Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Jul 18;92(15):6738–6742. doi: 10.1073/pnas.92.15.6738

Inhibitors of human heart chymase based on a peptide library.

M Bastos 1, N J Maeji 1, R H Abeles 1
PMCID: PMC41404  PMID: 7624313

Abstract

We have synthesized two sets of noncleavable peptide-inhibitor libraries to map the S and S' subsites of human heart chymase. Human heart chymase is a chymotrypsin-like enzyme that converts angiotensin I to angiotensin II. The first library consists of peptides with 3-fluorobenzylpyruvamides in the P1 position. (Amino acid residues of substrates numbered P1, P2, etc., are toward the N-terminal direction, and P'1, P'2, etc., are toward the C-terminal direction from the scissile bond.) The P'1 and P'2 positions were varied to contain each one of the 20 naturally occurring amino acids and P'3 was kept constant as an arginine. The second library consists of peptides with phenylalanine keto-amides at P1, glycine in P'1, and benzyloxycarbonyl (Z)-isoleucine in P4. The P2 and P3 positions were varied to contain each of the naturally occurring amino acids, except for cysteine and methionine. The peptides of both libraries are attached to a solid support (pins). The peptides are evaluated by immersing the pins in a solution of the target enzyme and evaluating the amount of enzyme absorbed. The pins with the best inhibitors will absorb most enzyme. The libraries select the best and worst inhibitors within each group of peptides and provide an approximate ranking of the remaining peptides according to Ki. Through this library, we determined that Z-Ile-Glu-Pro-Phe-CO2Me and (F)-Phe-CO-Glu-Asp-ArgOMe should be the best inhibitors of chymase in this collection of peptide inhibitors. We synthesized the peptides and found Ki values were 1 nM and 1 microM, respectively. The corresponding Ki values for chymotrypsin were 10 nM and 100 microM. The use of libraries of inhibitors has advantages over the classical method of synthesis of potential inhibitors in solution: the libraries are reusable, the same libraries can be used with a variety of different serine proteases, and the method allows the screening of hundreds of compounds in short periods of time.

Full text

PDF
6738

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angelastro M. R., Mehdi S., Burkhart J. P., Peet N. P., Bey P. Alpha-diketone and alpha-keto ester derivatives of N-protected amino acids and peptides as novel inhibitors of cysteine and serine proteinases. J Med Chem. 1990 Jan;33(1):11–13. doi: 10.1021/jm00163a002. [DOI] [PubMed] [Google Scholar]
  2. Angliker H., Anagli J., Shaw E. Inactivation of calpain by peptidyl fluoromethyl ketones. J Med Chem. 1992 Jan 24;35(2):216–220. doi: 10.1021/jm00080a003. [DOI] [PubMed] [Google Scholar]
  3. Bartlett P. A., Marlowe C. K. Phosphonamidates as transition-state analogue inhibitors of thermolysin. Biochemistry. 1983 Sep 27;22(20):4618–4624. doi: 10.1021/bi00289a002. [DOI] [PubMed] [Google Scholar]
  4. Berman J., Green M., Sugg E., Anderegg R., Millington D. S., Norwood D. L., McGeehan J., Wiseman J. Rapid optimization of enzyme substrates using defined substrate mixtures. J Biol Chem. 1992 Jan 25;267(3):1434–1437. [PubMed] [Google Scholar]
  5. Cha S. Tight-binding inhibitors-I. Kinetic behavior. Biochem Pharmacol. 1975 Dec 1;24(23):2177–2185. doi: 10.1016/0006-2952(75)90050-7. [DOI] [PubMed] [Google Scholar]
  6. Eichler J., Houghten R. A. Identification of substrate-analog trypsin inhibitors through the screening of synthetic peptide combinatorial libraries. Biochemistry. 1993 Oct 19;32(41):11035–11041. doi: 10.1021/bi00092a013. [DOI] [PubMed] [Google Scholar]
  7. Gallop M. A., Barrett R. W., Dower W. J., Fodor S. P., Gordon E. M. Applications of combinatorial technologies to drug discovery. 1. Background and peptide combinatorial libraries. J Med Chem. 1994 Apr 29;37(9):1233–1251. doi: 10.1021/jm00035a001. [DOI] [PubMed] [Google Scholar]
  8. Govardhan C. P., Abeles R. H. Structure-activity studies of fluoroketone inhibitors of alpha-lytic protease and human leukocyte elastase. Arch Biochem Biophys. 1990 Jul;280(1):137–146. doi: 10.1016/0003-9861(90)90528-7. [DOI] [PubMed] [Google Scholar]
  9. Harbeson S. L., Abelleira S. M., Akiyama A., Barrett R., 3rd, Carroll R. M., Straub J. A., Tkacz J. N., Wu C., Musso G. F. Stereospecific synthesis of peptidyl alpha-keto amides as inhibitors of calpain. J Med Chem. 1994 Sep 2;37(18):2918–2929. doi: 10.1021/jm00044a013. [DOI] [PubMed] [Google Scholar]
  10. Hu L. Y., Abeles R. H. Inhibition of cathepsin B and papain by peptidyl alpha-keto esters, alpha-keto amides, alpha-diketones, and alpha-keto acids. Arch Biochem Biophys. 1990 Sep;281(2):271–274. doi: 10.1016/0003-9861(90)90443-3. [DOI] [PubMed] [Google Scholar]
  11. Imperiali B., Abeles R. H. Extended binding inhibitors of chymotrypsin that interact with leaving group subsites S1'-S3'. Biochemistry. 1987 Jul 14;26(14):4474–4477. doi: 10.1021/bi00388a044. [DOI] [PubMed] [Google Scholar]
  12. Jayawickreme C. K., Graminski G. F., Quillan J. M., Lerner M. R. Creation and functional screening of a multi-use peptide library. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1614–1618. doi: 10.1073/pnas.91.5.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jencks W. P. On the attribution and additivity of binding energies. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4046–4050. doi: 10.1073/pnas.78.7.4046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kinoshita A., Urata H., Bumpus F. M., Husain A. Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart. J Biol Chem. 1991 Oct 15;266(29):19192–19197. [PubMed] [Google Scholar]
  15. Lam K. S., Salmon S. E., Hersh E. M., Hruby V. J., Kazmierski W. M., Knapp R. J. A new type of synthetic peptide library for identifying ligand-binding activity. Nature. 1991 Nov 7;354(6348):82–84. doi: 10.1038/354082a0. [DOI] [PubMed] [Google Scholar]
  16. Li Z., Patil G. S., Golubski Z. E., Hori H., Tehrani K., Foreman J. E., Eveleth D. D., Bartus R. T., Powers J. C. Peptide alpha-keto ester, alpha-keto amide, and alpha-keto acid inhibitors of calpains and other cysteine proteases. J Med Chem. 1993 Oct 29;36(22):3472–3480. doi: 10.1021/jm00074a031. [DOI] [PubMed] [Google Scholar]
  17. Ocain T. D., Rich D. H. alpha-Keto amide inhibitors of aminopeptidases. J Med Chem. 1992 Feb 7;35(3):451–456. doi: 10.1021/jm00081a005. [DOI] [PubMed] [Google Scholar]
  18. Owens R. A., Gesellchen P. D., Houchins B. J., DiMarchi R. D. The rapid identification of HIV protease inhibitors through the synthesis and screening of defined peptide mixtures. Biochem Biophys Res Commun. 1991 Nov 27;181(1):402–408. doi: 10.1016/s0006-291x(05)81433-0. [DOI] [PubMed] [Google Scholar]
  19. Parisi M. F., Abeles R. H. Inhibition of chymotrypsin by fluorinated alpha-keto acid derivatives. Biochemistry. 1992 Oct 6;31(39):9429–9435. doi: 10.1021/bi00154a015. [DOI] [PubMed] [Google Scholar]
  20. Peet N. P., Burkhart J. P., Angelastro M. R., Giroux E. L., Mehdi S., Bey P., Kolb M., Neises B., Schirlin D. Synthesis of peptidyl fluoromethyl ketones and peptidyl alpha-keto esters as inhibitors of porcine pancreatic elastase, human neutrophil elastase, and rat and human neutrophil cathepsin G. J Med Chem. 1990 Jan;33(1):394–407. doi: 10.1021/jm00163a063. [DOI] [PubMed] [Google Scholar]
  21. Schechter I., Berger A. On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun. 1967 Apr 20;27(2):157–162. doi: 10.1016/s0006-291x(67)80055-x. [DOI] [PubMed] [Google Scholar]
  22. Schellenberger V., Turck C. W., Hedstrom L., Rutter W. J. Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles. Biochemistry. 1993 Apr 27;32(16):4349–4353. doi: 10.1021/bi00067a026. [DOI] [PubMed] [Google Scholar]
  23. Stein R. L., Strimpler A. M., Edwards P. D., Lewis J. J., Mauger R. C., Schwartz J. A., Stein M. M., Trainor D. A., Wildonger R. A., Zottola M. A. Mechanism of slow-binding inhibition of human leukocyte elastase by trifluoromethyl ketones. Biochemistry. 1987 May 19;26(10):2682–2689. doi: 10.1021/bi00384a005. [DOI] [PubMed] [Google Scholar]
  24. Thompson R. C., Bauer C. A. Reaction of peptide aldehydes with serine proteases. Implications for the entropy changes associated with enzymatic catalysis. Biochemistry. 1979 Apr 17;18(8):1552–1558. doi: 10.1021/bi00575a026. [DOI] [PubMed] [Google Scholar]
  25. Till J. H., Annan R. S., Carr S. A., Miller W. T. Use of synthetic peptide libraries and phosphopeptide-selective mass spectrometry to probe protein kinase substrate specificity. J Biol Chem. 1994 Mar 11;269(10):7423–7428. [PubMed] [Google Scholar]
  26. Urata H., Healy B., Stewart R. W., Bumpus F. M., Husain A. Angiotensin II-forming pathways in normal and failing human hearts. Circ Res. 1990 Apr;66(4):883–890. doi: 10.1161/01.res.66.4.883. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES