jarvis A. W., Lawrence R. C., Pritchard G. G. Glucose repression of enterotoxins A, B and C and other extracellular proteins in staphlyococci in batch and continuous culture. J Gen Microbiol. 1975 Jan;86(1):75–87. doi: 10.1099/00221287-86-1-75. [DOI] [PubMed] [Google Scholar]
  96. Joenje H., Venema G. Different nuclease activities in competent and noncompetent Bacillus subtilis. J Bacteriol. 1975 Apr;122(1):25–33. doi: 10.1128/jb.122.1.25-33.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Jonsson U., Snygg B. G. Lipase production and activity as a function of incubation time, pH and temperature of four lipolytic micro-organisms. J Appl Bacteriol. 1974 Dec;37(4):571–581. doi: 10.1111/j.1365-2672.1974.tb00482.x. [DOI] [PubMed] [Google Scholar]
  98. Kaji A., Saheki T. Endo-arabinanase from Bacillus subtilis F-11. Biochim Biophys Acta. 1975 Dec 18;410(2):354–360. doi: 10.1016/0005-2744(75)90237-5. [DOI] [PubMed] [Google Scholar]
  99. Kamekura M., Onishi H. Protease formation by a moderately halophilic Bacillus strain. Appl Microbiol. 1974 Apr;27(4):809–810. doi: 10.1128/am.27.4.809-810.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Keay L., Feder J., Garrett L. R., Moseley M. H., Cirulis N. Bacillus megaterium neutral protease, a zinc-containing metalloenzyme. Biochim Biophys Acta. 1971 Mar 23;229(3):829–835. doi: 10.1016/0005-2795(71)90302-3. [DOI] [PubMed] [Google Scholar]
  101. Keay L., Moser P. W. Differentiation of alkaline proteases from Bacillus species. Biochem Biophys Res Commun. 1969 Mar 10;34(5):600–604. doi: 10.1016/0006-291x(69)90780-3. [DOI] [PubMed] [Google Scholar]
  102. Keay L., Moser P. W., Wildi B. S. Proteases of the genus Bacillus. II. Alkaline proteases. Biotechnol Bioeng. 1970 Mar;12(2):213–249. doi: 10.1002/bit.260120206. [DOI] [PubMed] [Google Scholar]
  103. Keay L., Wildi B. S. Proteases of the genus Bacillus. I. Neutral proteases. Biotechnol Bioeng. 1970 Mar;12(2):179–212. doi: 10.1002/bit.260120205. [DOI] [PubMed] [Google Scholar]
  104. Kelly L. E., Brammar W. J. The polycistronic nature of the penicillinase structural and regulatory genes in Bacillus licheniformis. J Mol Biol. 1973 Oct 15;80(1):149–154. doi: 10.1016/0022-2836(73)90238-6. [DOI] [PubMed] [Google Scholar]
  105. Kemper B., Habener J. F., Mulligan R. C., Potts J. T., Jr, Rich A. Pre-proparathyroid hormone: a direct translation product of parathyroid messenger RNA. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3731–3735. doi: 10.1073/pnas.71.9.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  106. Kerr I. M., Chien J. R., Lehman I. R. Exonucleolytic degradation of high molecular weight deoxyribonucleic acid and ribonucleic acid to nucleoside 3'-phosphates by a nuclease from Bacillus subtilis. J Biol Chem. 1967 Jun 10;242(11):2700–2708. [PubMed] [Google Scholar]
  107. Kleiman J. H., Lands W. E. Purification of a phospholipase C from Bacillus cereus. Biochim Biophys Acta. 1969 Dec 17;187(4):477–485. doi: 10.1016/0005-2760(69)90044-7. [DOI] [PubMed] [Google Scholar]
  108. Klofat W., Picciolo G., Chappelle E. W., Freese E. Production of adenosine triphosphate in normal cells and sporulation mutants of Bacillus subtilis. J Biol Chem. 1969 Jun 25;244(12):3270–3276. [PubMed] [Google Scholar]
  109. Kunst F., Pascal M., Lepesant-Kejzlarova J., Lepesant J. A., Billault A., Dedonder R. Pleiotropic mutations affecting sporulation conditions and the syntheses of extracellular enzymes in Bacillus subtilis 168. Biochimie. 1974;56(11-12):1481–1489. doi: 10.1016/s0300-9084(75)80270-7. [DOI] [PubMed] [Google Scholar]
  110. Kuwabara S., Lloyd P. H. Protein and carbohydrate moieties of a preparation of -lactamase II. Biochem J. 1971 Aug;124(1):215–220. doi: 10.1042/bj1240215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. LEITZMANN C., BERNLOHR R. W. CHANGES IN THE NUCLEOTIDE POLL OF BACILLUS LICHENIFORMIS DURING SPORULATION. J Bacteriol. 1965 Jun;89:1506–1510. doi: 10.1128/jb.89.6.1506-1510.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Laishley E. J., Bernlohr R. W. Regulation of arginine and proline catabolism in Bacillus licheniformis. J Bacteriol. 1968 Aug;96(2):322–329. doi: 10.1128/jb.96.2.322-329.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  113. Lajudie J., Cosmao Dumanoir V. Recherche de l'activité pectinolytique chez le genre Bacillus. Ann Microbiol (Paris) 1976 Apr;127(3):423–427. [PubMed] [Google Scholar]
  114. Lampen J. O. Cell-bound penicillinase of Bacillus licheniformis; properties and purification. J Gen Microbiol. 1967 Aug;48(2):249–259. doi: 10.1099/00221287-48-2-249. [DOI] [PubMed] [Google Scholar]
  115. Lampen J. O. Movement of extracellular enzymes across cell membranes. Symp Soc Exp Biol. 1974;(28):351–374. [PubMed] [Google Scholar]
  116. Lee B. H., Blackburn T. H. Cellulase production by a thermophilic clostridium species. Appl Microbiol. 1975 Sep;30(3):346–353. doi: 10.1128/am.30.3.346-353.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  117. Leighton T. J., Dor R. H., Warren R. A., Kelln R. A. The relationship of serine protease activity to RNA polymerase modification and sporulation in Bacillus subtilis. J Mol Biol. 1973 May 5;76(1):103–122. doi: 10.1016/0022-2836(73)90083-1. [DOI] [PubMed] [Google Scholar]
  118. Lepesant-Kejzlarová J., Lepesant J. A., Walle J., Billault A., Dedonder R. Revision of the linkage map of Bacillus subtilis 168: indications for circularity of the chromosome. J Bacteriol. 1975 Mar;121(3):823–834. doi: 10.1128/jb.121.3.823-834.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Lepesant J. A., Kunst F., Lepesant-Kejzlarová J., Dedonder R. Chromosomal location of mutations affecting sucrose metabolism in Bacillus subtilis Marburg. Mol Gen Genet. 1972;118(2):135–160. doi: 10.1007/BF00267084. [DOI] [PubMed] [Google Scholar]
  120. Lepesant J. A., Lepesant-Kejzlarová J., Pascal M., Kunst F., Billault A., Dedonder R. Identification of the structural gene of levansucrase in Bacillus subtilis Marburg. Mol Gen Genet. 1974 Feb 6;128(3):213–221. doi: 10.1007/BF00267110. [DOI] [PubMed] [Google Scholar]
  121. Levisohn S., Aronson A. I. Regulation of extracellular protease production in Bacillus cereus. J Bacteriol. 1967 Mar;93(3):1023–1030. doi: 10.1128/jb.93.3.1023-1030.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. Levy P. L., Pangburn M. K., Burstein Y., Ericsson L. H., Neurath H., Walsh K. A. Evidence of homologous relationship between thermolysin and neutral protease A of Bacillus subtilis. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4341–4345. doi: 10.1073/pnas.72.11.4341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Li E., Yousten A. A. Metalloprotease from Bacillus thuringiensis. Appl Microbiol. 1975 Sep;30(3):354–361. doi: 10.1128/am.30.3.354-361.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Lilley G., Bull A. T. The production of beta-1,3 glucanase by a thermophilic species of streptomyces. J Gen Microbiol. 1974 Jul;83(0):123–133. doi: 10.1099/00221287-83-1-123. [DOI] [PubMed] [Google Scholar]
  125. Litchfield C. D., Prescott J. M. Regulation of proteolytic enzyme production by Aeromonas proteolytica. I. Extracellular endopeptidase. Can J Microbiol. 1970 Jan;16(1):17–22. doi: 10.1139/m70-003. [DOI] [PubMed] [Google Scholar]
  126. Lloyd P. H., Peacocke A. R. Sedimentation-equilibrium studies on the heterogeneity of two beta-lactamases. Biochem J. 1970 Jul;118(3):467–474. doi: 10.1042/bj1180467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Losick R., Pero J. Bacillus subtilis RNA polymerase and its modification in sporulating and phage-infected bacteria. Adv Enzymol Relat Areas Mol Biol. 1976;44:165–185. doi: 10.1002/9780470122891.ch5. [DOI] [PubMed] [Google Scholar]
  128. Mamas S., Millet J. Purification et propriétés d'une estérase excrétée pendant la sporulation de Bacillus subtilis. Biochimie. 1975;57(1):9–16. doi: 10.1016/s0300-9084(75)80104-0. [DOI] [PubMed] [Google Scholar]
  129. Marshall J. J. Characterization of Bacillus polymyxa amylase as an exo-acting(1 leads to 4)-alpha-D-glucan maltohydrolase. FEBS Lett. 1974 Sep 15;46(1):1–4. doi: 10.1016/0014-5793(74)80321-2. [DOI] [PubMed] [Google Scholar]
  130. Matsuzaki H., Yamane K., Maruo B. Hybrid alpha-amylases produced by transformants of Bacillus subtilis. II. Immunological and chemical properties of alpha-amylases produced by the parental strains and the transformants. Biochim Biophys Acta. 1974 Sep 13;365(1):248–258. doi: 10.1016/0005-2795(74)90269-4. [DOI] [PubMed] [Google Scholar]
  131. Matsuzaki H., Yamane K., Yamaguchi K., Nagata Y., Maruo B. Hybrid alpha-amylases produced by transformants of Bacillus subtilis. I. Purification and characterization of extracellular alpha-amylases produced by the parental strains and transformants. Biochim Biophys Acta. 1974 Sep 13;365(1):235–247. doi: 10.1016/0005-2795(74)90268-2. [DOI] [PubMed] [Google Scholar]
  132. Mauck J., Glaser L. Periplasmic nucleoside diphosphate sugar hydrolase from Bacillus subtilis. Biochemistry. 1970 Mar 3;9(5):1140–1147. doi: 10.1021/bi00807a014. [DOI] [PubMed] [Google Scholar]
  133. May B. K., Elliott W. H. Characteristics of extracellular protease formation by Bacillus subtilis and its control by amino acid repression. Biochim Biophys Acta. 1968 May 21;157(3):607–615. doi: 10.1016/0005-2787(68)90158-5. [DOI] [PubMed] [Google Scholar]
  134. May B. K., Walsh R. L., Elliott W. H., Smeaton J. R. Mechanism of the paradoxical stimulation of ribonuclease synthesis in Bacillus subtilis by actinomycin D. Biochim Biophys Acta. 1968 Nov 20;169(1):260–262. doi: 10.1016/0005-2787(68)90028-2. [DOI] [PubMed] [Google Scholar]
  135. McDonald I. J., Chambers A. K. Regulation of proteinase formation in a species of Micrococcus. Can J Microbiol. 1966 Dec;12(6):1175–1185. doi: 10.1139/m66-159. [DOI] [PubMed] [Google Scholar]
  136. McLellan W. L., Jr, Lampen J. O. Phosphomannanase (PR-factor), an enzyme required for the formation of yeast protoplasts. J Bacteriol. 1968 Mar;95(3):967–974. doi: 10.1128/jb.95.3.967-974.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. McLellan W. L., Jr, McDaniel L. E., Lampen J. O. Purification of phosphomannanase and its action on the yeast cell wall. J Bacteriol. 1970 Apr;102(1):261–270. doi: 10.1128/jb.102.1.261-270.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  138. McNicol L. A., Baker E. E. Pectate lyase and polygalacturonate lyase activity in a Vi antigen-degrading enzyme preparation. Biochemistry. 1970 Feb 17;9(4):1017–1023. doi: 10.1021/bi00806a042. [DOI] [PubMed] [Google Scholar]
  139. Meadway R. J. The amino acid sequence of penicillinase from Bacillus licheniformis. Biochem J. 1969 Nov;115(3):12P–13P. doi: 10.1042/bj1150012pb. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Michel J. F., Millet J. Physiological studies on early-blocked sporulation mutants of Bacillus subtilis. J Appl Bacteriol. 1970 Mar;33(1):220–227. doi: 10.1111/j.1365-2672.1970.tb05246.x. [DOI] [PubMed] [Google Scholar]
  141. Midgley J. E. The messenger ribonucleic acid content of Bacillus subtilis 168. Biochem J. 1969 Nov;115(2):171–181. doi: 10.1042/bj1150171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Millet J., Acher R., Aubert J. P. Biochemical and physiological properties of an extracellular protease produced by Bacillus megaterium. Biotechnol Bioeng. 1969 Nov;11(6):1233–1246. doi: 10.1002/bit.260110617. [DOI] [PubMed] [Google Scholar]
  143. Millet J., Acher R. Specificité de la mégatériopeptidase: une amino-endopeptidase à caractère hydrophobe. Eur J Biochem. 1969 Jul;9(4):456–462. doi: 10.1111/j.1432-1033.1969.tb00631.x. [DOI] [PubMed] [Google Scholar]
  144. Millet J. Caractérisation d'une endopeptidase cytoplasmique chez Bacillus megaterium en voie de sporulation. C R Acad Sci Hebd Seances Acad Sci D. 1971 Mar 29;272(13):1806–1809. [PubMed] [Google Scholar]
  145. Millet J. Characterization of proteinases excreted by Bacillus subtilis Marburg strain during sporulation. J Appl Bacteriol. 1970 Mar;33(1):207–219. doi: 10.1111/j.1365-2672.1970.tb05245.x. [DOI] [PubMed] [Google Scholar]
  146. Millet J., Larribe M., Aubert J. P. Mutant thermosensible de B. subtilis affecté dans la sporulation et la sérylprotéase extracellulaire. Biochimie. 1976;58(1-2):109–117. doi: 10.1016/s0300-9084(76)80361-6. [DOI] [PubMed] [Google Scholar]
  147. Morihara K. Comparative specificity of microbial proteinases. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):179–243. doi: 10.1002/9780470122860.ch5. [DOI] [PubMed] [Google Scholar]
  148. Morrison D. A. Early intermediate state of transforming deoxyribonucleic acid during uptake by Bacillus subtilis. J Bacteriol. 1971 Oct;108(1):38–44. doi: 10.1128/jb.108.1.38-44.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  149. Moses V., Sharp P. B. Intermediary metabolite levels in Escherichia coli. J Gen Microbiol. 1972 Jun;71(1):181–190. doi: 10.1099/00221287-71-1-181. [DOI] [PubMed] [Google Scholar]
  150. NAGEL C. W., VAUGHN R. H. The characteristics of a polygalacturonase produced by Bacillus polymyxa. Arch Biochem Biophys. 1961 May;93:344–352. doi: 10.1016/0003-9861(61)90277-6. [DOI] [PubMed] [Google Scholar]
  151. NAKAI M., MINAMI Z., YAMAZAKI T., TSUGITA A. STUDIES ON THE NUCLEASES OF A STRAIN OF BACILLUS SUBTILIS. J Biochem. 1965 Jan;57:96–99. doi: 10.1093/oxfordjournals.jbchem.a128063. [DOI] [PubMed] [Google Scholar]
  152. Nagata Y., Yamaguchi K., Maruo B. Genetic and biochemical studies on cell-bound alpha-amylase in Bacillus subtilis Marburg. J Bacteriol. 1974 Aug;119(2):425–430. doi: 10.1128/jb.119.2.425-430.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  153. Nagel C. W., Wilson T. M. Pectic acid lyases of Bacillus polymyxa. Appl Microbiol. 1970 Sep;20(3):374–383. doi: 10.1128/am.20.3.374-383.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Nakamura N., Watanabe K., Horikoshi K. Purification and some properties of alkaline pullulanase from a strain of bacillus no. 202-1, an alkalophilic microorganism. Biochim Biophys Acta. 1975 Jul 27;397(1):188–193. doi: 10.1016/0005-2744(75)90192-8. [DOI] [PubMed] [Google Scholar]
  155. Notani N. K., Setlow J. K. Mechanism of bacterial transformation and transfection. Prog Nucleic Acid Res Mol Biol. 1974;14(0):39–100. doi: 10.1016/s0079-6603(08)60205-6. [DOI] [PubMed] [Google Scholar]
  156. Ogasahara K., Imanishi A., Isemura T. Studies on thermophilic alpha-amylase from Bacillus stearothermophilus. I. Some general and physico-chemical properties of thermophilic alpha-amylase. J Biochem. 1970 Jan;67(1):65–75. doi: 10.1093/oxfordjournals.jbchem.a129235. [DOI] [PubMed] [Google Scholar]
  157. Ohta Y. Thermostable protease from thermophilic bacteria. II. Studies on the stability of the protease. J Biol Chem. 1967 Feb 10;242(3):509–515. [PubMed] [Google Scholar]
  158. Ortiz J. M., Berkeley R. C., Brewer S. J. Production of exo-beta-N-acetylglucosaminidase by Bacillus subtilis B. J Gen Microbiol. 1973 Aug;77(2):331–337. doi: 10.1099/00221287-77-2-331. [DOI] [PubMed] [Google Scholar]
  159. Ortiz J. M., Gillespie J. B., Berkeley R. C. An exo- -N-acetylglucosaminidase from Bacillus subtilis B; extraction and purification. Biochim Biophys Acta. 1972 Nov 10;289(1):174–186. doi: 10.1016/0005-2744(72)90120-9. [DOI] [PubMed] [Google Scholar]
  160. Ortiz J. M. Mutant of Bacillus subtilis lacking exo-beta-N-acetylglucosaminidase activity. J Bacteriol. 1974 Feb;117(2):909–910. doi: 10.1128/jb.117.2.909-910.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Ottow J. C. Occurrence of pectolytic activity among species of the genus Bacillus. Experientia. 1971 Sep 15;27(9):1098–1099. doi: 10.1007/BF02138905. [DOI] [PubMed] [Google Scholar]
  162. POLLOCK M. R. PURIFICATION AND PROPERTIES OF PENICILLINASES FROM TWO STRAINS OF BACILLUS LICHENIFORMIS: A CHEMICAL, PHYSICOCHEMICAL AND PHYSIOLOGICAL COMPARISON. Biochem J. 1965 Mar;94:666–675. doi: 10.1042/bj0940666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  163. Pascal M., Kunst F., Lepesant J. A., Dedonder R. Characterization of two sucrase activities in Bacillus subtilis Marburg. Biochimie. 1971;53(10):1059–1066. doi: 10.1016/s0300-9084(71)80193-1. [DOI] [PubMed] [Google Scholar]
  164. Pfueller S. L., Elliott W. H. The extracellular alpha-amylase of bacillus stearothermophilus. J Biol Chem. 1969 Jan 10;244(1):48–54. [PubMed] [Google Scholar]
  165. Piechowska M., Fox M. S. Fate of transforming deoxyribonucleate in Bacillus subtilis. J Bacteriol. 1971 Nov;108(2):680–689. doi: 10.1128/jb.108.2.680-689.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Prestidge L., Gage V., Spizizen J. Protease activities during the course of sporulation on Bacillus subtilis. J Bacteriol. 1971 Sep;107(3):815–823. doi: 10.1128/jb.107.3.815-823.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. Price J. S., Storck R. Production, purification, and characterization of an extracellular chitosanase from Streptomyces. J Bacteriol. 1975 Dec;124(3):1574–1585. doi: 10.1128/jb.124.3.1574-1585.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  168. Priest F. G. Typist: effect of glucose and cyclic nucleotides on the transcription of alpha-amylase mRHA in Bacillus subtilis. Biochem Biophys Res Commun. 1975 Apr 7;63(3):606–610. doi: 10.1016/s0006-291x(75)80427-x. [DOI] [PubMed] [Google Scholar]
  169. Puchinger H., Wieland T. Suche nach einem Metaboliten bei Vergiftung mit Desmethylphalloin (DMP) Eur J Biochem. 1969 Nov;11(1):1–6. doi: 10.1111/j.1432-1033.1969.tb00731.x. [DOI] [PubMed] [Google Scholar]
  170. ROBYT J., FRENCH D. PURIFICATION AND ACTION PATTERN OF AN AMYLASE FROM BACILLUS POLYMYXA. Arch Biochem Biophys. 1964 Feb;104:338–345. doi: 10.1016/s0003-9861(64)80024-2. [DOI] [PubMed] [Google Scholar]
  171. RUSHIZKY G. W., GRECO A. E., HARTLEY R. W., Jr, SOBER H. A. STUDIES ON B. SUBTILIS RIBONUCLEASE. I. CHARACTERIZATION OF ENZYMATIC SPECIFICITY. Biochemistry. 1963 Jul-Aug;2:787–793. doi: 10.1021/bi00904a028. [DOI] [PubMed] [Google Scholar]
  172. RUSHIZKY G. W., GRECO A. E., HARTLEY R. W., Jr, SOBER H. A. STUDIES ON THE CHARACTERIZATION OF RIBONUCLEASES. J Biol Chem. 1964 Jul;239:2165–2169. [PubMed] [Google Scholar]
  173. Ray L. E., Wagner F. W. Characteristics of an aminopeptidase activity from the cultural fluid of Bacillus subtilis. Can J Microbiol. 1972 Jun;18(6):853–859. doi: 10.1139/m72-131. [DOI] [PubMed] [Google Scholar]
  174. Redman C. M., Siekevitz P., Palade G. E. Synthesis and transfer of amylase in pigeon pancreatic micromosomes. J Biol Chem. 1966 Mar 10;241(5):1150–1158. [PubMed] [Google Scholar]
  175. Reysset G., Millet J. Characterization of an intracellular protease in B. subtillus during sporulation. Biochem Biophys Res Commun. 1972 Oct 17;49(2):328–334. doi: 10.1016/0006-291x(72)90414-7. [DOI] [PubMed] [Google Scholar]
  176. Rhaese H. J., Grade R., Dichtelmüller H. Studies on the control of development. Correlation of initiucleotides in Bacillus subtilis. Eur J Biochem. 1976 Apr 15;64(1):205–213. doi: 10.1111/j.1432-1033.1976.tb10289.x. [DOI] [PubMed] [Google Scholar]
  177. Rhaese H. J., Groscurth R. Studies on the control of development. In vitro synthesis of HPN and MS nucleotides by ribosomes from either sporulating or vegetative cells of Bacillus subtilis. FEBS Lett. 1974 Aug 15;44(1):87–93. doi: 10.1016/0014-5793(74)80312-1. [DOI] [PubMed] [Google Scholar]
  178. Rickenberg H. V. Cyclic AMP in prokaryotes. Annu Rev Microbiol. 1974;28(0):353–369. doi: 10.1146/annurev.mi.28.100174.002033. [DOI] [PubMed] [Google Scholar]
  179. Rombouts F. M., Phaff H. J. Lysis of yeast cell walls. Lytic beta-(1 leads to 3)-glucanases from Bacillus circulans WL-12. Eur J Biochem. 1976 Mar 16;63(1):121–130. doi: 10.1111/j.1432-1033.1976.tb10214.x. [DOI] [PubMed] [Google Scholar]
  180. Rombouts F. M., Phaff H. J. Lysis of yeast cell walls. Lytic beta-(1 leads to 6)-glucanase from Bacillus circulans WL-12. Eur J Biochem. 1976 Mar 16;63(1):109–120. doi: 10.1111/j.1432-1033.1976.tb10213.x. [DOI] [PubMed] [Google Scholar]
  181. SCHLESSINGER D., MARCHESTI V. T., KWAN B. C. BINDING OF RIBOSOMES TO CYTOPLASMIC RETICULUM OF BACILLUS MEGATERIUM. J Bacteriol. 1965 Aug;90:456–466. doi: 10.1128/jb.90.2.456-466.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. Sabatini D. D., Tashiro Y., Palade G. E. On the attachment of ribosomes to microsomal membranes. J Mol Biol. 1966 Aug;19(2):503–524. doi: 10.1016/s0022-2836(66)80019-0. [DOI] [PubMed] [Google Scholar]
  183. Saier M. H., Jr, Feucht B. U., McCaman M. T. Regulation of intracellular adenosine cyclic 3':5'-monophosphate levels in Escherichia coli and Salmonella typhimurium. Evidence for energy-dependent excretion of the cyclic nucleotide. J Biol Chem. 1975 Oct 10;250(19):7593–7601. [PubMed] [Google Scholar]
  184. Saito N. A thermophilic extracellular -amylase from Bacillus licheniformis. Arch Biochem Biophys. 1973 Apr;155(2):290–298. doi: 10.1016/0003-9861(73)90117-3. [DOI] [PubMed] [Google Scholar]
  185. Saito N., Yamamoto K. Regulatory factors affecting alpha-amylase production in bacillus licheniformis. J Bacteriol. 1975 Mar;121(3):848–856. doi: 10.1128/jb.121.3.848-856.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Sanders R. L., May B. K. Evidence for extrusion of unfolded extracellular enzyme polypeptide chains through membranes of Bacillus amyloliquefaciens. J Bacteriol. 1975 Sep;123(3):806–814. doi: 10.1128/jb.123.3.806-814.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  187. Sanders R., McGeoch D. A mutant transcription factor that is activated by 3':5'-cyclic guanosine monophosphate. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1017–1021. doi: 10.1073/pnas.70.4.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  188. Sargent M. G., Ghosh B. K., Lampen J. O. Characteristics of penicillinase release by washed cells of Bacillus licheniformis. J Bacteriol. 1968 Oct;96(4):1231–1239. doi: 10.1128/jb.96.4.1231-1239.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Sargent M. G., Ghosh B. K., Lampen J. O. Localization of cell-bound penicillinase in Bacillus licheniformis. J Bacteriol. 1968 Oct;96(4):1329–1338. doi: 10.1128/jb.96.4.1329-1338.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Sargent M. G., Lampen J. O. A mechanism for penicillinasesecretion in Bacillus licheniformis. Proc Natl Acad Sci U S A. 1970 Apr;65(4):962–969. doi: 10.1073/pnas.65.4.962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  191. Sargent M. G., Lampen J. O. Organization of the membrane-bound penicillinases of Bacillus licheniformis. Arch Biochem Biophys. 1970 Jan;136(1):167–177. doi: 10.1016/0003-9861(70)90338-3. [DOI] [PubMed] [Google Scholar]
  192. Sasaki T., Yamasaki M., Maruo B., Yoneda Y., Yamane K. Hyperproductivity of extracellular alpha-amylase by a tunicamycin resistant mutant of Bacillus subtilis. Biochem Biophys Res Commun. 1976 May 3;70(1):125–131. doi: 10.1016/0006-291x(76)91117-7. [DOI] [PubMed] [Google Scholar]
  193. Sawai T., Crane L. J., Lampen J. O. Evidence for phospholipid in plasma membrane penicillinase of Bacillus licheniformis 749-C. Biochem Biophys Res Commun. 1973 Jul 17;53(2):523–530. doi: 10.1016/0006-291x(73)90693-1. [DOI] [PubMed] [Google Scholar]
  194. Sawai T., Lampen J. O. Purification and characteristics of plasma membrane penicillinase from Bacillus licheniformis 749-C. J Biol Chem. 1974 Oct 10;249(19):6288–6294. [PubMed] [Google Scholar]
  195. Schaeffer P. Asporogenous mutants of Bacillus subtilis Marburg. Folia Microbiol (Praha) 1967;12(3):291–296. doi: 10.1007/BF02868746. [DOI] [PubMed] [Google Scholar]
  196. Schaeffer P., Millet J., Aubert J. P. Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A. 1965 Sep;54(3):704–711. doi: 10.1073/pnas.54.3.704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Segall J., Tjian R., Pero J., Losick R. Chloramphenicol restores sigma factor activity to sporulating Bacillus subtilis. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4860–4863. doi: 10.1073/pnas.71.12.4860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  199. Sekiguchi J., Takada N., Okada H. Genes affecting the productivity of alpha-amylase in Bacillus subtilis Marburg. J Bacteriol. 1975 Feb;121(2):688–694. doi: 10.1128/jb.121.2.688-694.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  200. Semets E. V., Glenn A. R., May B. K., Elliott W. H. Accumulation of messenger ribonucleic acid specific for extracellular protease in Bacillus subtilis 168. J Bacteriol. 1973 Nov;116(2):531–534. doi: 10.1128/jb.116.2.531-534.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  201. Setlow P. Inability of detect cyclic AMP in vegetative or sporulating cells or dormant spores of Bacillus megaterium. Biochem Biophys Res Commun. 1973 May 15;52(2):365–372. doi: 10.1016/0006-291x(73)90720-1. [DOI] [PubMed] [Google Scholar]
  202. Shechter Y., Rafaeli-Eshkol D., Hershko A. Influence of protease inhibitors and energy metabolism on intracellular protein breakdown in starving Escherichia coli. Biochem Biophys Res Commun. 1973 Oct 15;54(4):1518–1524. doi: 10.1016/0006-291x(73)91158-3. [DOI] [PubMed] [Google Scholar]
  203. Sherratt D. J., Collins J. F. Analysis by transformation of the penicillinase system in Bacillus licheniformis. J Gen Microbiol. 1973 May;76(1):217–230. doi: 10.1099/00221287-76-1-217. [DOI] [PubMed] [Google Scholar]
  204. Shiloach J., Bauer S., Vlodavsky I., Selinger Z. Phospholipase-C from Bacillus cereus: production, purification, and properties. Biotechnol Bioeng. 1973 May;15(3):551–560. doi: 10.1002/bit.260150310. [DOI] [PubMed] [Google Scholar]
  205. Shimada K., Sugino Y. Cyclic phosphodiesterase having 3'-nucleotidase activity from Bacillus subtilis. Purification and some properties of the enzyme. Biochim Biophys Acta. 1969;185(2):367–380. doi: 10.1016/0005-2744(69)90430-6. [DOI] [PubMed] [Google Scholar]
  206. Smeaton J. R., Elliott W. H. Isolation and properties of a specific bacterial ribonuclease inhibitor. Biochim Biophys Acta. 1967;145(3):547–560. doi: 10.1016/0005-2787(67)90115-3. [DOI] [PubMed] [Google Scholar]
  207. Smith E. L., DeLange R. J., Evans W. H., Landon M., Markland F. S. Subtilisin Carlsberg. V. The complete sequence; comparison with subtilisin BPN'; evolutionary relationships. J Biol Chem. 1968 May 10;243(9):2184–2191. [PubMed] [Google Scholar]
  208. Smyth P. F., Clarke P. H. Catabolite repression of Pseudomonas aeruginosa amidase: the effect of carbon source on amidase synthesis. J Gen Microbiol. 1975 Sep;90(1):81–90. doi: 10.1099/00221287-90-1-81. [DOI] [PubMed] [Google Scholar]
  209. Sonenshein A. L., Cami B., Brevet J., Cote R. Isolation and characterization of rifampin-resistant and streptolydigin-resistant mutants of Bacillus subtilis with altered sporulation properties. J Bacteriol. 1974 Oct;120(1):253–265. doi: 10.1128/jb.120.1.253-265.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  210. Steinmetz M., Kunst F., Dedonder R. Mapping of mutations affecting synthesis of exocellular enzymes in Bacillus subtilis. Identity of the sacUh, amyB and pap mutations. Mol Gen Genet. 1976 Nov 17;148(3):281–285. doi: 10.1007/BF00332902. [DOI] [PubMed] [Google Scholar]
  211. Stinson M. W., Merrick J. M. Extracellular enzyme secretion by Pseudomonas lemoignei. J Bacteriol. 1974 Jul;119(1):152–161. doi: 10.1128/jb.119.1.152-161.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  212. Stormonth D. A., Coleman G. Cellular changes accompanying the transition from minimal to maximal rate of extracellular enzyme secretion by Bacillus amyloliquefaciens. J Appl Bacteriol. 1974 Jun;37(2):225–237. doi: 10.1111/j.1365-2672.1974.tb00434.x. [DOI] [PubMed] [Google Scholar]
  213. Tanaka S., Iuchi S. Induction and repression of an extracellular proteinase in Vibrio parahaemolyticus. Biken J. 1971 Jun;14(2):81–96. [PubMed] [Google Scholar]
  214. Tevethia M. J., Mandel M. Nature of the ethylenediaminetetraacetic acid requirement for transformation of Bacillus subtilis with single-stranded deoxyribonucleic acid. J Bacteriol. 1970 Mar;101(3):844–850. doi: 10.1128/jb.101.3.844-850.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  215. Thatcher D. R. The partial amino acid sequence of the extracellular beta-lactamase I of Bacillus cereus 569/H. Biochem J. 1975 May;147(2):313–326. doi: 10.1042/bj1470313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  216. Tichy P., Landman O. E. Transformation in quasi spheroplasts of Bacillus subtilis. J Bacteriol. 1969 Jan;97(1):42–51. doi: 10.1128/jb.97.1.42-51.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  217. Tjian R., Losick R. An immunological assay for the sigma subunit of RNA polymerase in extracts of vegetative and sporulating Bacillus subtilis. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2872–2876. doi: 10.1073/pnas.71.7.2872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  218. Tominaga Y., Tsujisaka Y. Purification and some enzymatic properties of the chitosanase from Bacillus R-4 which lyses Rhizopus cell walls. Biochim Biophys Acta. 1975 Nov 20;410(1):145–155. doi: 10.1016/0005-2744(75)90215-6. [DOI] [PubMed] [Google Scholar]
  219. Tran-Chau P. T., Urbanek H. Serine neutral proteinase from Bacillus pumilus as metalloenzyme. Acta Microbiol Pol B. 1974;6(1):21–25. [PubMed] [Google Scholar]
  220. Tsuru D., Yoshimoto T., Yoshida H., Kira H., Fukumoto J. Studies on bacterial proteases. Amino acid composition and optical rotatory dispersion of neutral protease of Bacillus subtilis var. amylosacchariticus. Int J Protein Res. 1970;2(1):75–81. [PubMed] [Google Scholar]
  221. Uehara H., Yoneda Y., Yamane K., Maruo B. Regulation of neutral protease productivity in Bacillus subtilis: transformation of high protease productivity. J Bacteriol. 1974 Jul;119(1):82–91. doi: 10.1128/jb.119.1.82-91.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Urlaub H., Wöber G. Identification of isoamylase, a glycogen-debranching enzyme, from Bacillus amyloliquefaciens. FEBS Lett. 1975 Sep 1;57(1):1–4. doi: 10.1016/0014-5793(75)80138-4. [DOI] [PubMed] [Google Scholar]
  223. Van der Meulen H. J., Harder W. Production and characterization of the agarase of Cytoplaga flevensis. Antonie Van Leeuwenhoek. 1975;41(4):431–447. doi: 10.1007/BF02565087. [DOI] [PubMed] [Google Scholar]
  224. Vattuone M. A., Sampietro A. R. Présence de systémes hydrolysants des liaisons beta(1-4) de l'agarose dans le genre Bacillus. C R Acad Sci Hebd Seances Acad Sci D. 1973 Jun 13;276(24):3225–3228. [PubMed] [Google Scholar]
  225. WELKER N. E., CAMPBELL L. L. EFFECT OF CARBON SOURCES ON FORMATION OF ALPHA-AMYLASE BY BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1963 Oct;86:681–686. doi: 10.1128/jb.86.4.681-686.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  226. WELKER N. E., CAMPBELL L. L. INDUCTION OF ALPHA-AMYLASE OF BACILLUS STEAROTHERMOPHILUS BY MALTODEXTRINS. J Bacteriol. 1963 Oct;86:687–691. doi: 10.1128/jb.86.4.687-691.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  227. Wagner F. W., Chung A., Ray L. E. Characterization of the aminopeptidase from Bacillus subtilis as an extracellular enzyme. Can J Microbiol. 1972 Dec;18(12):1883–1891. doi: 10.1139/m72-293. [DOI] [PubMed] [Google Scholar]
  228. Wang L. H., Hartman P. A. Purification and some properties of an extracellular maltase from Bacillus subtilis. Appl Environ Microbiol. 1976 Jan;31(1):108–118. doi: 10.1128/aem.31.1.108-118.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  229. Ward O. P., Fogarty W. M. Polygalacturonate lyase production by Bacillus subtilis and Flavobacterium pectinovorum. Appl Microbiol. 1974 Feb;27(2):346–350. doi: 10.1128/am.27.2.346-350.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  230. Wayne P. K., Rosen O. M. Cyclic 3':5'-adenosine monophosphate in Escherichia coli during transient and catabolite repression. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1436–1440. doi: 10.1073/pnas.71.4.1436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. Welker N. E., Campbell L. L. Comparison of the alpha-amylase of Bacillus subtilis and Bacillus amyloliquefaciens. J Bacteriol. 1967 Oct;94(4):1131–1135. doi: 10.1128/jb.94.4.1131-1135.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  232. Welker N. E., Campbell L. L. Crystallization and properties of alpha-amylase from five strains of Bacillus amyloliquefaciens. Biochemistry. 1967 Dec;6(12):3681–3689. doi: 10.1021/bi00864a010. [DOI] [PubMed] [Google Scholar]
  233. Welker N. E., Campbell L. L. Unrelatedness of Bacillus amyloliquefaciens and Bacillus subtilis. J Bacteriol. 1967 Oct;94(4):1124–1130. doi: 10.1128/jb.94.4.1124-1130.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  234. Windish W. W., Mhatre N. S. Microbial amylases. Adv Appl Microbiol. 1965;7:273–304. doi: 10.1016/s0065-2164(08)70389-7. [DOI] [PubMed] [Google Scholar]
  235. Winkler U., Scholle H., Bohne L. Mutants of Serratia marcescens lacking cyclic nucleotide phosphodiesterase activity and requiring cyclic 3',5'-AMP for the utilization of various carbohydrates. Arch Microbiol. 1975 Jun 22;104(2):189–196. doi: 10.1007/BF00447323. [DOI] [PubMed] [Google Scholar]
  236. Winkler U., Timmis K. Pleiotropic mutations in Serratia marcescens which increase the synthesis of certain exocellular proteins and the rate of spontaneous prophage induction. Mol Gen Genet. 1973 Aug 17;124(3):197–206. doi: 10.1007/BF00293091. [DOI] [PubMed] [Google Scholar]
  237. Wise E. M., Jr, Alexander S. P., Powers M. Adenosine 3':5'-cyclic monophosphate as a regulator of bacterial transformation. Proc Natl Acad Sci U S A. 1973 Feb;70(2):471–474. doi: 10.1073/pnas.70.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  238. Wood D. A., Tristram H. Localization in the Cell and Extraction of Alkaline Phosphatase from Bacillus subtilis. J Bacteriol. 1970 Dec;104(3):1045–1051. doi: 10.1128/jb.104.3.1045-1051.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  239. Yamaguchi K., Nagata Y., Maruo B. Genetic control of the rate of alpha-amylase synthesis in Bacillus subtilis. J Bacteriol. 1974 Aug;119(2):410–415. doi: 10.1128/jb.119.2.410-415.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  240. Yamaguchi K., Nagata Y., Maruo B. Isolation of mutants defective in alpha-amylase from Bacillus subtilis: genetic analyses. J Bacteriol. 1974 Aug;119(2):416–424. doi: 10.1128/jb.119.2.416-424.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Yamamoto S., Lampen J. O. Membrane penicillinase of Bacillus licheniformis 749/C, a phospholipoprotein. J Biol Chem. 1975 Apr 25;250(8):3212–3213. [PubMed] [Google Scholar]
  242. Yamane K., Maruo B. Properties of thermosensitive extracellular alpha-amylases of Bacillus subtilis. J Bacteriol. 1974 Nov;120(2):792–798. doi: 10.1128/jb.120.2.792-798.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  243. Yoneda Y., Maruo B. Mutation of Bacillus subtilis causing hyperproduction of alpha-amylase and protease, and its synergistic effect. J Bacteriol. 1975 Oct;124(1):48–54. doi: 10.1128/jb.124.1.48-54.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  244. Yoneda Y., Yamane K., Yamaguchi K., Nagata Y., Maruo B. Transformation of Bacillus subtilis in alpha-amylase productivity by deoxyribonucleic acid from B. subtilis var. amylosacchariticus. J Bacteriol. 1974 Dec;120(3):1144–1150. doi: 10.1128/jb.120.3.1144-1150.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  245. Yoshikawa M., Matsuda F., Naka M., Murofushi E., Tsunematsu Y. Pleiotropic alteration of activities of several toxins and enzymes in mutants of Staphylococcus aureus. J Bacteriol. 1974 Jul;119(1):117–122. doi: 10.1128/jb.119.1.117-122.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Yu-Wei T., Yi-De H., Sit-Jang L., Xue-Zeng H., Hui-Jun K. The effect of gibberellic acid on the production of alpha-amylase in Bacillus subtilis. Sci Sin. 1973 Nov;16(4):512–518. [PubMed] [Google Scholar]
  247. Yuki S. On the gene controlling the rate of amylase production in Bacillus subtilis. Biochem Biophys Res Commun. 1968 Apr 19;31(2):182–187. doi: 10.1016/0006-291x(68)90727-4. [DOI] [PubMed] [Google Scholar]
  248. Zubay G., Schwartz D., Beckwith J. Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A. 1970 May;66(1):104–110. doi: 10.1073/pnas.66.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Zucker M., Hankin L. Inducible pectate lyase synthesis and phytopathogenicity of Pseudomonas fluorescens. Can J Microbiol. 1971 Oct;17(10):1313–1318. doi: 10.1139/m71-210. [DOI] [PubMed] [Google Scholar]
  250. Zwaal R. F., Roelofsen B., Comfurius P., van Deenen L. L. Complete purification and some properties of phospholipase C from Bacillus cereus. Biochim Biophys Acta. 1971 Apr 13;233(2):474–479. doi: 10.1016/0005-2736(71)90347-6. [DOI] [PubMed] [Google Scholar]
  251. del Rio L. A., Berkeley R. C. Exo-beta-N-acetylmuramidase--a novel hexosaminidase. Production by Bacillus subtilis B, purification and characterization. Eur J Biochem. 1976 May 17;65(1):3–12. doi: 10.1111/j.1432-1033.1976.tb10382.x. [DOI] [PubMed] [Google Scholar]
  252. van Dijk-Salkinoja M. S., Stoof T. J., Planta R. J. The distribution of polysomes, ribosomes and ribosomal subunits in exponential-phase cells of Bacillus licheniformis. Eur J Biochem. 1970 Feb;12(3):474–482. doi: 10.1111/j.1432-1033.1970.tb00875.x. [DOI] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES